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Abstract

Following the phenomenological approach of gestaltists,
sparse monocular depth cues such as T- and X-junctions
and the local convexity are crucial to identify the shape
and depth relationships of depicted objects. According to
Kanizsa, mechanisms called amodal and modal comple-
tion permit to transform these local relative depth cues into
a global depth reconstruction. In this paper, we propose
a mathematical and computational translation of gestalt
depth perception theory, from the detection of local depth
cues to their synthesis into a consistent global depth per-
ception. The detection of local depth cues is built on the re-
sponse of a line segment detector (LSD), which works in a
linear time relative to the image size without any parameter
tuning. The depth synthesis process is based on the use of a
nonlinear iterative filter which is asymptotically equivalent
to the Perona-Malik partial differential equation (PDE). Ex-
perimental results are shown on several real images and
demonstrate that this simple approach can account a vari-
ety of phenomena such as visual completion, transparency
and self-occlusion.

1. Introduction

To infer the shape and the distance from the viewpoint
of depicted objects, our visual system is influenced by sev-
eral factors, commonly referred to as pictorial depth cues
because of their use by artists to convey a greater sense of
depth in a flat medium. The whole issue of how these fac-
tors are grouped together by the visual system to convey an
unique, stable depth perception is what Kanizsa [14] called
the more general “enigma of perception”. Gestalt theory
was a first scientific attempt to address this fundamental is-
sue. Gestaltists consider human perception as the result of a
construction process driven by a set of elementary grouping
laws. These laws are supposed to act for every new per-
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cept before any high level cognitive process. In the found-
ing Wertheimer paper [32], one can distinguish two kinds
of grouping laws. The first kind are elementary grouping
laws that start from the atomic local level to recursively
construct larger and larger groups (gestalts). The second
kind are principles governing the interaction, collaborative
or conflictive, between partial gestalts obtained by elemen-
tary grouping laws. In a broad overview of Gestalt theory,
Metzger [20] showed that depth can be perceived in the ab-
sence of binocular correspondence. Although these results
were well known at the time computer vision emerged as
a new discipline, a great deal of effort has been invested
by the computer vision community in coming up with al-
gorithms to recover depth from stereo[18] and from other
cues that requires multiples images, such as structure from
motion [12] or depth from defocus [23]. More recently,
several works on monocular depth perception are focus-
ing on learning approaches that capture contextual informa-
tion [25, 27, 13] and still involve more neurophysiology
than phenomenology. To the best of our knowledge, the
laws governing the primary process of depth perception, as
opposed to a more cognitive secondary process have still
not received an adequate mathematical and computational
translation. This lack is mainly due to the qualitative nature
of phenomenology. The mathematical definition of digital
image was ignored by Gestaltists and the related issues of
blur and noise in image formation were even not qualita-
tively considered. In this paper we attempt a mathematical
and computational translation of gestalt laws and principles
governing the monocular perception of depth, from the de-
tection of sparse monocular depth cues such as T- and X-
junctions and the local convexity to their synthesis into a
global depth reconstruction.

In the next section we survey the literature related to the
subject. In Section 3 we give a detailed description of the
proposed approach to monocular depth perception. In Sec-
tion 4 we discuss the experimental results and finally section
5 reports the main conclusions of the present work.
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2. Related work

The first relevant works on monocular depth perception
appeared at the beginning of the nineties and presented solu-
tions based on two different perspectives: the contour pro-
cessing and the region processing perspective. Due to the
crucial role of depth perception in the interpretation of illu-
sory contours, most of these seminal works were developed
by psychologists and conceived as computational models of
illusory contours.

From the contour-processing perspective, the formation
of a global percept from local cues has been modeled as
an optimization process with a contour interpretation mech-
anism. Williams [33] described the occlusion mechanism
by a set of integer linear constraints. These constraints in-
sure the physical consistency of a contour grouping pro-
cess with the image evidence. The main limitation of this
work is that it foregoes purely local use of local evidence.
Saund [26] proposed a solution to this problem based on
the use of a token-based algorithmic framework allowing
locally derived constraints to propagate globally around a
junction graph. The junction label assignment is conducted
through annealing-style optimization, which is well known
to be susceptible of local optima. Taking a neurophysio-
logical perspective, Heitger et al. [11] proposed a grouping
method which consists in convolving a representation of oc-
clusion cues with a set of orientation selective kernels and
nonlinear paring operations. This method cannot resolve
ambiguities and tends to complete also the background.

