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Abstract

The popularization of multimedia content on the Web has
arised the need to automatically understand, index and re-
trieve it. In this paper we present ViTS, an automatic Video
Tagging System which learns from videos, their web con-
text and comments shared on social networks. ViTS anal-
yses massive multimedia collections by Internet crawling,
and maintains a knowledge base that updates in real time
with no need of human supervision. As a result, each video
is indexed with a rich set of labels and linked with other
related contents. ViTS is an industrial product under ex-
ploitation with a vocabulary of over 2.5M concepts, capable
of indexing more than 150k videos per month. We compare
the quality and completeness of our tags with respect to the
ones in the YouTube-8M dataset, and we show how ViTS en-
hances the semantic annotation of the videos with a larger
number of labels (10.04 tags/video), with an accuracy of
80,87%. Extracted tags and video summaries are publicly
available.1

1. Introduction
During the recent years, video sharing through social

media has resulted in an exponential growth of visual con-
tent available through the Internet. These video data are
continuously increasing with daily recordings related to a
growing number of topics and events. Manually labeling
these data is extremely expensive and unfeasible in prac-
tice, therefore automatic methods for large-scale annotation
are needed. Video search and indexation benefits from the
use of keyword tags related to the video content, but most
of the videos being shared are published without tags.

The availability of multimedia content in the Internet has
also enabled the creation of large-scale video datasets, such
as Sports-1M [12], YouTube-8M [1] or Kinetics [13]. La-

1https://vilynx.com/research/vits_iccv2017.html

Figure 1: Scheme of ViTS. A dataset is constructed by the
video summaries output from the Video Action Summariza-
tion block, plus the tags extracted from the Contextual Tag-
ging Algorithm, which extracts tags from the information
related to the video. In parallel, the Relation Matrix up-
dates Knowledge Graph entities relation on real time, based
on world events.

bels are available for these datasets to train and evaluate
computer vision solutions in public benchmarks [9, 10, 16].
Despite the significant advances of such systems, their re-
sults are still restricted to the concepts annotated in the
dataset, which typically corresponds to a single tag per
video. This limitation is not acceptable for a real world ap-
plication targeting a dynamic domain such as social media.
For these cases, the vocabulary of labels needs an ontology-
based structure, and the relations between concepts must
incorporate a temporal dimension to capture the changing
realities in our societies.

In this paper we present ViTS, an automatic Video Tag-
ging System developed for large scale video tagging and
summarization. The tagging algorithm is based on the ex-

1
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traction of keywords from the contextual information2 as-
sociated to a video. ViTS labels are based on Knowl-
edge Graph (KG) entities from Freebase [6], thus, a large
and very specific vocabulary (over 2M concepts). Unlike
other tagging frameworks based on closed vocabularies, our
method is capable to detect real world new events, trends
and concept-relation changes in real time. Having this
kind of information allows for several applications such as
trends detection, content-based video recommendation or
indexation of large video-corpus, allowing for very specific
searches of content.

Our main contribution is an online framework that crawls
the web to index video documents as summaries of five sec-
onds and a set of contextual tags. In parallel, a KG is main-
tained that updates over time and learns new world rela-
tions, based on the analysis of related social media. This
framework is the base of an industrial product for real-time
tagging of videos crawled from the Internet, which is cur-
rently indexing over 150k videos/month.

The paper is structured as follows. Section 2 provides an
overview on related work for video indexing and knowledge
bases. Section 3 presents a description of the KG entities,
while Section 4 describes the overall system architecture.
Section 5 describes how we evaluate the quality of the gen-
erated tags over a subset of YouTube-8M videos. Finally,
Section 6 provides the final conclusions and points at future
work.

