
HyperFast: Instant Classification for Tabular Data

David Bonet1,2, Daniel Mas Montserrat1, Xavier Giró-i-Nieto3∗, Alexander G. Ioannidis1†
1Stanford University 2Universitat Politècnica de Catalunya 3Amazon

Abstract

Training deep learning models and performing hyperparameter tuning can be com-
putationally demanding and time-consuming. Meanwhile, traditional machine
learning methods like gradient-boosting algorithms remain the preferred choice for
most tabular data applications, while neural network alternatives require extensive
hyperparameter tuning or work only in toy datasets under limited settings. In
this paper, we introduce HyperFast, a meta-trained hypernetwork designed for
instant classification of tabular data in a single forward pass. HyperFast generates
a task-specific neural network tailored to an unseen dataset that can be directly
used for classification inference, removing the need for training a model. We report
extensive experiments with OpenML and genomic data, comparing HyperFast to
competing tabular data neural networks, traditional ML methods, AutoML systems,
and boosting machines. HyperFast shows highly competitive results, while being
significantly faster. Additionally, our approach demonstrates robust adaptability
across a variety of classification tasks with little to no fine-tuning, positioning
HyperFast as a strong solution for numerous applications and rapid model deploy-
ment. HyperFast introduces a promising paradigm for fast classification, with the
potential to substantially decrease the computational burden of deep learning. Our
code, which offers a scikit-learn-like interface, along with the trained HyperFast
model, can be found at https://github.com/AI-sandbox/HyperFast.

1 Introduction

Many different machine learning (ML) methods have been proposed for the task of supervised
classification [1], following a traditional two-stage methodology. The initial stage involves the
optimization of a model using the training portion of a dataset. Several tuning iterations are performed
with the aim of finding the hyperparameter configuration of the model that yields the best performance
on the specific task. In the second stage, the model with the chosen hyperparameter setup is used for
evaluation and inference on the test set. Training and tuning models for classification tasks is time-
consuming, and it often requires extensive data pre-processing, expertise in selecting hyperparameters
that could fit the task at hand, and a validation process. Further, the computational and temporal costs
of the traditional process can be prohibitive, particularly in real-time applications (e.g., healthcare
[2]) or when rapid model deployment is necessary [3]. In this work, we propose HyperFast, a novel
method to solve classification tasks from multiple domains in a single forward pass. We substitute the
slow training stage with a fixed hypernetwork that has been pre-trained (meta-trained) to predict the
weights of a smaller neural network (i.e. main network) that can instantly solve the classification task
with state-of-the-art performance. Recently, TabPFN [4] has been proposed, introducing a pre-trained
Transformer that is able to perform classification without training. However, it is constrained to
≤ 1000 training examples, 100 features and 10 classes, which limits its application to real-world
scenarios. Our model is designed for use with both large and small datasets, offering adaptability to
different numbers of samples, features, and categories.

∗Work done prior to joining Amazon.
†Correspondence to A.G.I. [ioannidis@stanford.edu].

Table Representation Learning Workshop at NeurIPS 2023.

https://github.com/AI-sandbox/HyperFast
mailto:ioannidis@stanford.edu


During the meta-training stage, the hypernetwork parameters are learnt and the parameters of a
main model are inferred, that is, we are “learning to learn” from a wide variety of datasets (meta-
training datasets) from different modalities for which HyperFast generates a smaller neural model
that performs the actual classification. During the meta-testing or inference stage, HyperFast receives
a “support set” of an unseen dataset (both features and labels), and predicts a set of weights for the
main model, which classifies the test samples of the dataset. In this way, the process of adapting the
model to a new dataset is accelerated, and the model that does the meta-learning is decoupled from
the model that does the actual inference on the data. Model size is also decoupled, which means
that a very large model can be used for meta-learning to predict lighter models for inference. These
properties are helpful to deploy models for mobile devices, to accelerate production, to improve
privacy aspects, or for federated learning [5]. The hypernetwork is trained on a wide range of datasets.
Due to large variability between dataset distributions, it is a challenge to learn relevant and general
meta-features, such that during testing the hypernetwork is able to adapt and predict accurate set of
weights for unseen datasets. We evaluate the performance of HyperFast across a set of 15 tabular
datasets, including genomics datasets and a standardized suite of datasets from OpenML [6]. We
also analyze the performance of HyperFast on larger time budgets by ensembling main networks
generated with multiple forward passes and fine-tuning on inference. We compare our model to
similar approaches and classical methods, both in terms of performance and time. Our method
achieves competitive results compared to standard ML and AutoML algorithms tuned for up to one
hour for each individual test dataset. We provide the code and the pre-trained HyperFast that can be
used with a scikit-learn-like interface. Code is available in the Supplementary Material.