From the region-processing perspective, the formation of
a global percept from local cues has been modeled as an
optimization process with a surface diffusion mechanism.
Mumford and Nitzberg [22] proposed a variational formu-
lation presented as a variant of the Mumford and Shahs
segmentation model [5], allowing regions to overlap. They
first compute edges and T-junctions and then minimize the
functional combinatorially with respect to all possible ways
of connecting the T-junctions by new edges that is consis-
tent with a given ordering hypothesis. This work has in-
spired more recent theoretical investigation, addressing the
main issues of the numerical minimization of the functional
[6] and the computational complexity [30]. Maradarasmi
et al.[17] proposed a Bayesian formulation: assuming that
all surfaces in the scene are piece-wise constant or fronto-
parallel, the problem of finding a piece-wise smooth seg-
mentation of the image into surfaces is equivalent to the
problem of assigning a discrete depth value to each image
pixel. Stella et al.[29] extended Maradarasmi’s work by em-
bedding into a Hierarchical MRF explicit decision rules that
asserts continuity of depth assignments values along con-
tours and within surfaces, and discontinuity of depth assign-
ment value across contours. A linear diffusion formulation
has indeed been proposed by Geiger et al.[9]. First, a set
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of local surface interpretations to local occlusion cues, such
as junctions and corners, is assigned in the form of salient
surface-states. Then, a linear diffusion algorithm that block
diffusion coefficients at intensity edges is applied. The best
image organization is selected based on a coherence mea-
sure between pairs of junctions.

A more neurophysiological approach is taken by Kogo et
al. [16] and Mordohai et al.[21]. [16] proposed a feedback
model based on a surface completion scheme. The relative
depths are determined by convolution of Gaussian deriva-
tive based filters, while an anisotropic diffusion equation
[24] reconstructs the surfaces. [21] integrated under a ten-
sor voting framework first and second order information for
automatic junction labeling and selection between modal
and modal completion. Recently, Gao et al. [8] proposed
a Bayesian inference framework which unify the contour-
based and the region-based perspective. T-junctions are
computed on atomic regions and broken into terminators.
A graph representation is obtained consisting of two types
of nodes: atomic regions and its corresponding terminators
that make the problem a mixed MRF. The most recent works
are learning-based approaches [25, 27, 13]. They are based
on the use of a large database of images annotated with
human-marked ground-truth to learn local figure/ground la-
bels [25], or the set of parameters capturing the 3D location
and orientation of small patches, or models of occlusion[13]
based on both 2D and 3D depth cues. The inference is per-
formed on a MRF [27] or on a Conditional MRF[25, 13] to
enforce global consistency.

Most of described approaches have been tested only on
a limited set of synthetic images [33, 26, 9, 17, 16, 21, 30],
or on images previously segmented by interactive methods
[29, 8, 25]. Impressive results on real images have in-
deed been showed when using learning-based approaches
[25, 13, 27]. However, they are obtained using a ratio be-
tween the number of test images and the number of training
images, with manual assignement of the ground truth, al-
most equal to 1.

In the next section, we propose a full automatic method
completely based on gestalt phenomenology that can ac-
count for a variety of phenomena on real images.

3. Proposed Approach

The method proposed here involves three main steps.
The first step detects a set of monocular depth cues arising
from elementary grouping laws. The second step encodes
all local and non-local depth relationships, by acting in an
additive fashion under non-conflictive conditions (collabo-
ration) and in a exclusive fashion under conflictive condi-
tions (masking). The last step operates a synthesis of all
available depth information to infer shape and spatial lay-
out of depicted objects.
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Figure 1. (a) Occlusion. (b) Transparency.

3.1. Computing Monocular Depth Cues

In this work we focus on a subset of monocular depth
cues that do not require any a priori information about the
scene and should be regarded as a direct, immediate re-
sponse to retina stimulation. For each cue, we detail the
psychophysical description as well as its mathematical and
computational translation.