2. Related Work

The explosion of multimedia content on the Internet gen-
erated a lot of interest on automatically annotating and in-
dexing this content. In literature we find many Content
Based Visual Retrieval (CBVR) works, which compute per-
ceptual descriptors capable of recognizing and indexing vi-
sual content. For example, in [4] a large scale image sim-
ilarity search system is presented. Other works have been
studding visual semantics for large scale annotation, like
[32, 35, 24]. Most recent works approach the problem
with deep learning schemes which prove great performance
[22, 34]. However, CBVR methods require a lot of compu-
tational resources and are sometimes not feasible for large
scale and real time applications as the one targeting in this
work. Moreover, large datasets are needed to train deep
learning methods capable of recognizing large vocabularies
of visual concepts.

In this context, a lot of effort has been applied into gener-
ating large scale datasets to train these systems: e.g. Sports-
1M [12] (1M videos and ∼500 labels) for sport recogni-
tion, ActivityNet [8] (20k videos and ∼200 labels) for hu-
man activities, EventNet [37] (95k videos and 500 labels)

2We use ‘contextual information‘ to refer to all the text information
associated to a video URL (i.e. title, description or metadata).

for event-specific concepts, FCVID [11] (91k videos and
239 labels) for categories and actions, and Youtube-8M [1]
(8M videos and 4.8k labels) for actions and relevant ob-
jects describing the video. Nevertheless, all these datasets
but YouTube-8M, include only a few thousands of videos
and the vocabulary is restricted to a few hundred of cate-
gories. Also, these vocabularies are usually very specific
and not extensive to all multimedia content description and
real world applications.

ViTS addresses the video indexing problem from a
context-based perspective, where a light-computation solu-
tion exploit additional information associated to the video.
For example, the text and metadata available in the web
page where the video is embedded [14, 36, 31], or referred
comments on social networks [29]. Contextual informa-
tion coming from different sources requires an adaptation to
unify the set of semantics used for machine tagging. In [23],
a 1k concepts taxonomy called Large-Scale Concept Ontol-
ogy for Multimedia (LSCOM) is presented with the pur-
pose of standardizing multimedia annotations. Other pop-
ular models used to label multimedia content are Knowl-
edge Bases, such as Freebase[6], WordNet[21], OpenCyc
[19], Wikidata [33] or DBPedia [3]. Recent large dataset
vocabulary’s highly used in research are based on this kind
of generic entities, e.g. ImageNet [7] and VisualGenome
datasets [15] based on WordNet synsets, or YouTube-8M
dataset [1] based on Google Knowledge Graph (GKG) 3 en-
tities. This knowledge entities have many advantages com-
pared to regular word-based vocabularies, as they standard-
ize labels, structure the knowledge in a universal represen-
tation and model common sense. Some works are already
exploring this knowledge bases to improve image classifi-
cation [18] and question answering models [38]. Even the
use of this knowledge bases is proving high potential, it is
still a weakly explored field.

3. Knowledge Graph

The basic semantic unit generated by ViTS are concepts
in a Knowledge Graph (KG). These concepts correspond
to universal semantic representations of words. So, while
words are dependent from a specific language, concepts are
represented by words from different languages. The seman-
tics associated to the concepts can be refined and updated
based on the new information crawled by ViTS from the
Internet. Concepts allow to merge synonymous keywords
or alias under the same concept ID, i.e. the US basketball
team ‘Golden State Warriors‘ is also referred as ‘San Fran-
cisco Warriors‘ or ‘Dubs‘, so they all represent the same se-
mantics. Concepts are also useful to discriminate between
homonym words, i.e the word ‘Queen‘ would map to a mu-
sic band concept if appearing in a music-related context,

3GKG is the extension of Freebase, since Google acquired it.



Table 1: Example of KG information saved into our database, for the tag ‘New York‘. Alias in bold represent the tag to show.

Wikidata ID Freebase ID Description Types Alias Language

Q60 /m/02 286 City in New York
Place,
City,

Administrative Area

New York City en
The Big Apple en

New York en
NYC en

City of New York en
New Amsterdam en

Nueva York es
Ciudad de Nueva York es

Nova Iorque pt
New York tr

while it would be mapped to ‘Elizabeth II‘ if appearing in a
context related to the British monarchy.

