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Abstract

The aim of this paper is to present a new interpolation technique intended for spatial interpolation from sparse data sets.

The proposed implementation, based on non-linear morphological operators, overperforms linear interpolation techniques based

on di�usion processes performing iterative space-variant �ltering on the initial image.

The application of morphological interpolation is illustrated for sketch-based image coding. We put forward a perceptually

motivated two-component image model that strongly relies on morphological operators. The watershed is used to detect strong

edge features in the �rst component of the model. The smooth areas of the image are recovered from the extracted edge information

by morphological interpolation. The residual component, containing �ne textures, is separately coded by a subband coding scheme.

I. Introduction

Interpolative coding techniques are based on the coding and transmission of a subset of pixels of the original image

so that, on the receiver side, the remaining pixels have to be interpolated from the transmitted information alone. The

reconstructed image is usually approximated by continuous functions with some permissible error at the interpolated

positions. The subset of transmitted pixels, called the initial set in the following, may be either a regular subsampling

grid or any arbitrary set of points. In the latter case, both the amplitude values and positions of the pixels of the initial

set should be coded and transmitted.

The target of image coding is to represent an image or an image sequence with as few bits as possible. As we seek lower

bit rates in the digital representations of image data, it is imperative to design the compression algorithm both to reduce

redundancy in the input signal and to remove irrelevant information from a perceptual point of view. Perceptual-based

image coding models [5] put special emphasis on this second operation. Current standards for image compression [14]

exploit some aspects of visual perception {for instance, in the design of quantization tables for DCT coe�cients{ but

it is generally accepted that only the study of image models strongly related to the Human Visual System [6] will lead

to the highest compression ratios needed for very low bit-rate applications. The so-called Second Generation models

permit a graceful degradation of the perceived quality of reconstructed images at low bit-rates, without the unnatural

artifacts (blockiness, ringing and blurring) of waveform coding techniques.

A. Interpolation and sketch-based image coding

A number of di�erent approaches using interpolation techniques have been reported in the literature for `perceptually

motivated' coding applications [1], [4], [11]. The underlying image model is based on the concept of the \raw primal

sketch" [8]. The image is assumed to be made mainly of areas of constant or smoothly changing intensity separated by

discontinuities represented by strong edges. The coded information, also known as sketch data, consists of the geometric

structure of the discontinuities and the amplitudes at the edge pixels. In very low bit-rate applications, the decoder

has to reconstruct the smooth areas in between using just this information. This can be posed as a scattered data

interpolation problem from arbitrary initial sets (the sketch data) under certain smoothness constraints. For higher

bit-rates, the residual texture information is separately coded by means of a waveform coding technique; for instance,

pyramidal or transform coding.

The performance of such perceptual model has been thoroughly investigated [11], proving its utility for most coding

applications and showing subjective improvements over DCT-based methods, as JPEG, at low bit-rates. However, one

of the important drawbacks is the large computation time spent in the interpolation process. The techniques proposed

to solve the problem of interpolation from sparse data are based on the solution of an energy minimization (variational)

problem, governed by the heat or di�usion equation. The practical implementations make use of iterative space-variant

�ltering operations that converge rather slowly to the �nal interpolated image.
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Fig. 1. Geodesic distance measure for the interpolation of pixel x

The aim of this paper is to present a morphological technique intended to perform spatial interpolation from any set

of initial pixels. The algorithm, described in section II, is based on morphological operators: namely geodesic dilation

and the morphological Laplacian, resulting in a highly e�cient process compared to those that perform linear �ltering

on the initial image. Comparative �gures of computation time will be given to assert the e�ciency of the process. Its

application to sketch-based coding is illustrated in section III, where a two-component model is proposed for perceptual

image coding. Finally, some coding results and the conclusions are presented in the last section of the paper.

II. Morphological interpolation technique

The target of the morphological interpolation algorithm is to approximate the amplitudes of unknown pixels of the

image by �tting a surface on a subset of pixels of known values (the initial set). Such surface is constrained to be

maximally smooth between the known pixels in the sense that pixel to pixel variations in the interpolated area should

be minimized.