Probably the most important monocular depth cue is oc-
clusion. Occlusion occurs when an opaque object partly
obscures the view of another object further away from the
viewpoint (Fig.1(a)). In this case, the projection of the ob-
ject contours partially hiding each other creates T-shaped
junctions in the image plane. The geometrical configura-
tion of T-junctions encodes relative depth information of
the objects in partial occlusion: the stem of the T belongs
to the partially occluded object and the roof to the occlud-
ing object. A particular case of occlusion is transparency,
which occurs when the occluding object is transparent and
therefore the more distant objects are visible through the
less distant transparent one (Fig.1 (b)). In this case, the pro-
jection of object contours creates X-shaped junctions in the
image plane. Whereas the geometric characterization of T-
junctions alone provides a local signature of occlusion, in
the case of transparency a photometrical characterization is
also needed. At points where transparency occurs two dis-
tinct depths lie in the same line of sight. The process of
separating a single luminance value into two contributions
is known as scission. Metelli [19] derived two constraints
on the photometric conditions required for perceptual scis-
sion. The first constraint is known as magnitude constraint:
a transparent medium cannot increase the contrast of the
visible structures. As a consequence, a region can scissor
only if its contrast is less than or equal to the contrast of its
flanking regions. The second constraint is known as polar-
ity constraint: a transparent medium cannot alter the con-
trast polarity of structures visible through it. Polarity con-
straints provide a photometrical signature of transparency.
Once scission has been identified, the problem of assigning
surface properties correctly to the two depths is solved by
using the magnitude constraint: the contrast between the re-
gions belonging to the transparent medium is always lower
than the contrast between the regions of the underlying ob-
ject.

From the above description results that figural signatures
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Figure 2. Possible configurations of segments conveying
the perception of X-junctions ((a),(c),(e)) and T-junctions

((b),(d))

of occlusion and transparency are respectively T-junctions
and X-junctions. Our method for detecting T-junctions and
X-junctions is built on the response of the LSD proposed by
Grompone et al. [10]. The perception of segments is related
to the grouping law of constancy of direction (alignment),
which is a special case of continuity of direction. LSD
puts together two well known state of the art algorithms
for segment-detection: the Burn’s segment detector [3] and
the meaningful segment detector developed by Desolneux
et al. [4]. First the image is segmented into line-support re-
gions using the Burn’s strategy and the medium orientation
is accurately computed for each support region. Then, fol-
lowing the approach of Desolneux et al. [4], segments are
computed as outliers of an unstructured background model.
The main advantage of this strategy is that the thresholds
of the detection algorithm can be defined in order to control
its expected number of false detection under the background
model. In addition, the use of a previous line support-region
detection step speeds up the computation leading to a line
segment detector able to process images in linear time rela-
tive to the number of pixels. Furthermore, LSD leads to an
easy visualization of T- and X-junctions, even if the junc-
tion center is often missing for the detection. In these cases,
the visualization of junctions is the result of an interpolation
process driven by the good continuation principle. Straight
lines are extended and junctions are detected as intersection
of straight lines. According to the number and the orien-
tation of intersecting segments, junction points are classi-
fied. T-junctions can be detected as intersection of two or
three segments ( Fig.2(b) and (d)) whereas X-junctions can
be detected as intersection of two, three, or even four seg-
ments (Fig.2(a),(c),(e)). The intersection of two segments
may lead to a T-junction or an X-junction depending on the
position of the intersection point P with respect to the tips
E; of the segments. When all tips have sufficient distance
from the P, they convey the perception of an X-junction
(Fig.2(a)), otherwise of a T-junction (Fig.2(b)). The inter-
section at point P of three segments si, s, and s3 such that
two of them, say s; and s, are aligned may lead to a T-
junction or an X-junction depending on the position of P
with respect to the tips E5 and Ejg of the third segment s3.
When both tips of s3 have sufficient distance from P, then
they convey the perception of a X-junction (Fig.2(c)), oth-
erwise of a T-junction (Fig.2(d)). The intersection of four
segments at a point P leads to an X-junction when the seg-



Figure 3. The polarity constraint tells us that s is the con-
tour of the transparent object, since the polarity of the con-
trast between pairs of adjacent regions delimited by r ((4,
B) and (C, D)), does not change when s is crossed
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Figure 4. Convexity: contrast polarity and texture prop-
erty being equal in ((a) and (b)) and in ((c) and (d)), the
region with convex contour tends to be perceived as fore-
ground.

ments are two by two aligned and all segment tips have suf-
ficient distance from P (Fig.2(d)).

While occlusion is simply detected by using figural char-
acterization of T-junctions, the detection of transparency in-
volves a photometrical characterization as well since it re-
quires to check the polarity constraint. Let A, B, C, and D
be the four regions delimited by the contours r and s form-
ing the X-junction and a squared window of size w centered
at the junction center (see Fig.3). The gray level represen-
tative of each region, a, b, ¢ and d is obtained as a median
value on each region. If the regions A and B are separated
by r and A and C are separated by s, then the polarity con-
straint is satisfied if the difference a — c has the same sign
as the difference b — d or if the difference a — b has the
same sign as the difference ¢ — d. In the latter case, s is the
contour of the transparent object and r is the contour of the
underlying object. In the former case the contrary is true.