ViTS uses the Freebase [6] concept ID representations,
which are accessible through the Google Knowledge Graph
(GKG) Search API4 and the Freebase public dumps5. Free-
base/Wikidata dump information is integrated in our sys-
tem database using Wikidata API [27]. From each con-
cept we save in our database its description, alias (different
ways how a concept can be named) in different languages,
types extracted from GKG (e.g. ‘Person‘, ‘Place‘, ‘City‘,
‘Brand‘, ‘Coorporation‘, ‘MusicGroup‘...) and its Free-
base and Wikidata ID references, so we can crawl the data
sources if more information is needed in a future. Some-
times concepts may not have associated types if they are
not found in GKG API. Also, for each concept we define a
tag to be displayed in every available language, which we
call tag to show. In this work we use ‘tag‘ to refer to the
final concept translated into its tag to show. In Table 1 an
example of the information saved into the database for the
tag ‘New York‘ is shown. This knowledge base results in a
collection of over 2.5M KG entities, corresponding to mul-
tilingual vocabulary of over 5M words. Notice that the size
of this collection constantly grows when new concepts are
found on the Internet.

ViTS also tracks the relations between concepts, repre-
sented by a score value that weights the strength of the link.
This score is represented in a sparse relational matrix R, of
dimensions n× n, where n is the total number of concepts.
Each element in R represents the relation rij between two
concepts ci, cj . The relation score rij between two concepts
ci, cj is related to the frequency by which the two concepts
co-occur in the same video:

rij =
NVci

∩Vcj

NVci

(1)

4https://developers.google.com/knowledge-graph/
5https://developers.google.com/freebase/data

where NVci
∩Vcj

is the number of videos where concept
ci has been assigned together with concept cj , and NVci

is
the total number of videos where concept ci has been as-
signed. Notice that matrix R is not symmetric, as relations
rij and rji are different.

This model allows quantifying the relations between two
concepts at a low computational cost. This matrix can be
updated and recalculated in real time, allowing us to quickly
adapt to new events occurring in the world. Moreover, it can
be time specific, taking into account only videos recorded
during a temporal window. This approach is faster than
word embeddings [20, 5], which have a much higher com-
putational burden, especially when adding new concepts
that would require re-training a deep learning model.

As an example of the learned relations, Figure 2 shows
the 50 closest concepts to the concept ‘Politics‘ by project-
ing the R matrix into a 2 dimensional space with a Multi-
dimensional Scaling (MDS) algorithm [17]. Notice how
learned relations in R generate clusters: e.g. news channels
generated a cluster in the lower left corner, while politics in
Spain generate a cluster in the top right corner.

4. Video Indexing

This section presents the system architecture of ViTS,
which is depicted in Figure 1. The first block is the Video
Action Summarization algorithm (4.1) that analyzes the full
video using computer vision techniques to select relevant
scenes. The second block is the Contextual Tagging Algo-
rithm (4.2), which crawls the Internet to find keywords as-
sociated to the indexed videos and maps them to entities in
the KG. The next subsections describe these two blocks in
detail.

4.1. Video Action Summarization

The goal of the video action summarization block is the
automatic selection of those video segments that allow a
rough understanding of the semantic contents of the video.

https://developers.google.com/knowledge-graph/
https://developers.google.com/freebase/data


Figure 2: The 50 concepts closer to the category concept: ‘Politics‘. Each concept position is represented by a circle and the
size of the circle represents the amount of videos tagged with this concept. Pink circles are from category concepts, while

green circles are general concepts.

