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Abstract. This paper presents a novel approach to the problem of es-
timating and tracking 3D locations of multiple targets in a scene using
measurements gathered from multiple calibrated cameras. Estimation
and tracking is jointly achieved by a newly conceived computational
process, the Projective Kalman filter (PKF), allowing the problem to
be treated in a single, unified framework. The projective nature of ob-
served data and information redundancy among views is exploited by
PKF in order to overcome occlusions and spatial ambiguity. To demon-
strate the effectiveness of the proposed algorithm, the authors present
tracking results of people in a SmartRoom scenario and compare these
results with existing methods as well.

1 Introduction

Estimating the 3D position and velocity of objects in a scene is of interest in a
number of applications such as visual surveillance, human-computer interfaces,
SmartRoom monitoring and scene understanding. Multiple view geometry has
been addressed in [13] from a mathematical viewpoint, but there is still work
to be done for the efficient fussion of redundant camera views and its combi-
nation with image analysis techniques for object detection and tracking. In this
framework, the current paper proposes a novel technique to address the prob-
lem of tracking multiple 3D locations based on the data obtained from a set of
calibrated cameras.

Many vision based tracking techniques have been developed to deal with
sequences from a single perspective [7, 12] but considerably less work has been
published on tracking of 3D locations with multiple cameras. One of the main
problems within this topic is establishing correspondences among features from
different perspectives presents a lot of difficulties for a tracking algorithm [4].
On the other hand, multiple viewpoints allow exploiting spatial redundancy and
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overcome ambiguities caused by occlusion or segmentation errors and provide
3D position information as well.

The common methodology to this problem in existing approaches is com-
posed by two disjoint successive steps: estimation of the 3D location and Kalman
tracking over this estimation. Bayesian networks [5,8], algebraic methods [10,18]
or homographies [3] have been employed to establish correspondences among the
projections of the 3D tracked points on all views and then perform a Kalman
tracking directly on this estimated 3D location. The main drawbacks of these
methods are sensitivity to occlusions and spatial ambiguity when resolving the
multiple view correspondence problem [4].

In this paper, we present a novel technique that performs a joint estimation
and tracking of multiple 3D locations allowing the problem to be posed in a
single, unified framework. Projective geometry underlying the image formation
process is exploited allowing the definition of our Projective Kalman Filter.
Information redundancy among views is taken into account to define a data
association process to deal with occlusions and keep a coherent track. The filter
has found applicability in a SmartRoom scenario in the fields of body and gesture
analysis (see Fig.1) or person tracking.

The outline of this work is as follows. Background topics on projective geom-
etry and Kalman filtering required in forecoming sections are reviewed in Sec.2.
Projective Kalman Filter theory is presented on Sec.3. Experimental results are
presented in Sec.4. Finally, conclusion and further improvements are given in
Sec.5.
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Fig. 1. Example of an application of tracking of 3D locations from its projections
within the framework of body analysis (based on [9]). Tracking of the hidden state s[t]
among time from its projections zk[t], 0 ≤ k < N , would allow obtaining the position
of body joints.
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2 Projective geometry and Kalman Tracking Basics

In order to define a joint estimation-tracking scheme that exploits the under-
lying projective geometry of a multiple view scenario, some basic concepts are
presented. Formation of images formulation and Kalman filtering theory are
briefly reviewed but the reader is addressed to [13] and [16] for more references.

2.1 Multiple view systems and projective geometry

Obtaining two-dimensional coordinates (pixel positions) of an image from a
three-dimensional magnitude (a 3D location) is a process where a dimension is
lost. Formally, projection can be seen as a many-to-one morphism ψ : R

3 → N
2

that transforms 3D Euclidean coordinates in the world reference frame into 2D
coordinates in the camera reference frame. The usual mathematical way to model
this process passes through projective geometry as an efficient description of the
image formation process. Essentially, a camera is regarded as a projective device
where an image is the result of the central projection of 3D world points onto the
image plane. Specifically, the pinhole camera model is used in this paper. Projec-
tive effects due to vanishing points can be easily modeled and understood if we
take into consideration projective coordinate systems. Many authors take advan-
tage from projective geometry and homogeneous coordinates when addressing
computer vision problems [13].