In the absence of occlusion and transparency, the factors
that determine which regions are perceived as foreground
and which as background, given the complete description of
the boundary contours, must be related to the shape of the
regions and not to their contrast polarity, or any other tex-
ture property. With respect to other global shape properties,
convexity has proved to have a stronger influence on figu-
ral organization. Its role has been illustrated by Kanizsa:
any convex curve (even if not closed) suggests itself as the
boundary of a convex body on the foreground (Fig.4). From
a mathematical point of view, the convexity of a curve is re-
lated to the sign of its curvature. Let u : R2 — R be an
image, Du the gradient of u and = a point of « such that
Du(x) # 0 and in a neighborhood of x the iso-level set of
u through x is a C Jordan arc I'. Then the curvature vector
k(u) at x is defined by

Du

k(u)(z) = —curv(u)(z)
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where curv(u)(z) is the curvature of v at point z. If z is
a point of T, then the curvature vector (u)(z) is normal to
I at  as the gradient vector 2% and points towards the

[Dul
center of the osculating circle.

A first example of conflict between elementary grouping
laws arises in correspondence of T- and X- junctions. In
fact, at these points the local interpretation of relative depth
conveyed by convexity is never in agreement with the inter-
pretation conveyed by occlusion or by transparency. This
situation is called conflict by gestaltists and resolved by the
masking or, in more neurophysiological terms, inhibition.
As for any other case of conflict, the grouping law that gives
the better global explanation of the figure inhibits the com-
peting one. At T- and X-junction points, the masking phe-
nomenon implies the inhibition of convexity.

Occlusion is one of two ways by which observation con-
ditions lead to object obscuration. The second one is cam-
ouflage. In camouflage the occluding object is rendered
invisible by matching the color or the texture of the back-
ground. In both cases the visual system interpolates missing
data, a process known as visual completion. This process is
important because it is one of the means by which the visual
system organizes its depth measurements into meaningful
bodies. In the case of occlusion, the perceptual comple-
tion of partially occluded objects is referred to as amodal
completion. In the case of camouflage, the perceptual com-
pletion of occluding objects is referred to as modal comple-
tion (see Fig.7). In general, the regions of the image that
are visible and lead to visual completion are referred to as
“inducers” [7]. Inducers of visual completion are pairs of
T-junctions that, when connected by extrapolating one stem
and connecting it with the stem of the other element of the
pair, obey the ”good continuation” law. This means that the
interpolated curve should be as similar as possible to the
piece of curves it interpolates. According to the Kellman
and Shipley’s theory of relatability [15] human vision does
not always complete contours in presence of T-junctions
but uses geometric relationships among them to reduce the
number of interpretations that are consistent with a given
image. These geometric relationships are synthesized un-
der the concept of relatability. The definition of relatability
is as follows (see Fig.5(a)). Two edges are said relatable
if the process of interpolation begins and ends at the points
of tangent discontinuity of the contour, called T-junctions,
and, their linear extensions meet in their extended regions,
Sforming an outer angle ® less of /2. Psychophysical data
suggest that within the category of relatable edges, there are
quantitative variations in strength. As can be observed in
Fig.5 (b), the strength of the perceived connection decreases
when the angle between two edges increases (1, 2, 3) and/or
the offset between two parallel edges increases (4, 5, 6). We
use these quantitative variations to choose the best relatable
T-junction for a given T-junction, when multiple candidate



Sl ,’ sy 1. 2. 3.
¥ Sy X 5. .
(@ (b)

Figure 5. (a) Relatability geometry. (b) Strength varia-
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Figure 6. Amodal completion: pairs of relatable regions
(A1,A2),(B1,B3), and (C1,C2) have similar gray level.

