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ABSTRACT

Commercial depth sensors represent an opportunity for
automation of certain 3D production and analysis tasks. One
way to overcome some of their inherent limitations is by cap-
turing the same scene with several depth sensors and merging
their data, i.e. by performing 3D data fusion, which requires
the registration of point clouds from different sensors. We
propose a new interactive, fast and user-friendly method for
depth sensor registration. We replace the traditional checker-
board pattern used to extract key points in the scene by a fin-
ger detector. This provides a main advantage: the method
is easier to use and does not require external objects, while
the elapsed time and the registration error are similar to those
obtained through the classical method. We test the proposed
approach with an interactive hand tracking application, im-
proved to use more than a single sensor, and we show the
increase in detection area by more than 70%.

Index Terms— 3D Data Fusion, Point Cloud, Calibra-
tion, Registration.

1. INTRODUCTION

Since the release of the affordable Kinect depth sensor, 3D
data processing has become a strong research area in com-
puter vision, and an attractive tool in the production of spe-
cial effects. The acquired 3D data is exploited for multimedia
computing applications such as gaming, augmented reality,
scene segmentation or human pose and body tracking.

Commercial depth sensors, such as Kinect [15], capture
both image and depth data. Photometric information comes
out from an RGB camera, while geometry (or range data) is
measured by active triangulation, using an infrared stereo pair
consisting of an emitter and receiver. Depth measurements re-
sult in a 16-bit image, where the value of each pixel represents
the distance of that pixel to the camera. By registering both
the RGB and depth data, the scene can be represented as a set
of 3D points, namely, a point cloud.
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Thanks to the IR triangulation technology, pose detectors
exploiting depth data are more robust than those using solely
image data, because scene illumination is not an important
factor any longer. The main problem of using a single depth
sensor is the limited viewing angle. If we want to enlarge the
captured area, several sensors may be placed side by side in
order to capture the scene or object.

The fusion of 3D data could serve different purposes: in-
creasing accuracy and resolution, i.e. precision and number
of points in overlapped views, or enlarging the overall de-
tection area of the devices, i.e. range and viewing angle in
stitched views. This paper focuses and validates a 3D data
fusion strategy for the latter purpose.

In the simplest case, 3D data fusion means that two simul-
taneous captures have to be merged and aligned (registered)
in the same coordinate system. The registration problem is
solved in two steps: matching some keypoints in both cap-
tures and estimating the rigid transformation that translates
and rotates the point cloud captured by a given sensor to the
chosen reference system. The main problem is found in the
matching step, where the keypoints to match may be iden-
tified as false correspondences. We propose an interactive,
user-friendly and fast method to identify keypoints and per-
form the matching using a finger detector.

In Figure 1, the registration workflow is depicted. Raw
image data from the sensors is represented as point clouds
(Section 3). Then, the proposed registration method performs
finger detection to match keypoints and align the point clouds
(Section 4). Finally, Iterative Closest Point (ICP) [2] is ap-
plied to refine the alignment in the fused point clouds (Sec-
tion 5). Fused 3D data resulting from the registration of two
captures is shown to seamlessly improve the detection area in
the experiments with a hand tracking application (Section 7).

2. RELATED WORK

The classic registration method for both image and depth sen-
sors is based on Zhang’s work [14]. The process is divided
into two steps: first, it captures different angles of a known
geometrical pattern; in our case, a checkerboard. The size
and number of squares of the pattern should be known to ob-
tain the intrinsics matrix. Then, once the instrinsic values are



Fig. 1. Registration workflow

known, the checkerboard is captured in a still position in or-
der to change the reference system from the camera to a world
reference frame. When the reference systems of two sensors
have been changed to the same world coordinates, an effective
fusion of the point clouds from both sensors can be achieved.

Existing work in multi-depth sensor registration for dif-
ferent applications [13, 3] usually follows the guidelines pro-
posed by Zhang. In the case of RGB cameras, some effort-
less registration methods are based on the detection of a laser
pointer [4, 12], but the application to IR depth sensors is not
straightforward. Other registration methods rely on the cap-
tured scene and not on physical patterns, by extracting spe-
cific keypoints from 2D images and then matching them. In
some cases, even by leveraging the depth information from
3D image reconstruction [6].