We consider as relevant moments those scenes that would
capture viewer’s attention: i.e. high action and close-ups.
To this end, a set of computer vision techniques are applied
to identify and extract uncorrelated clips that contain the
most representative scenes, characters and objects of the
video under analysis. The length of the summaries must
fulfill a trade-off between being long enough to capture a
whole action, but being also short enough not to mix more
than one activity. In particular, ViTS builds summaries of
between 3-5 seconds long.

The algorithm for video action summarization firstly
segments the video into sequences with a potential of con-
taining rich semantic information and, secondly, the rele-
vance of each segment is estimated based on an action and
object recognition engines. The details of this algorithm
follows:

The algorithm for video action summarization begins
with a temporal partitioning of the video into segments
based on the changes of color and motion by using optical
flow. The resulting segments are stabilized to compensate
any camera motion. Then, objects are detected and tracked
based on K-means clustering across space and time. Each
object is assigned a score that takes into consideration their
size, focus and position over each frame, as well as the fre-
quency of occurrence within the whole video. In addition,
the optical flow is further analyzed to compute an action
score based on recognizing a set of predefined activities
such as running or playing sports. Finally, a Video Segment
Score is computed by summing the object and action scores,
so that the N most relevant segments are kept as video sum-
maries.

4.2. Contextual Tagging

The videos crawled by ViTS are indexed with a rich col-
lection of tags associated to the concepts of the KG, intro-
duced in Section 3. The tags are generated after a com-
bination of web scraping and social media networks. The
Contextual Tagging algorithm consists on two differentiated
parts: 1) keyword extraction from Internet crawling (4.2.1)
and 2) keyword mapping to KG entities (4.2.2). Figure 3
shows an scheme of the two blocks. Finally, concepts are
translated to tags using its predefined tag to show in a given
language, and are ranked for display reasons, as described
in 4.2.3

4.2.1 Keyword extraction from Internet crawling

The first step towards the generation of rich tags is retriev-
ing possible keywords available on Internet related to the
indexed video. The web page where the video is embedded
is parsed, so that the page title, description, text corpus and
metadata are extracted from it. All Twitter posts where the
video URL has been shared are also retrieved using Twitter-
API 6 and parsed as well. YouTube is also crawled through
YouTube Data API 7 in search of videos with the same title.
If found, its related information (description and metadata)
is also collected.

Once all text information is gathered, keywords are ex-
tracted using Natural Language Processing (NLP) tech-
niques, which may differ depending on the text length and
format of the extracted keywords:

6https://dev.twitter.com
7https://developers.google.com/youtube/v3/

https://dev.twitter.com
https://developers.google.com/youtube/v3/


Figure 3: Scheme of the Contextual Tagging Algorithm
Blocks. First blocks extracts keywords from all contextual
information related to the video. Second block maps those
keywords to KG entities applying context using R matrix.

• Long text (>150 words): stop words are removed
and keywords are extracted using the Rapid Automatic
Keyword Extraction (RAKE) algorithm [28].

• Short text (<=150 words), descriptions and titles: stop
words are removed and n-grams are constructed by
combining consecutive words. Each keyword is com-
posed by n n-grams, e.g. being n = 3, from the title
’What reduced crime in New York City’ we would get
the n-grams: [reduced, reduced crime, reduced crime
New], [crime, crime New, crime New York], [New, New
York, New York City], [York, York City] and [City],
where each block of n-grams is processed as an inde-
pendent keyword.

• Tags from metadata: if there are already tags associ-
ated to the video, no further processing is done. These
words are directly considered keywords.

• Twitter text: only the most repeated words in tweets
are considered relevant and selected as keywords. The
RAKE algorithm [28] is also used for this task.

• Twitter hashtags: if hashtags are composed by several
words, they are split by capital letters and selected as
keywords.

Finally, repeating keyword candidates are removed
before generating the final list.

4.2.2 Keyword mapping to Knowledge Graph entities

The keywords extracted with the strategies presented in
Section 4.2.1 must be matched with the entities of the KG
introduced in Section 3.