pairs satisfying the relatability conditions are possible. The
angle is used as first criterion and, in case of angle parity,
the offset between the two candidate edges is considered.
As additional constraint for relatability we also impose a
photometric condition. Let a; b; and ¢; be respectively the
medium gray level of regions A;, B; and C; delimited by
the contours forming the T-junction and a squared window
of size w centered at the junction center (see Fig.6). The
relatability condition is checked only at pairs of T-junctions
such that the medium gray level of the region forming the
top, say a1, and the regions forming the stem b; and ¢; have
a medium gray level similar respectively to as, by and co or
as, co and bo. In the case of camouflage, T-junctions show
up as line ends that correspond to the stem of the T. When
the occluding object matches the color of only one of the
two background objects, pairs of T-junctions that lead to
modal completion show up as pairs of corners (see Fig.7).
We shall call angles that lead to modal completion degen-
erated T-junctions. Pairs of degenerated T-junctions are de-
tected using the quantitative variations of relatability. This
criterion allows also to take a decision of which of the two
segments forming the corner is the stem of the T-junction.
For instance in Fig.7 the application of this criterion lead to
see the triangle behind the square.

3.2. Computing Initial Depth Values

Let z be the depth image. We call source points the
points for which the initial depth gradient Dz is not zero
and normal points the points for which Dz, = 0. Source
points arise in correspondence of depth cues. In the follow-
ing we shall call foreground source points (FSPs) all source
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(a)
Figure 7. (a) Modal completion: modal contours through

an homogeneous zone. (b) Boundaries objects visualized
using LSD: T-junctions show up as corners
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Figure 8. FSPs and BSPs arising from: (a) T-junctions,
(b) transparency, (c) convexity

points marking the regions that are closer to the viewpoint
and background source points (BSPs) the points more dis-
tant to the viewpoint. We assign a positive value to FSPs,
and zero to BSPs. The rest of the image is initialized with
value zero. The way source points are computed depends
on the type of depth cue. Source points arising from a T-
junction at point P are computed as follows (see Fig.8(a)).
Let s be the line containing the segment that forms the stem
of the T-junction. Let m; and my be the points belonging
to s and having distance d from P. If m2 is the point lying
on the stem and r1 the line perpendicular to s and passing
through mg, then m; is the FSP and the points mg and my
belonging to r1 and having distance d from my are the BSP.
Source points arising from convexity at point P of a curve
are computed in the following way (see Fig.8(c)). Let r be
the line passing through P and having the direction of the
gradient at P. Let m; and ms be the points belonging to r
and having distance d from P. If m; is the point lying on
the half-line having origin in P and oriented as the curva-
ture vector at x, then m; is the BSP and m; the FSP. Source
points arising from transparency at point P are computed as
follows (see Fig.8(b)). Let s be the line containing the con-
tour of the transparent object, and m; and my be the points
belonging to s and having distance d from P. Let r1 be
the line perpendicular to s and passing through mq, and 2
the line perpendicular to s and passing through ms. Let m3
and my be the points belonging to 1 and having distance
d from m1, and m5 and mg the points belonging to 72 and
having distance d from my. If the gray level difference be-
tween my and mg is larger than the gray level difference
between mg and ms, then m3 and ms are FSPs whereas



my and mg are the BSPs. The distance d is at least 4 pixels
to take into account image blur. It allows one to jump over
edges.

3.3. Depth Diffusion

Once source points have been computed, our goal is to
extrapolate relative depth values to the entire image domain.
To this goal we use a neighborhood filter. A neighborhood
filter is any filter which performs an average of the values of
pixels which are close in gray level value. The underlying
assumption is that pixels belonging to the same object have
a similar gray level. The average is commonly computed
on pixels belonging to the neighborhood in spatial distance
as in the Yaroslavsky neighborhood filter (YNF) [34], the
SUSAN filter [28] and the bilateral filter [31], or in a fully
non-local way as in the non-local means [2]. Let u be an
image defined on a bounded domain € R?. The YNF
computes a weighted average that can be written in a con-
tinuous form as

1 —lu(z)—u(y)|?
YNFuu) = g [ e 5w e
oz

where B, (x) is a ball with radius p and center z, z € 2 and

2
C(z) =/, B, () e dy is the normalization factor.
Neighborhood filters have been proved to be asymptotically
equivalent to a Perona-Malik equation [1], one of the first
nonlinear PDE used for image restoration.