2 Related Work

Hypernetworks. Building from evolutionary algorithms, HyperNEAT [7] evolves Compositional
Pattern-Producing Networks (CPPNs) to augment the weight structure for a larger main network.
Based on this idea, [8] propose hypernetworks, where one neural network is used to generate weights
for another neural network. The hypernetwork is trained end-to-end jointly with the main network to
solve the task, producing weights in a deterministic way. [9] and [10] propose variational approx-
imations for weight generation using normalizing flows, [11] use multilayer perceptrons (MLPs)
and convolutions, and [12] use generative adversarial networks (GANs). [13] explores unsupervised
weight generation through model datasets. [14] use neural representations in a similar fashion to
NeRF [15] to reconstruct weights of a pre-trained neural network, also leveraging knowledge distil-
lation. The HyperTransformer [16] is a few-shot learning hypernetwork based on the Transformer
architecture [17] that generates weights of a convolutional neural network (CNN). Unlike our method,
the HyperTransformer is only designed for image classification and also requires training image and
activation feature extractors. HyperFast presents a novel approach by integrating hypernetworks with
retrieval-based components, initial transformation modules, and different pooling operations into its
architecture, offering feature permutation invariance and providing adaptability to new datasets while
ensuring efficiency and speed.

Meta-learning. In the context of rapidly adapting to new tasks using limited data, meta-learning
methods have emerged as powerful techniques. These approaches “learn to learn” by quickly
integrating information at test time to make predictions for new, unseen tasks. A model Pθ(y|x,S) is
learned for every new task, where y is the target, x is the test input, and S = {X,Y }, is the support
set. Metric-based learning methods such as Matching Networks [18] and Prototypical Networks
[19] map a labelled support set S into an embedding space, where a distance is computed with
the embedding of an unlabelled query sample to map it to its label. As in kernel-based methods,
the model Pθ can be obtained through Pθ(y|x,S) =

∑
xi,yi∈S Kθ(x, xi)yi. Optimization-based

methods such as Model-agnostic meta-learning (MAML) [20] learn an initial set of model parameters
and perform an additional optimization through a function fθ(S), where model weights θ are adjusted
with one or more gradient updates given the support set of the task S , i.e., Pθ(y|x,S) = fθ(S)(x,S).
Finally, model-based approaches such as Neural Processes (NPs) [21, 22] first process both support
samples and query samples independently as in Deep Sets [23], and the predicted embeddings are
aggregated with a permutation-invariant pooling operation, resulting in a dataset-level summary that
is fed to a second stage network that predicts the output for the query sample. The overall model is
defined by a function f and the process can be mathematically described as Pθ(y|x,S) = fθ(x,S).
Similarly, TabPFN [4] learns to learn Bayesian inference by using a Transformer network. In contrast,

2



our method directly obtains the model weights θ in a single forward step through an independent
network, i.e., the hypernetwork h, such that Pθ(y|x,S) = fh(S)(x).