For each keyword, we retrieve a list of concept candi-
dates from the KG in our database. In particular, we search

for concepts represented by similar words in the source lan-
guage by using a fast text search technique which queries
the keyword lexeme and returns the matching alias. If no
concept candidates are found in the ViTS KG, the external
Google Knowledge Graph (GKG) is used as an alternative.

The retrieved concepts are ranked by summing two types
of concept scores: an intra-score and an inter-score. Their
definition is presented in the next paragraphs.

The concept intra-score is computed by using the infor-
mation of the concept itself and it is composed of differ-
ent terms. Firstly, the Levenshtein distance is computed be-
tween the keyword and the matching concept aliases. The
Levenshtein distance corresponds to the number of dele-
tions, insertions, or substitutions required to transform one
word into another, normalized by the number of letters; i.e.
if the keyword and alias are the same the distance between
them is zero and it increases depending on the amount of
changes needed for this two words to be the same. As
we want to have a similarity score, we convert the distance
into an score as s = 1 − d. Secondly, a concept usability
score estimates how often the concept is used. It is com-
puted as the linear combination of the concept historical
usability and concept recent usability, being each one the
ratio between the times a concept has been assigned to a
video during a period of time, and all the videos processed
during this same period of time. We differentiate the two
scores by the time window being used: while ‘historical‘
uses all the videos being processed by the system, ‘recent‘
only uses a short window of time. Thirdly, a set of Score
Filters are added to penalize or reward the score of those
concepts that tend to create false positives. In our case, we
work with year filters that force the matching to events in
a certain year (eg. Olympic Games or Elections), as well
as penalize some concepts we have manually identified as
sources of false positives (eg. ‘Book‘, ‘BookSeries‘, ‘Mu-
sicGroup‘, ‘MusicAlbum‘, ‘MusicComposition‘, ‘MusicV-
enue‘, ‘MovieSeries‘, ‘Movie‘). A minimum threshold is
set for the concept intra-score which discards those con-
cepts not reaching it.

The concept inter-score exploits the information con-
tained in the relational matrix R of the KG, introduced in
Section 3. For each concept candidate of a given keyword
(SnKi

), the relation between it and other concept candi-
dates from other keywords is computed from matrix R by
adding all relations between it and the other keyword’s con-
cept candidates, as expressed in Eq.2. Notice from the equa-
tion that relations are not computed with the concept candi-
dates of the same keyword.

Csi =
∑

Kj 6=Ki

R[SnKi , SmKj ] (2)

For each concept candidate, intra- and inter- scores are
summed, and only those above a predefined threshold are
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(d) The top-20 tags that have been discarded in more videos.

Figure 4: Tag statistics from the AMT results.

kept.
In case of dealing with n-gram keywords, concept candi-

dates are extracted for the n combinations of each keyword,
and an score for each part of the n-gram is generated with
the method explained above. Finally, the concept with the
highest score is kept for each n-gram keyword.

4.2.3 Concept Ranking

Once all video concepts are extracted, they are sorted by
descriptiveness and relevance for the video. This sorting is
only for display purposes. We consider more relevant those
tags giving specific information, i.e. name of people appear-
ing on the video or event being shown is more relevant than
general information as video categories. Following this cri-
teria, tags are sorted using their types, available in the ViTS
KG as explained in Section 3. Moreover, tags with equal
type or with an unknown type are sorted in descendant or-
der according to their frequency of appearance and location
in the source document (title, description, social networks,
etc.). Finally, concepts are translated into tags by using its
tag to show stored in ViTS KG, as previously introduced in
Section 3.

5. Experiments
The quality of the tags generated by ViTS is assessed

on a subset of videos from the YouTube-8M Dataset [1].

The resulting tags from contextual information block are
evaluated by human raters from the Amazon Mechanical
Turk (AMT) [25] crowdsourcing platform. This Section
describes the contents of the video subset used in the ex-
periment, the statistics of the generated tags, and the assess-
ment of their quality with AMT. The tags, summaries and
video information extracted during the experiment is pub-
licly available.