The diffusion process on the depth image z is performed
using the gray level image u to define the neighborhood.
In order to make the diffusion process faster, the sup of the
neighborhood is taken instead of the average while the aver-
age is taken only in the last iterations. The depth diffusion
filter (DDF) can be written in a continuous form as

—lu(z)—u(y)|?
h,2

DDFy, ,z(x) = 3)

sup z(y)e
yEB,(z)

This filter is applied iteratively until the stability is attained.
After each iteration, the values of FSPs and BSPs are mod-
ified in order to hold at least the initial depth gradient. This
constraint corresponds to Neumann internal boundary con-
ditions which are understood as a prespecified jump on the
c% as the boundary crossed, where c is a positive constant
and n is the normal to the boundary. This allows one to han-
dle simple sorting when objects are located in multiple lay-
ers. In the case of occlusion and transparency there is also a
depth order between the two regions separated respectively
by the stem of the T and by the contour of the underlying ob-
ject. Occlusion and transparency do not carry any informa-
tion about the partial order between the underlying object
and the background. This depth order can be inferred by
other cues, such as convexity or visual completion. When
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information about this partial order is present, the depth gra-
dient between one of the BSPs and the FSPs increases. This
is the reason for which we force source points to hold “at
least” the initial depth gradient. To handle visual comple-
tion, after each iteration pairs of relatable regions (see Fig.6)
are forced to maintain the same depth. In the case of modal
completion, one of the two BSP has a gray level similar
to the one of the FSP. For this reason we modify the way
the neighborhood is defined. Let r and s be the lines the
modal contours lie on. The neighborhood N, is defined as
follows: N, = {y | y € B,(x),y € a,(x),y € fs(x)},
where «,(2) is the half image plane including 2 with origin
the line r and (5 () is the half image plane including x with
origin the line s.

4. Experimental Results

We tested our model on a set of real images (taken by
a digital camera) involving occlusion, transparency, con-
vexity, visual completion (both amodal and modal) and
self-occlusion. For each experiment we show four images:
the original image; the image showing the segments found
by applying LSD on the original image; the image where
the initial depth gradient at depth cue points is represented
through vectors pointing to the region closer to the view-
point (red vectors arise from T-junctions; green vectors arise
from local convexity and each of them represents the point
having the biggest curvature value of the connected compo-
nents obtained by thresholding the curvature); the depth im-
age obtained performing the proposed method. The depth
map is rendered through gray level values (high values in-
dicate regions that are close to the camera). In the exam-
ple on the first row (Fig.9), local convexity induces to see
the disk over the table. The second row is an example in-
volving convexity and occlusion: it shows that the proposed
method is able to handle simple sorting in presence of multi-
ple depth layers. The third and the fourth rows are examples
of amodal and modal completion respectively: in the former
case, the detection of pairs of relatable T-junctions leads to
see the green piece of paper partially occluded by the white
strips as a meaningful unit; in the latter case, the detection of
a pairs of degenerated T-junctions leads to see the rectangle
in front of the square. In the example on the fifth row, the
transparency phenomenon is correctly interpreted. In the
example on the sixth row, occluding contours have different
depth relationships at different points along its continuum.
However, the proposed method performs well also in this
ambiguous situation. The examples on the last two rows
involve more realistic scenarios. While in the first exam-
ple the solution is pretty contrived, in the second we show a
case of failure. What has caused the break in this case is that
a region with homogeneous texture (the mountain behind
the rock) has been marked as FSP thanks to the T-junction
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Figure 9. (a) Original (b) Segments detected by LSD (c) Local Depth Information (d) Depth image
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on the rock pick and as BSP thanks to the curvature vector.
This example also demonstrates that the proposed DDF can
handle homogeneous texture (see mountains and the biggest
rock) but fails when shading conditions cause strong inten-
sity oscillations (see the rock in the bottom-right corner).

5. Conclusions

In this work we have proposed a mechanism for monoc-
ular depth perception completely based on phenomenol-
ogy. Experimental results involving occlusion, trans-
parency, convexity, visual completion (both amodal and
modal) and self-occlusion have shown a correct interpreta-
tion of several real images. In contrast with anterior state of
the art, the cue detection was automatic and the depth syn-
thesis led by a very elementary mechanism, namely an iter-
ated neighborhood filter. However, the experiments shown
here on real images give a high confidence to the DDF as
a way to diffuse depth information from local depth cues.
In particular, contradictory information given by conflicting
depth cues were dealt with correctly by the proposed mech-
anism which permits two regions to invert harmoniously
their depths, in full agreement with phenomenology, and
very diverse gestalt laws were fused harmoniously within
this simple and plausible mechanism. Although the exper-
iments have been performed on real images, a new gener-
ation of detectors will be needed to deal with real world
images, where T-junctions, convexity, etc. cannot always
be computed from local information. Further research must
therefore focus on more and more global cue detectors.
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