Deep Learning for Tabular Data. Although deep learning (DL) models achieve state-of-the-art
results in many domains (e.g., language, computer vision, audio), this is not the case for tabular
data. Tree-based models such as XGBoost [24], LightGBM [25] or CatBoost [26] are still the
preferred choice in some tabular data applications [27, 28]. AutoML methods [29, 30, 31] are also a
popular alternative, automatically selecting the most appropriate ML algorithm and its hyperparameter
configuration. However, it has been shown that there is not a universal superior solution [32, 33],
and many deep learning approaches for tabular data have been proposed [34]. [35] introduced
Regularization Cocktails, where different regularization techniques are applied to simple MLPs to
boost performance. Recent work has explored using attention mechanisms to improve performance
on tabular data. TabNet [36] adopts sequential attention on subsets of features, SAINT [37] applies
attention over rows and columns in a BERT-style fashion and uses contrastive pre-training with data
augmentation, NPT [38] introduces attention between data points, and FT-Transformer [32] adapts
a Transformer with embeddings for categorical and numerical features. Nevertheless, most of the
proposed DL models for tabular data require slow training and custom hyperparameter tuning for
every new dataset. In contrast, we focus on off-the-shelf models that do not need any tuning for a new
task. In this direction, TabPFN [4] pre-trains a Transformer [17] on synthetic data given a prior to
perform tabular data classification in a single forward pass with no hyperparameter tuning. However,
TabPFN can only be applied to small tabular datasets, i.e., ≤ 1000 training examples, 100 features
and 10 classes.

3 Background

3.1 Meta-learning problem setting

In our meta-learning experiments, we train a model h (i.e., the hypernetwork) that is able to quickly
adapt to new tasks given some observations, and generate the weights of a main model f that solves
the task for unseen datapoints. We consider a set of classification tasks T where each task t ∈ T is
associated with a support set St of examples that are sufficient to find the optimal model f that solves
the task, a loss function Lt, and a query set Qt to define Lt. The first phase is the meta-training,
where in each step a different training task t ∈ Tmeta-train is selected. We compile a set of meta-training
datasets Dmeta-train, where each dataset d ∈ Dmeta-train is composed of a training set dtrain and a test set
dtest, as in the common machine learning setup. In each meta-training step, a task t ∈ Tmeta-train is
sampled by first randomly choosing a meta-training dataset d. Then, St and Qt are generated by
sampling examples from dtrain and dtest, respectively. Meta-validation is also performed intermittently
through meta-training, where a separate set of meta-validation datasets Dmeta-val is used to generate
validation tasks Tmeta-val to evaluate our algorithm and select the best performing model.

Once HyperFast is trained, an independent set of meta-testing datasets Dmeta-test are used to create
the evaluation tasks Tmeta-test in which the selected model is evaluated. This approach allows us to
extend the classical “n-way-k-shot” few-shot learning setting to handle multiple datasets with varying
distributions and categories, testing the robustness and generalization of our model on new data.

As opposed to the training tasks, where each t ∈ Tmeta-train is randomly generated at every meta-
training step, Tmeta-val and Tmeta-test are sets of partially fixed tasks, as the query set Qt always covers
all dtest samples, in order to evaluate and compare with other methods equally, which also tests their
performance on the entire test subset dtest of a dataset d.

4 HyperFast

The traditional training process can be seen as a function f(X,Y ) = θ, that receives training
instances X ∈ RN×D and corresponding labels Y ∈ RN , and produces a set of trained weights θ of
a model. However, we substitute the training process with HyperFast, a pre-trained meta-model, i.e.,
hypernetwork [8] h, that gets a subset of the training data (i.e. support set St) for a task t ∈ Tmeta-train
and predicts the weights of a main neural network fθ for the given task t as θ∗ = h(St). The target
model fh(St) directly uses the predicted weights and makes predictions for test data points x ∈ Qt in
a single forward pass, such that Pθ(y|x,S) = fh(S)(x).

3



Figure 1: (left) HyperFast framework. (right) Architecture detail. Each hypernetwork module receives
representations of the support set of batch size (bs) samples. The modules l ∈ [1, L− 1] compress
the representations into a single embedding of hypernetwork hidden size (hhn) to then generate the
main network weights θmainl . Module L summarizes the representations per class with embeddings
of main hidden size (hm) + 1, directly obtaining the weights of the last classification layer θmainL .

The meta-model is learnt by observing a set of tasks t ∈ Tmeta-train and minimizing Lt(fh(S)(x)). In
this section, we detail the design and architecture of h, named HyperFast in analogy to Hypernetworks
[8], and the ability to instantly adapt to new datasets in a single forward pass. Figure 1 illustrates the
HyperFast framework and the main building blocks of the architecture. HyperFast is a multi-stage
model with initial transformation layers that allows variable input size and permutation invariance,
and a combination of linear layers and pooling operations that take both support samples and their
associated labels to directly predict the weights θmainl (weight matrix and bias) of linear layers
l ∈ [1, L] of a target neural network. All trainable modules of HyperFast are learnt end-to-end by
optimizing the classification loss of the main network evaluated on Qt.