5.1. Video dataset

Our experiments use a subset of 13,951 videos from the
public YouTube-8M video dataset [1], each of them anno-
tated with one or more tags. Given the URL from each
video, the pipeline described in Section 4.2 is applied to ob-
tain the contextual information (title, description and meta-
data) that our algorithm needs to extract tags. This con-
textual information may include different languages, given
the multilingual nature of the YouTube-8M dataset. More-
over, YouTube-8M entities are also Freebase entities, which
allows a comparison between the original tags and the en-
hanced tags that ViTS provides.

The 13,951 videos from the subset were randomly se-
lected and cover a large vocabulary with a wide number of
topics. Figure 4a shows the distribution of videos included
in the subset for the top-20 most repeated entities, translated
into its tag to show in English. Notice how the subset has
a bias towards video games, vehicles, sports and music re-



Table 2: Comparison between ViTS and YouTube-8M Tagging

ViTS YouTube-8M ViTS YouTube-8M ViTS YouTube-8M

Baseball Game Thomas Robinson Basketball Minecraft Game
Alex Rodriguez Arena Sacramento Kings Video game Minecraft

New York Yankees Athlete New Jersey Server
New York City Baseball park Sport Browser extension
Yankee Stadium Stadium 2012 NBA Draft Tutorial

SportHit Home run Download
Home run Video game culture

lated entities, a distribution similar to the full YouTube-8M
dataset.

5.2. Tagging Statistics

The final tags extracted by the Contextual Tagging Algo-
rithm from the 14k videos consists on a set of 34,358 dis-
tinct KG entities. In Figure 4b we show the top-20 most
repeated tags extracted by ViTS, compared to YouTube-
8M’s in Figure 4a. Notice a similarity on the top-level cate-
gories of the concepts: ’Music’, ’Vehicles’, ’Video Games’,
’Food’ and ’Sports’.

The average number of tags per video extracted by ViTS
is 10.04, while the average number of tags in YouTube-8M
dataset for the same subset of videos is 3.64. Nevertheless,
in YouTube-8M tags have gone through a vocabulary con-
struction, where all entities must have at least 200 videos in
the dataset, and also only tags with visual representation are
allowed, as described in [1]. In Table 2 we show a compari-
son of ViTS tags with respect to YouTube-8M ground truth
tags for three videos. Notice the specificity of our tags and
the higher quantity of tags ViTS provides.

Table 3 contains the average number of tags extracted
depending on the language of the contextual information.
Language is recognized by using a Wikipedia based lan-
guage detection algorithm [30]. When we do not recognize
the language (null in the table), we treat it as being English.
Notice how most of the videos in the subset are in English,
produces a bias on the KG Vocabulary, which is larger for
English aliases. Also, relations of English topics are better
learned than others. As a consequence, the average number
of tags per video is higher when the contextual information
is in English.

Table 3: Multilingual Tagging Statistics

Language #Videos Average #Tags

en 6,806 12.11
null 5,297 8.83
es 450 5.99
de 246 6.53
it 227 6.39
id 140 6.54
pt 135 4.54
nl 104 8.15
fr 90 5.68
ca 52 5.15
ro 49 6.83
tl 42 4.02
af 34 5.58
hr 30 6.06
no 28 5.92

Total 13,951 10.04

5.3. Human Rating of Generated Tags

The automatic annotations from the contextual informa-
tion can be noisy and incomplete, as it is automatically gen-
erated from video title, description, metadata and user com-
ments on social networks. The quality of the automatically
generated tags was assessed by human workers from the
Amazon Mechanical Turk (AMT) online platform. The tags
from 1.4k randomly selected videos were shown to AMT
workers, limiting the experiment to videos in English and
workers located in the United States.