Projection operation can be fully described in homogeneous coordinates by
the linear application P : P

3 → P
2 denoted as the projection matrix 3. So,

x = PX, P = K[R|t], x ∈ P
2, X ∈ P

3, (1)

where the calibration matrix K models the intrinsic parameters of the camera
(focal length, scaling and projection center) and R and t its extrinsic parameters
(rotation and translation of the camera).

It must be noted that projection is essentially a non-linear operation when
defined by the application ψ : R

3 → N
2. In fact, when adopting the pinhole

camera model and the associated projective geometry model, the relation be-
tween the image coordinates x̃ = [x̃ ỹ]> ∈ N

2 and the projected coordinates
x = [x y z]> ∈ P

2 is stated as:

x̃ =

⌊

x

z

⌋

, ỹ =

⌊

y

z

⌋

. (2)

For the sake of simplicity in the notation, let us re-define ψP : R
3 → N

2 as the
projection operator from 3D coordinates to image coordinates embedding Eq.1
and Eq.2.

3 The notation employed in this paper follows the one described by [11,13].
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2.2 Standard Kalman filter data model

The Kalman filter addresses the general problem of estimating the state s ∈ R
n

of a discrete-time controlled process that is governed by the linear stochastic
difference equation:

s[t+ 1] = F s[t] + w[t], (3)

with a measurement z ∈ R
m that is

z[t+ 1] = H s[t+ 1] + v[t+ 1]. (4)

The random variables w[t] and v[t] represent the state and measurement noise
respectively. The matrix F in the difference Eq.3 relates the state at the future
step t + 1 to the state at the current step t and the matrix H in the measure-
ment Eq.4 relates the state to the measurement z[t+1]. Matrices F and H might
change with each time step despite most of the approximations in Kalman fil-
tering assume they are constant. In order to define a convergent Kalman filter,
the random variables w[t] and v[t] are assumed to be independent of each other,
white and with normal probability distributions

p(w) ∼ N (0,Q), (5)

p(v) ∼ N (0,R). (6)

2.3 Standard Kalman filter evolution

In summary, we have the following situation: starting from an initial estimate
ŝ[0| − 1], with an initial state covariance matrix denoted as Σ[−1| − 1], for each
observation z[t + 1], the estimate of the state is updated using the following
steps:

1. State estimate extrapolation:

ŝ[t+ 1|t] = Fŝ[t|t] (7)

2. Error covariance extrapolation:

Σ[t+ 1|t] = FΣ[t|t]F> + Q (8)

3. Kalman gain:

K[t+ 1] = Σ[t+ 1|t]H>[t+ 1]
(

H[t+ 1]Σ[t+ 1|t]H>[t+ 1] + R
)−1

(9)

4. State estimate update:

ŝ[t+ 1|t+ 1] = ŝ[t+ 1|t] + K[t+ 1] (z[t+ 1] − H[t+ 1]ŝ[t+ 1|t]) (10)

5. Error covariance update:

Σ[t+ 1|t+ 1] = (I − K[t+ 1]H[t+ 1])Σ[t+ 1|t] (11)
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3 Projective Kalman Filter (PFK)

Kalman filtering is the optimal strategy when dealing with estimation problems
that involve linear relationships between the observed and real state variables
and the distorting noise has a normal probability density. In the current anal-
ysis scenario, Kalman theory has still applicability and allows defining a joint
estimation-tracking scheme exploiting the projective nature of the data gathered
from the cameras.

3.1 Multi-camera 3D tracking scenario

Let us define X̃i[t] = [X̃i[t] Ỹ i[t] Z̃i[t]]>, 0 ≤ i < M , as the M 3D locations,
targets, to be tracked along time. The available data of each of the N cameras is
noted as x̃i

k[t] = [x̃i
k[t] ỹi

k[t]]>, 0 ≤ i < M , 0 ≤ k < N and its formation process
can be described as:

x̃i
k[t] = ψPk

(

X̃i[t]
)

+ ξi
k[t], (12)

where ξi
k[t] is a noise factor present at time t in the projection of the i-th tracked

object on the k-th camera and ψPk
is the projection operator associated to this

camera. The noise factor ξi
k[t] is mainly formed by two contributions

ξi
k[t] = gi

k[t] + di
k[t], (13)

where gi
k[t] is the noise introduced by the inaccuracies of the calibration process,

camera resolution, lens distortion,... considered to have a normal probability
distribution in virtue of the Central Limit Theorem. On the other hand, di

k[t]
is modeled as an impulsive noise result of a bad foreground region detection,
occlusions or heavy lens distortion (borders of the image).