The framework and HyperFast architecture proposed in this paper is a specific instance of a more
general framework that could be easily extended to predict convolutional layers, batch normalization
layers, recurrent layers, or deeper networks, for example. However, the architecture design depicted
in Figure 1 selection has been driven by a global and simple approach to handle a wide range of
multi-domain data, while seeking efficiency and speed.

4.1 Random Features and PCA

Properly dealing with datasets of differing dimensionality is a challenge, and one common solution is
to apply padding [4] or to keep a subset of selected features up to a fixed size. We first perform a
general data standardization stage by one-hot encoding categorical features, mean imputing missing
numerical features, mode imputing missing categorical features, and feature-wise transforming to
zero mean and unit variance. Then, HyperFast comprises initial layers that project datasets of different
dimensionality to fixed-size and feature-permutation invariant representations. The kernel trick can
be used to project data to a Reproducing Kernel Hilbert Space (RKHS) [39] when the number of
dimensions tends to infinity. However, this would require computing all pair-wise kernel distance in
every step of the training process. Instead, we use random features (RF) [40] to approximate a kernel
with a fixed and finite number of dimensions. Random features are computed as ϕ(x) = a(Wx),

4



where a(·) is a non-linearity, and W is a random projection matrix that follows a pre-defined
distribution. The approximated kernel depends on the distribution of W and the selected non-linearity.
In our case, we sample W from a Gaussian distribution and use the ReLU activation as non-linearity,
approximating an arc-cosine kernel. We choose to approximate the arc-cosine kernel because it
captures sparse, neural network-like feature representations in a non-parametric kernel setting [41].
In contrast, polynomial kernel’s features are neither sparse nor non-negative, and radial basis function
(RBF) kernels capture localized similarities. In each forward step, the random features projection
matrix is re-initialized and sampled. The number of rows is adjusted to match the dimensionality of
the input dataset, while the number of columns remains fixed, determining the output size.

The combination of random features with Principal Component Analysis (PCA) provides an efficient
low-rank randomized approximation of Kernel PCA [42, 43]. We estimate the PCA parameters ψ
using the support set and project the data onto a specified number of components. Subsequently,
both ϕ and ψ are applied to the query samples to transform the data. This transformed data is then
forwarded through the L generated linear layers of the main network.

4.2 Hypernetwork modules

The process of generating the weights of the main network is done layer-by-layer, by multiple hyper-
network modules with both shared and layer-specific parameters, see Figure 1. The hypernetwork
module that generates the weights for the main network layer l receives as input the representations
of the support samples in the previous stage, concatenated with the one-hot encoded support labels,
the global average, and the class average of the low-rank Kernel PCA projection of the support set.
Note that each sample is concatenated with the class average corresponding to its associated label.

For predicting θmain1 , the representations are the low-rank Kernel PCA projection of the support
samples. For θmainl ∈ [2, L], the hypernetwork module receives the intermediate representations of
the support set in the main network at the output of layer l − 1, after non-linearities and residual
connections are applied. Figure 1 represents a specific multi-layer perceptron (MLP) architecture
with ReLU activations and residual connections, which we use for our experiments. However, the
HyperFast framework can be easily extended to generate weights for other main network architectures.

The hypernetwork modules that predict the layers l ∈ [1, L− 1] are composed of MLPs with shared
middle layers that take the support set representations and labels, and output embeddings for each
sample in the support set. Then, permutation-invariant weights are obtained averaging all support
embeddings in a similar fashion to Deep Sets [23], to obtain a single dataset embedding that is passed
to a final linear layer which outputs the final weights θmainl of l. θmainl is then reshaped as weight
matrix and bias vector to forward the data through the main network.