A suitable strategy for spatial interpolation is to compute at each point the average of the amplitudes of the initial

pixels weighted by the inverse of the distances to each of them [13]. The nearest pixels have stronger in
uence than the

distant ones, and the interpolated amplitudes change slowly in the areas in between.

A. Geodesic distance weighting

The distance measure is taken as the geodesic distance within the set of unknown pixels, that is, the length of the

shortest path joining two points which is completely included within the set of unknown pixels. The use of the geodesic

distance allows the preservation of the transitions imposed by the initial set. This is illustrated in �gure 1. The set of

initial pixels is indicated by thick solid and dashed lines. Let us suppose that the dashed line represents the upper edge

of a spatial transition and the solid line represents the lower edge. The in
uence of the amplitude values of the upper

edge (dashed line) at pixel x is given by the inverse of the geodesic distance d

3g

, which is larger than the Euclidean

distance d

3e

. Therefore, the interpolated values at pixel x will be mainly in
uenced by the initial pixels of the solid line

because the weights of the pixels located on the other side of the transition, at a larger geodesic distance, will be much

smaller. As a result, the use of the geodesic distance allows the preservation of the transitions.

B. Two-step iterative algorithm

Starting from the set of initial pixels the morphological interpolation technique is implemented by an e�cient two-

step algorithm. The two steps, namely geodesic propagation step and smoothing step, are successively iterated until

convergence.

� Geodesic propagation step

In the geodesic propagation step, instead of computing geodesic distances from all the unknown pixels to every point

of the initial set, the amplitude values of the known pixels are propagated by geodesic dilation to �ll the empty

areas of the image. This is performed by a fast algorithm, using FIFO queues, so that each pixel is treated only

once in a complete propagation process. Figure 2 shows some intermediate images corresponding to the propagation

process from a given initial set (a synthetic initial image consisting of two small geometric �gures).

initial intermediate propagation steps result

distance 0 distance 4 distance 12 distance 24 distance 72

Fig. 2. Geodesic propagation: initial pixels and some intermediate images
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Fig. 3. Smoothing iterations: left images, initial and secondary pixels; right images, propagation

� Progressive smoothing step

At the positions where two or more propagation fronts originated from initial pixels of di�erent amplitudes meet,

the process stops and a false transition is created. The false transitions appearing outside the set of initial pixels

are smoothed in the second step. The morphological Laplacian

1

is used as a transition detector in order to obtain

these false transitions. Pixels on both sides of the false transitions compose the set of secondary pixels. A grey level

value equal to the average of the intensity values on both sides of the transition is assigned to each secondary pixel.

This is the smoothing step. Secondary pixels will be used in the next iteration of the algorithm in order to smooth

out these transitions.

� Iteration

Then, a second iteration is performed: the propagation step propagates the grey level values from the sets of initial

as well as secondary pixels. The propagation creates new false transitions which de�ne a new set of secondary pixels

where grey level values are smoothed. Note that this new set of secondary pixels generally does not include the

�rst set of secondary pixels. This process of 1) propagation of values from the initial and secondary pixels, and

2) smoothing of the grey levels at the false transitions, is iterated until idempotence. Figure 3 illustrates several

iterations of the algorithm. Please observe the progressive smoothing of the false transitions. After a few number

of iterations, the algorithm quickly converges to the �nal interpolated image.

C. Algorithm e�ciency

The e�ciency of the morphological interpolation algorithm in terms of computational load is illustrated in table II-C.

Comparative �gures of execution time

2

are given for the previous example of morphological interpolation and solved

by applying linear di�usion by means of iterated space variant �lters. The result is very similar in both cases, as can

be observed in �gure 4. Please notice the drastic reduction in the number of iterations needed for the morphological

technique. Each pixel of the image to interpolate is treated hundreds of times less. Furthermore, each iteration of the

morphological interpolation does not require any multiplication, decreasing the time of each individual iteration compared

to the linear �ltering technique. This explains the reduced execution time of the described nonlinear interpolation process.

Clearly, there is no need of multigrid techniques for speeding up convergence when the morphological interpolation

algorithm is used.