3.2 Kalman filtering on multiple projective planes

Defining a scheme embedding estimation and tracking based on a direct appli-
cation of Kalman equations Eq.3 and Eq.4 is not straightforward. Let us define
our state variable s[t] as the position and velocity that describe the dynamics of
the tracked 3D location in homogeneous coordinates:

s[t] = [Xi[t] Ẋi[t]]> = [X̃i[t] Ỹ i[t] Z̃i[t] 1 ˙̃Xi[t] ˙̃Y i[t] ˙̃Zi[t] 0]>. (14)

The measure process described by Eq.4 must be modelled according to the
projective nature of the observations. The data captured by the N cameras, that
is the projections of the 3D tracked location given by Eq.12 (pixel positions),
forms the observation vector z[t]:

z[t] = [xi
0[t] xi

1[t] · · · xi
N−1[t]]

> (15)

= [x̃i
0[t] ỹ

i
0[t] 1 x̃i

1[t] ỹ
i
1[t] 1 · · · x̃i

N−1[t] ỹ
i
N−1[t] 1]>,
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that is the detected projections of X̃i[t] on every view.

It can be seen that the problem of tracking a 3D location (hidden state) from
its projections on calibrated cameras (observation) does not fit with the standard
Kalman filter formulation. Relations between the real state, X̃i[t], and the obser-
vations, x̃i

k[t], are non-linear. Thus, statistical distributions when processed by a
projective device, ψPk

, do not usually keep the same statistical properties. Hence
Kalman filtering theory can not be applied directly. Solutions to this problem
have arisen as the Extended Kalman Filter (EKF) [17], the Unscented Kalman
Filter (UKF) [14] or Particle Filtering [1]. Moreover, normal distribution of the
involved random variables is not fulfilled. The random variables modelling the
movement of the 3D location to be tracked (position and velocity) are modelled
as a normal distribution but the observed variables, that are affected by the noise
factor ξi

k[t] described by Eq.13, are not. This problem can be coarsely solved by
approximating ξi

k[t] by a normal distribution however, this solution leads to poor
results in presence of occlusions (large values of ξi

k[t]).

Projective Kalman filter is able to perform a joint estimation and tracking
by adding some modifications on the parameters introduced by Eq.3 and Eq.4 in
order to deal with the data model defined by Eq.14 and Eq.15. Filter evolution
follow the standard Kalman equations defined in Sec.2.3. Regarding the state
equation Eq.3:

• State Transition Matrix: Matrix F is set to be constant over time and
defined as:

F =

























1 0 0 0 1
T

0 0 0
0 1 0 0 0 1

T
0 0

0 0 1 0 0 0 1
T

0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























. (16)

• Process noise: The statistics of process noise w[t] are set to be normal. The
covariance matrix Q defining this random variable is learnt from groundtruth
data and set invariant through time.

In order to define a Kalman scheme to track 3D positions from multiple cam-
era data, the measure process described by Eq.4 must be modelled accordingly
to the projective nature of the observations.

• Observation Matrix: The key point of our Kalman filter scheme relies in
the definition of the observed data. A first proposal for this matrix would
be:

H =







P0 03×4

...
...

PN−1 03×4






. (17)
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However, this matrix, when applied to the state vector s[t] would generate
coordinates that might not be on the image plane (z 6= 1). Hence, the pro-
jection non-linearity must be compensated to obtain coordinates fulfilling
z = 1 in order to have a coherent data model. Our proposal for the adaptive
design of the matrix H[t+ 1] is as follows:

H[t+ 1] =







α0 · · · 0
...

. . .
...

0 · · · αN−1






·







P0 03×4

...
...