For point cloud data captured from depth sensors, ICP [2]
is widely used as an iterative method to minimize the distance
between two point clouds. ICP may use the whole cloud or
just keypoint correspondences found in both clouds. Several
ICP modifications in any of the ICP steps may result in a more
robust algorithm [8, 9].

3. BASELINE REGISTRATION METHOD

Zhang’s method [14] has been used as a baseline to evaluate
the strategy proposed in this paper. We extract both RGB and
infrared sensor parameters, both intrinsics and extrinsics, in
order to perform scene registration.

3.1. Intrinsic and Extrinsic Parameters

For the baseline registration, we capture a checkerboard pat-
tern from different angles (Figure 2). The detection of checker-
board corners and the known size of the pattern allows Zhang’s
algorithm to retrieve the intrinsics matrix and distortion co-
efficients. This step is done with RGB and IR sensors and
allows the transformation of the images into point clouds.

3.2. Classic Registration from Extrinsics

To extract the extrinsic parameters that relate camera and world
coordinates, only a single infrared capture of the checker-
board is needed. Once these parameters are extracted for two
kinect devices, both point clouds are transformed (registered)
to world coordinates and, therefore, fused.

Fig. 2. Examples of different checkerboard captures to extract
sensor parameters

Figure 3 illustrates an example of registration. The left
image presents the point cloud obtained from sensor 1; the
center image, the point cloud from sensor 2; the right image
shows the fusion of both point clouds performed by the regis-
tration with the extracted extrinsics.

Fig. 3. Scene fusion

4. AUTOMATIC FINGER DETECTION

We propose to replace the extrinsic parameters extraction pro-
cess and the need of a checkerboard with a detection method
in which a human finger draws a path in front of the sensors.
In this case, instead of considering a checkerboard corner as
the world origin for both captures, the reference system of one
device is transformed into the reference system of the other
device, estimating a transformation between specific detected
keypoints in both captures.

The process consists in identifying a finger in the captured
depth data from both depth sensors. The pixel where the fin-
ger has been detected is converted to camera coordinates, us-
ing intrinsic parameters (depth as the third coordinate). The
sequence of 3D points where the fingers have been detected
are stored in a point cloud for each sensor. Then, a transfor-
mation between clouds is estimated using ICP. Applying this
transformation allows the alignment (registration) of the two
point clouds.

The ICP algorithm is applied twice, as the initial point
clouds are too far apart to achieve satisfying convergence with



a single application. First, ICP is applied without a distance
threshold between the correspondences, for an initial raw align-
ment of the detected finger positions in the point clouds. Then,
ICP is applied again as a refinement, with a correspondence
threshold of 5 cm. This limits the possible correspondences
by distance. Note that the captures from the two sensors are
not synchronized and this adds uncertainty in the matching
performed by ICP when using the finger detector. However,
as the hand motion is rather slow, shift in finger position due
to lack of synchronization is in the order of the sensor spatial
accuracy. Moreover, as the trajectory to be matched from the
two sensors has a large number of points, the ICP estimator
will average their positions compensating for such impreci-
sion at the individual points.

Finger detections in both sensors are both manually marked
and automatically detected, so that we can later evaluate the
misalignment introduced by the automatic finger detector.

4.1. Manual Finger Detection

As a first step, the coordinates of the finger tip in the depth
maps are manually annotated along the recorded video se-
quences. A depth frame from both devices with the same
timestamp is shown in Figure 4. The point highlighted in red
in both images will be treated as a correspondence.

Fig. 4. Manual finger detection in depth maps of two devices

The user is requested to draw a cube with the finger, and 8
points corresponding to the vertices are identified in the image
captured by each device, as shown in Figure 5. The orange
cloud contains the finger positions in sensor 1, and the red
cloud, those in sensor 2. The green points are those from the
orange cloud after applying the rigid transformation obtained
by ICP, and should coincide with the red points, because both
are approximately the same points from the actual 3D scene
captured by the two different sensors (consider the noise due
to positional sensor accuracy and lack of synchronization). In
this step, ICP is used to estimate the transformation between
detected point clouds.