1

The morphological Laplacian, L(f), is de�ned as the residue of the gradient by dilation, g

+

(), and the gradient by erosion, g

�

():

g

+

(f) = �(f) � f (1)

g

�

(f) = f � "(f) (2)

L(f) = g

+

(f) � g

�

(f) (3)

The morphological Laplacian is greater than zero at the lower edge of the transitions and smaller than zero at the upper edge. In 
at surfaces

or slanted planes without convexity changes, it cancels out. Indeed, it can be shown that the morphological Laplacian is an approximation

of the signal second derivative.

2

Note: CPU times were computed on a Sun SPARC10 workstation
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Interpolation technique linear di�usion multigrid di�usion morphological

Execution time (sec) 312,8 53,3 2,8

No. of iterations 4980 equivalent to 795 16

TABLE I

Execution times of morphological interpolation vs interpolation based on di�usion equations for the previous example

initial set morphological interpolation linear di�usion

Fig. 4. Comparison of morphological interpolation and linear di�usion results

III. Application to \sketch-based" image coding

A smooth approximation of an image may be obtained by interpolation from the set of pixels with large curvature

values. The following experiment has been carried out in order to investigate its possible application to image compres-

sion. In the left image of �gure 5, a set of pixels having large absolute values of the second derivative (actually, the

morphological Laplacian) is shown. If we attempt to interpolate the remaining pixels of the smooth areas in between,

the result will be the one presented in the right image. About one tenth of the pixels of the image have been used as

initial points for the interpolation algorithm. The peak to noise ratio of the interpolated image of �gure 5 is only 23 dB

but its subjective quality is not bad, because our attention is primarily drawn to the strong transitions which have been

correctly placed and reproduced.

This experiment proves that it is possible to obtain a fair approximation of the original image from the amplitudes and

positions of some pixels having large curvature values. The technique described in the previous section has been used for

the interpolation process. Furthermore, the morphological Laplacian performs as an e�ective enhancement operator for

the detection of such set of initial pixels. Obviously, the application of this idea to image coding relies on the selection

of a proper set of initial pixels for the interpolation process. The initial set should lead to a compact representation

and, at the same time, allow a good approximation of the original image by interpolation.

A. Image coding by maximum and minimum curvature lines

The extrema of the second derivative locate the points with largest curvature values. The lines of largest curvatures

are placed at the upper and lower side of each transition, bringing information about the transition width and the

intensity change. These lines are called upper and lower edge brims by some authors [10] and may be obtained as

Fig. 5. Morphological interpolation from pixels with large Laplacian values: left, initial image (about 10% pixels); right, interpolation result
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Fig. 6. Interpolation from lower and upper edge brims: left, brims' positions; right, interpolation result at 0.18 bpp

the `crest' and `valley' lines of a second derivative operator. Edge brims do look promising for the characterization of

visual information from a perceptual point of view. Robinson [12] claims that brim lines are less noisy than Laplacian

zero-crossings, which follow the edge midpoints, and have been often used for contour extraction. Edge brims do not

show so many random 
uctuations because they do not represent a very rapid change in value with respect to position

as edge midpoints do.

In the left image of �gure 6, the white and black lines correspond, respectively, to the crest and valley lines of the

Laplacian or, likewise, to the positions of the lower and upper edge brims of the initial image. Edge brims may be

detected by computing the watershed [9] of the Laplacian and of its dual with an appropriate set of markers. In order to

obtain the lower brims (crest lines of the Laplacian), the set of markers is formed by the union of two sets: the 
at areas

of the original image larger than a given size and the connected components of negative Laplacian values indicating

the presence of valleys. For the upper brims (valley lines of the Laplacian), the second set is formed by connected

components of positive Laplacian values indicating peaks and ridges. Please notice that some pieces of contour have

been removed from the watershed result, either because the Laplacian was not signi�cant enough at these positions or

because the lines were too short. The necessary thresholds have been chosen on an empirical basis.

The geometric structure of the brim lines may be coded at low cost by means of a contour-following technique. The

amplitudes of the initial pixels in these lines should also may be coded with a few number of bits. Given that intensity

values along the edge brims should keep rather constant, some approximation may be employed to code the values within

each brim line. If the initial set is composed of the pixels at the positions indicated by the watershed lines shown in

�gure 6 with the approximated intensity values, the interpolation results in the right image of the same �gure.

