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Abstract. This paper presents our work on applying 3D Convolutional
Networks for brain tumor segmentation for the BRATS challenge. We
are currently experimenting with different 3D fully convolutional archi-
tectures. We present preliminary results using these architectures and
outline our future steps and experiments, which involve hyperparameter
optimization, comparison of the models’ performance and implementa-
tion of a post-processing stage to eliminate false positive predictions.

1 Introduction

The problem of automatic brain tumor segmentation has attracted considerable
attention during the past years due to its high clinical relevance and its challeng-
ing nature [1]. Methods are usually categorized in two broad groups: generative
models, which rely on prior knowledge about the appearance and distribution
of different tissue types and discriminative models, which directly learn the re-
lationship between image features and segmentation labels.

Within the second group, in the last two years there has been an increas-
ing use of deep learning methods (and specifically convolutional neural networks
CNN) to tackle the problem, motivated by the state of the art performance of
deep learning models in several computer vision tasks. As opposed to classi-
cal discriminative models based on hand-crafted features, deep learning models
learn a hierarchy of increasingly complex features directly from data, by ap-
plying several layers of trainable filters and optional pooling operations. Most
of these methods do not completely exploit the available volumetric informa-
tion but use two-dimensional CNNs, processing 2D slices independently or using
three orthogonal 2D patches to incorporate contextual information (see [1, 3, and
references therein]). A fully 3D approach is proposed in [2], consisting on a 3D
CNN that produces soft segmentation maps, followed by a fully connected 3D
CRF that imposes generalization constraints and obtains the final labels.
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Fig. 1. 3DNet 1

In this work we explore three different 3D CNN architectures to solve the
brain tumor segmentation problem. We report preliminary results using the
BRATS 2015 Training dataset.

2 Methods

We propose two fully convolutional 3D CNN architectures inspired in two well
known 2D models used for generic image segmentation. We also train a third
model which is a variant of the two-pathway DeepMedic net proposed in [2].

The first model, 3DNet 1, is a 3D fully convolutional network based on the
VGG architecture [8], with skip connections that combine coarse, high layer
information with fine, low layer information. The configuration of the net is
illustrated in Figure 1. Given the characteristic large amount of parameters of
3D networks, a reduction in the number and dimensions of the filters with respect
to its 2D analog was necessary in order to ensure that the model could be trained
with the available resources.

The second model, 3DNet 2, is the 3D version of the network proposed in
[4]. It is based on the architecture presented in [5], where on top of a VGG net
(a contracting path) there is a multilayer deconvolution network (an expansive
path). There are connections between corresponding layers in the contracting
and expanding paths. The model is illustrated in Figure 2.

The third architecture, 3DNet 3, is a modification of DeepMedic network [2]
and is illustrated in Figure 3. The aim of using two paths is gathering both low
and high resolution features from the input segment. In a different approach
than that of literature, where it is usual to employ different input sizes for each
path, we feed segments of equal dimensions to our network. This way, we get
coarser features by using larger receptive fields in one path (by means of max-
pooling layers) and finer features by using smaller receptive fields (combination
of convolutional layers).

3 Implementation details

Preprocessing: We normalize the data within each input volume by subtract-
ing the volume’s mean and dividing by the volume’s standard deviation.
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Fig. 2. 3DNet 2

Dataset sampling and class imbalance: Due to memory constraints we
do not scan the whole volume in one forward pass but divide it into multiple
segments of size 643. We adopt the training scheme proposed in [2]: training
batches are formed by extracting segments from the training images with 50%
probability of being centered on a background or foreground voxel. This scheme
has the advantage of automatically mitigating the class imbalance problem. In
order to further alleviate this problem we weight the cross-entropy loss function
taking into account the class distributions as proposed in [7].

Training: All models use ReLu activations and batch normalization. They are
trained using the Adam optimizer, with elastic net regularization and using He
initialization for the weights. We use a small batch size of 10 due to memory
constraints.

4 Results

Preliminary results obtained with the BRATS 2015 Training dataset are pre-
sented in Table 1, using 60% of the data for training and the remaining 40%
for test. Recall values are promising for Edema and Enhancing Core classes, but
poor for the Necrotic core and Non-enhancing core classes, despite the strategies
used for dealing with the class imbalance.

Accuracy Dice score Recall

Whole Core Active 1-Nec 2-Edm 3-NEnh 4-Enh 0-Else

3DNet 1 99.69 89.64 76.87 63.12 44.71 74.09 28.40 66.94 99.95
3DNet 2 99.71 91.59 69.90 73.89 41.10 84.16 32.35 73.38 99.93
3DNet 3 99.71 91.74 83.61 76.82 51.29 77.50 37.61 87.29 99.95

Table 1. Results for BRATS 2015 Training dataset
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Fig. 3. 3DNet 3

5 Conclusions and future work

In this work we explore the use of 3D CNNs for brain tumor segmentation.
The three models are fully connected, being capable of dense-inference, that
is making predictions for whole volumes in one pass. In addition, the use of
trainable upsampling layers increases the effective batch size without an increase
in memory or computational cost.

Future work for the final submission will include: implementation of more
elaborated strategies to tackle the class imbalance problem, hyperparameter op-
timization in order to increase the performance of the models, analysis and
comparison of the three architectures and implementation of a post-processing
stage to eliminate false positives.
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