PN−1 03×4






,

αk =
1

P3
k · ŝ[t+ 1|t]

I4×4, (18)

where P3
k is the 3th row of Pk and ŝ[t+ 1|t] is the predicted state given by

Eq.7. In this way, when computing Eq.10 the observed, z[t+1], and predicted
term, H[t + 1]ŝ[t + 1|t], can be compared (both have z = 1) leading to a
meaningful result. The non-linearity introduced by the projection operator,
ψPk

, is therefore overcome and successfully modelled.
• Observation noise: The statistics of the observation noise ξi

k[t] can not be
modelled as a random variable with normal distribution. Nevertheless, de-
spite Kalman theory would seem not to be applicable, we propose an scheme
to design an adaptive covariance matrix R[t] that will be able to handle oc-
clusions and make Kalman theory fit in our scheme. Covariance matrix R[t]
can be seen as a matrix that controls how reliable is the observed data in
order to use it for the estimation of the hidden state ŝ[t+ 1|t+ 1]. In the
observation process, there could be two situations: if there is no occlusion
in the projection of Xi[t] onto the k-th view, then the distorting noise ξi

k[t]
reduces to be the AWGN gi

k[t] part or if there is occlusion and the predomi-
nant noise term turns out to be the impulsive di

k[t] factor. Under this model,
R matrix can be defined for every time step as:

R[t] =







β0 · · · 0
...

. . .
...

0 · · · βN−1






, (19)

where

βk =

{

σk if there is no occlusion (ξk[t] ≈ gk[t])
∞ if there is occlusion (ξk[t] ≈ dk[t])

. (20)

With this scheme, non-informative data coming from occluded views is dis-
regarded when computing the estimation of the hidden state and projec-
tions corrupted with AWGN are correctly handled. The algorithm to decide
whether a view is occluded or not is described in Sec.3.3.

3.3 Data association problem

In presence of multiple objects, occlusion and noisy measurements, it is impor-
tant to assign the correct measurement to each tracked object. This is called the
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data association problem [2, 6]. The following algorithm describes how to asso-
ciate data to every tracked object in the scene (inspirated by [18]) and decide
whether an occlusion has occurred in some views.

X

Y

Z

Γ

Image In

s[t+ 1]

s[t]

ŝ[t+ 1|t]

ψPn
(Γ )

ψPn
(ŝn[t+ 1|t])

on

z0

n
[t+ 1]

zn[t]

z1

n
[t+ 1]

Fig. 2. Data association scenario. State estimation ŝ[t+1|t] and the uncertainty region
defined by Γ when projected into image In allow associating the correct observation,
z0

n[t + 1], to the interest track dismissing false detections, z1

n[t + 1].

Data association must determine the spatial correspondence of two projec-
tions generated by the same 3D feature at two consecutive time instants in
the same image. In this way, when tracking multiple targets, the algorithm will
be able to perform properly. Moreover, in the case when a correspondence can
not be established probably due to an occlusion, the data association algorithm
should modify the R[t + 1] matrix accordingly. The proposed data association
procedure is described by the following steps:

1. State estimate extrapolation: In order to perform a search for the most
likely correspondence on time t+1, the algorithm estimates the state at this
time through Eq.7 thus obtaining ŝ[t+ 1|t].

2. Data bounding: From the state evolution equation Eq.3, it can be assumed
that the uncertainties of the 3D tracked location, the state, are modelled by
the process noise described by the covariance matrix Q. Assuming that this
matrix has been correctly estimated, it can be inferred that the 3D position,
s[t+ 1], fulfills the condition:

s[t+ 1] ∈ Γ, (21)

Γ :
{

X/ (X − ŝ[t+ 1|t]) W−1 (X − ŝ[t+ 1|t])> ≤ 0
}

. (22)

That is, s[t+1] is inside the ellipsoid Γ in homogeneous coordinates defining
an uncertainty region proportional to the state noise covariance. The conic
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matrix W [13] contents information about the topology of the ellipsoid and
we define it from Q as:

W =









0
γQ 0

0
0 0 0 −1









=









γσx 0 0 0
0 γσy 0 0
0 0 γσz 0
0 0 0 −1









. (23)

In our experiments, a value γ = 6 has provided effective results.
3. Data Association: The geometric property defined in Eq.21 and Eq.22

must be also fulfilled when dealing with a projection of this 3D scenario as
depicted in Fig.2. A process to associate the most likely projection at time
t+ 1 with respect to t can be defined straightforward. Since our input data
are pixels detected on the projected images we could associate the pixel that
minimizes a given criteria related to the projection of Γ , ψPk

(Γ ), to the
i-th track. Generally, the perspective projection of an ellipsoid is an ellipse
defined by the matrix V fulfilling the following condition [13]:

V ∝
(

PkW
−1P>

k

)−1
. (24)

Then, a proposal to establish the best association between the i-th track at
the time t + 1 with the input data zl

n[t + 1], 0 ≤ l < L (there could be
uncountable input data coming from the real tracks, false detections,...) can
be done through the Mahalanobis distance:

zi
n[t+ 1] = (25)

min
zl

n
[t+1]

√

(zl
n[t+ 1] − ψPk

(ŝ[t+ 1|t]))V (zl
n[t+ 1] − ψPk

(ŝ[t+ 1|t]))
>
.