B. Two-component model

We put forward a two-component model for perceptual image coding that strongly relies on morphological operators.

The interpolation result of �gure 6 corresponds to the primary component of the perceptual model. The residual

component, or texture component, contains the �ne textures, which will be separately coded by a subband coding

scheme.

� Primary component

The �rst component of the model consists of the strong edges and smooth areas of the image. The smooth areas

are generated by interpolation from the positions and amplitudes of the pixels of the initial set, i.e. the lower and

upper brims of strong edges. A derivative chain code technique [7] is used to code the pixels' positions, whereas

the amplitude values have been coded by polynomial approximation. More precisely, the network of brim lines is

broken at each triple point (points with more than two branches). Then, the amplitudes of the pixels located under

the resulting curves are approximated by a �rst order polynomial. The two coe�cients de�ning each polynomial are

quantized, entropy coded and transmitted. In the example of �gure 6, the overall bit-rate needed for the primary

component is 0.18 bits per pixel. About 16% of this rate is spent in the coding of amplitudes, 70% for the chain-code

information and the remaining 9% for the initial positions of each brim line.

� Texture component

The coding residue of the �rst component {computed as the di�erence between the original image and the inter-

polation result{ mainly consists of �ne textures. This second component of the model is shown in the left image

of �gure 7. It lacks of signi�cant transitions and may be approximated by a waveform coding technique. A coded

reconstruction at low bit-rate (0.15 bpp) is shown in the right image of the same �gure. It has been obtained by the

application of the linear subband coding scheme presented in [2]. Information about the edge structure {available

from the �rst component{ is used for the texture coding of the second component, so that the masking e�ect of
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Fig. 7. Texture component: left, coding residue; right, subband coded texture at 0.15 bpp

strong transitions may be considered. Amplitude errors in the neighborhood of these areas are less noticeable for

the human eye than in other parts of the image [3]. Therefore, the quantization process is allowed to introduce large

errors near the transitions by employing adaptive quantizers and bit allocations over arbitrarily shaped sub-edge

regions in order to reduce the total number of bits.

IV. Results and Conclusion

The compression ratio achieved with the above strategy is equal to 24 (0.33 bpp) for the addition of the strong edge

and the �ne-texture components of �gures 6 and 7. The result is shown in the right image of �gure 8. For comparison,

the application of the JPEG standard [14] at the same bit-rate is shown in the left image of the same �gure. The

subjective quality of the described technique is signi�cantly better because of the good rendition of the strong edges.

The PSNR value (25.5 dB) is also larger than for the JPEG reconstruction (24 dB). The artifacts produced by the

block-based DCT coding {blockiness in smooth areas and ringing in the neighborhood of strong transitions{ are not

present in the result of the two-component coding scheme. However, a di�erent kind of visual artifacts may be observed.

A certain smoothing e�ect is visible in some parts of the image and there are some missing objects, for instance the

neck of the shirt has been almost removed.

The separate coding of strong edges permits the adaptation of the coding scheme to the visual perception of the

images, avoiding unnatural degradations produced by waveform coding techniques at high compression ratios. A number

of di�erent artifacts are introduced by this method at low bit-rates. It is hoped that such e�ects are more naturally

perceived than those of waveform coding techniques by the subjective judgement of the observer.

Mathematical Morphology provides powerful operators to perform shape analysis. Morphological operators are very

useful for the detection of edge features in `perceptually motivated' Second Generation image coding applications, as has

been shown in the present paper. The morphological operators involved in the coding of the primary component, i.e.

the watershed and the morphological Laplacian, perform very e�ciently compared to more conventional techniques for

edge extraction, like the LGO operator, or the di�usion �lters iteratively applied for the interpolation of smooth areas

reported in previous works. The new morphological interpolation technique intended for the scattered data interpolation,

that has been described in section II has proven to be faster than linear di�usion techniques in order to generate the
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smooth component from the extracted edge features, with similar quality of the interpolation results.
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