In each HIT (Human Intelligent Task) from AMT, three



Figure 5: Example of AMT HIT layout. On the left, video
summaries are displayed in loop, together with title and
video description below. On the right, the extracted tags for
the video are shown for their evaluation with radio buttons.

different workers evaluated the correctness of at most 10
tags assigned to the video, ranked according to the algo-
rithm described in Section 4.2.3. If the video had more than
10 tags associated, the additional tags were not evaluated.
The video summaries, title and description from the video
were shown to the worker on the user interface depicted in
Figure 5. Workers were asked to decide if the tags were
correct based on that information. For each tag, the worker
was asked to select one of these options: Correct, Incorrect,
Do not know. The ‘Do not know‘ option was added because
tags may be sometimes very specific and difficult to rec-
ognize by a non-expert rater, but should not be considered
incorrect for this reason. An answer was accepted when at
least two workers agreed on it. If all three workers voted
for the same option, we refer to it as ‘absolute correct‘. In
case of complete disagreement, or if workers vote for ma-
jority the ’Do not know’ option, the tag is discarded. Tags
extracted by ViTS that also appear in YouTube-8M ground
truth were considered ‘absolute correct‘. Thus, these tags
were not shown to the workers, but are accounted in the
provided results.

Table 4 provides the accuracy results. We obtained a cor-
rectness of 77.81% of the tags evaluated, with a 77.31% of
this tags with ‘absolute correctness‘ (agreement of all 3 hu-
man raters or already in YouTube-8M annotations). Note
that typical inter-rater agreement on similar annotation tasks
with human raters is also around 80% [2, 26], so the accu-
racy of these labels is comparable to (non-expert) human-
provided labels.

We also analyzed the most repeated errors and uncertain
tags. Figure 4 shows the top-20 tags with more occurrences,
evaluated as incorrect or discarded. Notice that many of
these tags are too generic concepts, such as ‘Lifestyle‘ or
‘Music‘, which are often found on automatically generated
metadata. Also, most of the incorrect tags are abstract con-
cepts, like ‘Enjoy‘, ‘Hope‘, ‘Year‘ or ‘Thought‘, that are
often found on contextual information but are not descrip-
tive nor relevant to the video. Moreover, we found some

Table 4: Tag Quality Evaluation

#Videos #Tags Total Accuracy
1,400 14,024 80.87%

% Correct % Incorrect % Discarded
77.81% 18.27% 3.90%

incorrect tags caused by repeated errors on the mapping
from keywords to KG entities, such as ‘Georgia Institute of
Technology‘ coming from the keyword ‘technology‘, ‘Trip
Tucker‘ coming from ‘trip‘ or ‘Head of Mission‘ coming
from ‘cmd‘ or ‘com‘.

6. Conclusions and Future Work

This paper has introduced ViTS, an industrial Video Tag-
ging System which generates tags based on information
crawled from the Internet and learns relations between con-
cepts. The core of the system is a knowledge base that is
constantly updated to capture the dynamics of the indexed
concepts.

ViTS was tested on a subset of videos from the YouTube-
8M dataset. The tags generated by ViTS were highly graded
by human users exposed to a visual summary of the video
and its metadata. The accuracy of 80.87% is comparable
to the inter-annotator agreement of (non-expert) humans in
the task of semantic annotation. This high quality, com-
bined with its capability of capturing not-only visual con-
cepts, shows the capability of ViTS as a rich video indexing
system. Moreover, experiment results on Youtube-8M are
publicly available.

The presented tagging system shows how contextual data
is a powerful source of information when indexing web
videos. Exploiting the relations between concepts allows
generating a rich set of tags with a light computation, de-
sirable when addressing a web scale indexing. However,
content-based techniques could also extend our content-
based tags. Our future work will address exploiting these
tags as weak labels for computer vision and audio process-
ing deep models, which have been shown impressive recog-
nition performances in the recent years.
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