4. Occlusion detection: In the case when the condition related to the i-th
track association
√

(zi
n[t+ 1] − ψPk

(ŝ[t+ 1|t]))V (zi
n[t+ 1] − ψPk

(ŝ[t+ 1|t]))> > δ, (26)

is fulfilled, being δ a threshold, we can say that there is an occlusion or the
data is too corrupted to be taken into account in next steps of the Kalman
filter. Hence, a criterium to set the parameter βk from Eq.20 is defined. For
our experiments, we took δ = 0.2

4 Results

In order to evaluate the performance of the proposed tracking method, two
experiments were carried out. We applied the described algorithm to both syn-
thetic and real data to demonstrate the efficiency of our solution and compare it
to the performance of the existing approaches to this problem within a Smart-
Room framework [10, 18]. The scenario where this algorithm was applied (in
both synthetic and real data) was the SmartRoom at UPC provided with 5 fully
calibrated wide angle lense cameras with a resolution of 768x576 pixels at 25
fps.
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Experiment 1: Synthetic data

A synthetic path was created simulating the movement of a single person walking
inside a SmartRoom. For this scenario two possibilities of the noise factor ξk

were studied: only Gaussian noise or Gaussian noise and occlusions added in the
projected views. For the first case, different Gaussian noise levels were added in
the projected views according to the measurement equation Eq.4. For the second
case, occlusions were simulated by adding high amplitude bursts of a duration
of 10 frames with Pocclusion = 0.3. For these input data, PKF and the standard
KF [10,18] algorithms were applied to test and compare the performance of our
joint estimation-tracking scheme. Fig.3(a) and 3(b) depict the error curves for
different levels of noise in the two situations. Fig.3(c) shows the zenital view of
the grountruth and PKF and KF estimated paths. Finally, Table 1 shows some
quantitative results comparing PKF and KF performances.

Table 1. Mean and standard deviation of the error for tracks with different levels of
Gaussian noise for PKF and KF. (Values in mm)

Gaussian Noise PKF KF
σ2 µ σ µ σ

50 7.93 3.90 9.48 4.38
100 10.31 5.09 13.13 6.17
150 11.90 5.90 15.87 7.54
200 13.11 6.55 18.15 8.68
250 14.01 7.10 20.12 9.66
300 14.90 7.58 21.83 10.54

Experiment 2: Real data

In order to test our system, a sequence of 400 frames with two people spon-
taneously interacting with each other was recorded. Foreground regions were
segmented and the top of each region in every view was taken as the input data
in order to track the 3D head of each person. By applying both tracking filters,
PKF and KF, we obtained the tracking results depicted in Fig.4. In the case
were the foreground regions representing the two people merged in one view, the
redundancy in the other views allowed keeping coherent tracks but accuracy of
the position estimation decreased. Video results for this sequence can be get at
http://gps-tsc.upc.es/imatge/ Ccanton/pkf.zip.

5 Conclusions and Future Work

A new approach towards tracking 3D locations from its projections on multiple
calibrated cameras has been presented. The proposed scheme performs a joint
estimation and tracking by taking advantage of the projective nature of the
observations defining the Projective Kalman Filter. Results on synthetic and real
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(a) (b)

(c)

Fig. 3. Results on synthetic data. In (a), the error curves for the PKF and KF for
diverse levels of Gaussian noise. In (b), the error curves for the PKF and KF operating
in the same noise conditions with a Pocclusion = 0.3 and an occlusion length of 10
samples. In (c), the groundtruth trajectory of the location of interest and the results
of PKF and KF (zenital view).

data proved this scheme to produce more reliable results in comparison with the
standard Kalman approaches to this problem. The accuracy of PKF was good,
even though the error in the experiments with real data were conditioned by
calibration, foreground segmentation and camera position.

Future research perspectives involve the development of schemes more robust
to occlusions, input data inconsistencies and position of the cameras. Applica-
tions of this technique to body analysis and joint tracking are under research as
well.
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