Layer L is the classification layer of the main layer that outputs the logits for the final prediction.
In this case, the intermediate representations after the layer L − 1 and labels information are
encoded through a MLP hypernetwork but the weights θmainL are not directly predicted from a global
embedding. Instead, we leverage the fact that the rows of the classification layer weight matrix
correspond to the different categories of the task. We perform an average pooling per class, and obtain
the rows of the classification weight matrix (and bias) as the average of representations for each
category. This also allows a much lightweight implementation, instead of directly predict the weight
matrix. Additionally, we add a residual connection [44] from the previous layer representations for
which we also perform a per class average, which helps in retaining category information from the
input. Finally, we consider a module based on Nearest Neighbors to add learnable parameters (NN
biases) to the classification layer bias vector of the main network. The label of a query sample is
predicted with NN using the support set and the intermediate representations of the data across the
main network, such that Pθ(y|x,S) = fh(S)(x,S). We consider the representations after the PCA
projection, and after each linear layer. The NN biases are added to the position of the bias of the last
main classification layer corresponding to the predicted label.

Once the main network is fully generated, query samples can be forwarded to make predictions.
During meta-training, the predictions for the query samples Qt of t ∈ Tmeta-train are used to compute
the cross-entropy loss Lt and learn the parameters of HyperFast end-to-end. In evaluation, all
hypernetwork parameters are frozen and generate weights for a main network in a single forward
pass.

5



5 Experiments

In this section, we compare HyperFast to many standard ML methods, AutoML systems and DL
methods for tabular data on a wide variety of tabular classification tasks, listed in the Appendix. We
do not perform any hyperparameter tuning to HyperFast, as it can be used as an off-the-shelf model
ready to generate networks to perform inference on new datasets. We then compare the performance
and runtime of the generated network in a single forward pass, as well as the combination of multiple
generated networks by ensembling and fine-tuning on inference.

Baselines We compare HyperFast to standard ML methods, AutoML systems and state-of-the-art
DL methods for tabular data. We first consider simple and fast ML methods as K-Nearest Neighbors
(KNN) and Logistic Regression (Log. Reg.), and a MLP matching the architecture of the main
network. We also evaluate against tree-based boosting methods: XGBoost [24], LightGBM [25], and
CatBoost [26]. As AutoML methods we incorporate Auto-Sklearn 2.0 (ASKL 2.0) [30], which uses
Bayesian Optimization to efficiently discover a top-performing ML model or a combination of models
by ensembling, and AutoGluon [31], which uses a selection of models such as neural networks, KNN,
and tree-based models, combining them into a stacked ensemble. Finally, we include popular tabular
DL methods: SAINT [37], and TabPFN [4]. All standard ML models, gradient boosting methods and
SAINT are evaluated using 5-fold cross validation for hyperparameter adjustment. Hyperparameter
configurations are drawn from search spaces (detailed in the Appendix) unitl 10 000 configurations
are explored, a specified time budget is reached, or more than 32 GB of memory are required if GPU
training is possible for the model. Then, the model is trained on the full training set with the best
configuration between the hyperparameter search result and the default. For the AutoML methods,
the time budget is given. Finally, both TabPFN and our HyperFast are pre-trained models with no
hyperparameter tuning requirements, but with ensembling capabilities. Thus, we perform ensembling
for each method until a given number of members are used (detailed in the Appendix) or until 32 GB
of GPU memory are overloaded.

Data We collect a wide variety of datasets from different modalities. We use the 70 tabular datasets
from the OpenML-CC18 suite [6] which, to the best of our knowledge, is the largest and most used
standardized tabular dataset benchmark, composed of standard classification datasets (e.g., Breast
Cancer, Bank Marketing). The collection of OpenML datasets is randomly shuffled and divided
into meta-training, meta-validation and meta-testing sets, with a 75%-10%-15% split, respectively.
We also include tabular genomics datasets sourced from distinct biobanks. Specifically, we utilize
genome sequences of dogs [45] for dog clade (group of breeds) prediction in meta-training, European
(British) humans from the UK Biobank (UKB) [46] for phenotype prediction in meta-validation,
and HapMap3 [47] for subpopulation prediction in the meta-test. This strict separation ensures
we meta-learn and evaluate on substantially different distributions and tasks. More details on the
processing of these datasets are provided in the Appendix. The simple ML methods, implemented
with scikit-learn [48], and the MLP, receive the numerical features standardized with zero mean and
unit variance, and the categorical features are one-hot encoded. For the missing values, we perform
mean imputation for numerical features and mode imputation for categorical features, as it was the
configuration that yielded the best performance. We also perform imputation of missing values for
SAINT. Boosting methods, AutoML systems, and TabPFN receive the raw data and the indices of
categorical features when needed, as their documentation states that they pre-process inputs internally.