For the manually annotated fingertips, the correspondences
are already established when constructing the clouds. As a
first approach, Singular Value Decomposition (SVD) [1] was
used to estimate the rigid transformation. Contrary to SVD,
ICP performs trajectory matching (finds correspondences by
itself). After comparing the error in the registration between
the transformations estimated using SVD and ICP, we con-

Fig. 5. Finger detection drawing a cube: finger positions from
sensor 1 (in orange), and those from sensor 2 (in red) coincide
when the first undergo the rigid transformation estimated by
ICP (in green)

cluded that there was no significant difference. Considering
that correspondences are not labeled in automatic detection
mode, ICP will be used for trajectory matching. Therefore, in
order to have a more consistent comparison between manual
and automatic detection, we use ICP in both cases.

The rigid transformation estimated by ICP will be later
applied to any cloud captured by sensor 1, to keep these points
registered to those captured by sensor 2 (provided that sensors
do not move). It is important to note that the transformation
has to be recalculated if the relative position of the devices
changes, as it happens with the classical method.

4.2. Automatic Finger Detection

Manual detection is tedious and consumes a significant amount
of time. An automatic finger detector is a better option to reg-
ister the point clouds without manual intervention.

The detector used in this work locates the fingertips using
an ORD feature [11] and exploits a classifier trained with a
random forest [7]. In order to train the automatic finger de-
tector, we need a training dataset. Details about the database
are explained in Section 6.

Fig. 6. Detector tracking a human finger

As seen in Figure 6, the detector retrieves the pixel in the
depth image where the finger was found, along with a queue
of previously detected positions. This visualizes the tracked
trajectory for the finger.



The finger positions are detected in all frames, contrarily
to the manual case where just the desired vertices of the cube
where labeled. The detections in both sensors are separately
stored in two different point clouds. As explained in the pre-
vious section, the number of points may differ in both clouds,
correspondences between the points in the two clouds are not
labeled, and it is imperative to use ICP (not SVD) to estimate
the transformation.

For the automatic finger detection, different paths have
been drawn to test the importance of several finger traces in
front of the sensors: a simple square, two squares at different
depth distances, and a spiral trajectory (Figure 7). Our exper-
iments show that 5 seconds of captured video provide enough
points to estimate the transformation using ICP.

Fig. 7. Different finger paths tested

Although detections are noisy due to the detector’s tech-
nology, lack of synchronization and the inherent noise in the
depth channel, the number of samples in the point clouds and
the ICP algorithm itself mitigate the error in the transforma-
tion estimation.

5. ITERATIVE CLOSEST POINT

ICP is used again as a refinement method to obtain a better
alignment of the whole point cloud. From a good initial align-
ment performed by the registration with the finger detector
explained above, ICP takes less time to converge, and relies
on all the points in the scene to improve registration.

6. DATASET

Two different datasets have been used; one for training the
finger detector and the other for testing and extracting results.
Both datasets are composed of frontal captures.

The training dataset contains 20 minutes of depth video,
sectioned into labeled frames. Recorded data shows a person
drawing paths with the finger pointing at the ceiling with dif-
ferent orientations, sensor position and different persons. The
captures are made by only one sensor; changing the orienta-
tion and sensor position tells the detector to find the finger in
the two different oriented sensors.

Considering that the sensors face the person, pointing the
finger at the ceiling gives the detector more depth discrimi-
nation. If the finger was pointing at the sensors, there would
be a low depth variation between the finger and the hand. On
the contrary, pointing at the ceiling, the surrounding pixels of

(a) Initial alignment with finger detector

(b) Final alignment after ICP with the entire cloud

Fig. 8. Example of ICP as a refinement method.

the finger would be the background or the human body, grant-
ing more discrimination in depth. Thus, the detector is more
robust and discriminating for the finger detection task.

The dataset to test and evaluate the registration is com-
posed by frontal captures of two different sensor configura-
tions, as shown in Figure 9.

• Configuration 1 - more overlap than extended viewing.
Used to increase precision and number of points. Sen-
sors separated 110 cm, 90 cm overlap at 120 cm.

• Configuration 2 - combined viewing area of both sen-
sors larger than configuration 1. Small overlap. More
oriented to increase detection area. Sensors separated
110 cm, 30 cm overlap at 120 cm.

For each sensor configuration, three different scene types
have been captured: scene full of geometrical objects, scene
with two persons, scene with the combination of geometrical
objects and persons.

All objects and persons in the scenes are captured in a
range of 0.5 to 2m.

7. EXPERIMENTAL RESULTS

In this section, We first explain the evaluation criteria for the
quantitative evaluation, along with the results and the com-
parison with the traditional registration method. Secondly,
we describe and discuss the qualitative results obtained with
the improvement of a specific application.



(a) Configuration 1

(b) Configuration 2

Fig. 9. Different sensor configurations

7.1. Evaluation criteria

To evaluate the registration results, all outputs of the registra-
tion algorithms are compared to a ground truth obtained with
manual alignment: a registered pair of point clouds where
corresponding points in both clouds are picked manually in
pairs and the transformation is estimated. We use a quali-
tative ground truth because the points in a cloud are not the
same than the captured points in the second registered cloud.

The error between the ground truth and the output of each
one of the registration algorithms, called target cloud, is cal-
culated by Nearest Neighbor (NN) distance. This metric cal-
culates the Euclidean distance for each point of the ground
truth to a corresponding point in the target cloud, found using
the NN algorithm [5]. The total error calculated is the average
of the distances throughout the entire cloud.

7.2. Registration errors

Table 1 shows the errors, in centimeters, of different regis-
tration methods compared to the ground truth specified in the
previous section, using the registration dataset explained in
Section 6 and the metric defined above. The error has been
calculated for the three scene types, but table 1 presents the
averaged result for all of them.

The registration methods presented in table 1 are: Zhang’s

method [14], manual detection to have an evaluation refer-
ence, and three different variations of the proposed finger de-
tector, using the paths illustrated in Figure 7.

The errors are calculated considering a manual alignment
as the ground truth. This alignment follows a visual quality
criteria. If the point cloud is well aligned for the human eye,
it is considered as the best registration. However, when the
error is calculated, it may appear higher than expected due to
specific high point density area where visual alignment has
been considered good, such as the walls, but there is a signif-
icant numerical error.

Errors in configuration 1 are higher than in configuration
2. This leads to think that the cause is the sensor placement.
Configuration 1 is not a stereo setup, contrary to configura-
tion 2; the angle between sensors is higher and the captured
objects can be seen from different points of view. This adds
up to the typical depth error of approximately 1 cm found in
Kinect sensors, decreasing accuracy and increasing the diffi-
culty to register the scenes.

ICP as a refinement method using the rest of the scene
cloud always improves the registration. The amount of im-
provement will depend on the type of scene and the quality of
the initial alignment.

Comparing the different finger paths proposed in subsec-
tion 4.2, it can be seen that drawing two separated squares
achieves the better initial alignment and, therefore, ICP is able
to refine it with a better outcome. The paths are drawn be-
tween 0.8 and 1.5m from the sensors.

The errors are indeed higher in the automatic detection of
two separated squares drawn in the air if we compare with the
manual detection. Even if the number of detected points is
larger, the noise and location errors introduced by the auto-
matic detector slightly affects the result.

Drawing just a square does not give a good alignment.
The lack of resolution in depth results in a major error in the
registration. When, on the contrary, two squares are drawn in
separate depths, depth indeterminacy disappears.

When drawing a spiral, there is a rotation indetermination
which leads to bad registration as well.

Zhang’s work [14] together with ICP as a refinement has
the lowest error, closely followed by the finger detector using
the path with two squares, along with ICP. The errors, from
1.6 to 3.94 cm, are similar to the Kinect depth error of 1 cm.

To sum up, it is safe to say that finger detection to auto-
register the sensors is a good registration method and more
user-friendly than the method proposed in Zhang’s work [14].

7.3. Modified interactive application

To illustrate the purpose of scene registration and validate
its result, Exipple Studio [10] has provided an existing hand
tracking application. In this case, the registration is used to
modify the application to increase the area where the hand
can be detected and tracked.



Fig. 10. Application workflow

Configuration 1 Configuration 2
(intersecting) (parallel)

Zhang [14] 5.31 1.93
Zhang [14] + ICP 3.47 1.60

Manual alignment (path = 2 squares) 4.75 2.12
Manual alignment (path = 2 squares) + ICP 2.76 1.85

Detector(path = square) 59.5 62.7
Detector(path = square) + ICP 46.76 3.96

Detector(path = 2 squares) 6.61 11.55
Detector(path = 2 squares) + ICP 3.94 2.31

Detector(path = spiral) 54.81 20.86
Detector(path = spiral) + ICP 4.00 2.39

Table 1. Registration errors in cm

(a) Frontal view (b) Rotated view

Fig. 11. Application output point cloud

As seen in Figure 10, each Kinect is connected to a differ-
ent server that detects the hand (Detector 1, Detector 2) and
sends 3D detected points to the Tracker. The detector used in
this stage is the same used in the automatic finger detection
in subsection 4.2, but changing the model to detect the hand
instead of the finger, which is a more robust and previously
trained model by Exipple studio.

All detected points from the registered sensor to the sec-
ond sensor have to be transformed with the transformation
matrix obtained with the previous registration. After all points
from both sensors are registered, they are provided to the
tracker as candidates.

The tracker decides, using an internal score, which one
of the pool of candidates is better to follow the trajectory of



the previous points. When the hand is only captured by one
sensor, there will only be one candidate at a time. However,
if the hand is in the overlapped viewing area of both sensors,
the tracker will consider two candidates and will choose the
one with higher score. The final tracked 3D points are stored
consecutively in a point cloud.

To test the registration, several figures have been drawn
in front of the sensors, with the Configuration 2, illustrated in
Figure 9.

In Figure 11, a rectangle has been drawn with the closed
hand. The figure shows the captured room as a background
and the point cloud with the detections. Green points are the
hand detections in sensor 1; the red points, detections in sen-
sor 2.

The transition between both sensors appears smooth and
well registered. Considering that a single sensor has a detec-
tion distance of 140 cm at 120 cm and the registered sensor
has 250 cm, as seen in Figure 9, the distance increase from the
registration is 78.5%. Therefore, considering that the viewing
height for both registered and not registered captures is the
same, the increase in width, or detection distance, leads to the
same 78.5% increase of the working (detection) area at 120
cm from the sensors.

8. CONCLUSIONS

The initial objective was to compare our proposed registration
method to the traditional registration procedure [14]. In order
to validate the registration achieved, a real-time hand tracking
application, provided by Exipple Studio, has been modified
and adapted to track a hand within the detection area covered
by the two registered sensors.

When using the detector, drawing a specific path to regis-
ter clouds gives a good initial alignment to register scenes. By
refining the registration with ICP using the entire scene, the
average registration error is between 2.31 and 3.94 cm. This
is a good registration, comparable to the results obtained with
Zhang’s work (1.6 to 3.47 cm). It is also within the range of
the 1 cm depth error of Kinect sensors.

The clear advantage of using a detector instead of a pat-
tern is the user-friendly factor and the suppression of addi-
tional material needed. Time elapsed for registration in both
cases are similar.

The continuation of the tracked hand across the detection
area of the sensors is smooth and the application can be used
as an improvement of the single sensor version.

A single sensor has a 140 cm effective width of the work-
ing area at 120 cm from the sensor. Two registered sensors
can achieve 250 cm of working area width. The sensors need
a minimum overlap of 30 cm at 120 cm from the sensors, to
achieve an increase of more than 70% in the detection dis-
tance without affecting the quality of the registration.
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