Apart from the large-sized original test datasets, we create a secondary small-sized tabular data
version (mini-test) of the meta-testing datasets to compare to TabPFN, as it is only able to handle ≤
1000 training examples, ≤ 100 features and ≤ 10 classes. We randomly select a subset of ≤ 1000
training samples and ≤ 100 features for each dataset. We do not perform any downsizing in terms of
number of classes as the highest number of classes appearing in the meta-testing set is 10. However,
HyperFast is pre-trained with datasets with higher number of classes and can be used in inference
for datasets with >10 classes. The experiments, which are conducted for all models and both size
versions of the 15 meta-testing datasets, considering all time budgets shown in Figure 2, require
a total of 2 months to complete. Therefore, we show additional results with 10 repetitions of the
experiments for a specific time budget of 5 minutes for each dataset in the Appendix.

Experimental set-up We perform supervised classification with HyperFast and all other baselines
on the mini-test, a small-sized version of the meta-test datasets Dmeta-test, and in the original large-scale

6



datasets. To train HyperFast, we use a different set of meta-training datasets, Dmeta-train, and select
the model with the best average performance on the meta-validation datasets, Dmeta-val. We report
balanced accuracy, which is the mean of sensitivity and specificity. Balanced accuracy provides a
more objective and robust evaluation across classes, especially in the context of imbalanced datasets.
In contrast, standard accuracy can be misleading, often masking poor performance in minority classes.
We evaluate the models on a time budget (including tuning, training, and prediction) to correctly
assess computational complexity and performance. The average rank is also reported.

In order to transform the data to a fixed-size and permutation invariant representation, we apply
Random Features and Principal Component Analysis to both support samples and query samples.
We set a Random Features projection to 32 768 (215) features, sampled from a normal distribution
following the He initialization [49], followed by a ReLU activation. Note that the random linear layer
that computes the random features is not trained, and re-initialized in each HyperFast forward step.
Then, we keep the principal components (PCs) associated to the 784 largest eigenvalues, as many of
the datasets considered have this dimensionality, and it is a more than sufficient number of dimensions
to retain the important information of higher dimensional datasets while preserving efficiency. After
the PCA projection, most genomics datasets resemble a similar histogram distribution (i.e., zero
mean, small deviation and no outliers). However, it is not the case for some OpenML datasets, which
are also centered around zero but present many outliers. Thus, we clip the data after PCA at 4σ.

The hypernetwork modules receive a concatenation of intermediate representations of the support
samples, and the support labels. Given that each dataset features a different number of categories and
linear layers require a fixed input size, we one-hot encode the labels and apply zero padding up to
the maximum number of categories considered in the experiments, which is 100. It is important to
note that the number of categories that HyperFast can handle is easily extendable by expanding the
input size of HyperFast and zero padding the remaining input dimensions. Such modifications have a
negligible impact on efficiency or memory requirements, up to a reasonable number of categories. As
a shared module we use 2 feed-forward layers with a hidden size of 1024 and ReLU activations. For
the main network, we consider a 3-layer MLP with a residual connection [44], and a main network
hidden size equal to the number of PCs (784 dimensions). We select this simple architecture to be
able to obtain competitive performance on a wide variety of datasets with a single trained model while
preserving efficiency. Other alternatives include predicting weights for CNN layers for only-image
datasets, or recurrent layers, for sequential data. Instead, we create a general and simple meta-learning
framework to perform fast lightweight inference. In the NN bias module, we randomly select a subset
of a maximum of 2048 support samples, since computing all pairwise distances for a large number
of datapoints causes high inefficiency and GPU memory overload. A maximum batch size of 2048
samples is used for training, and we make sure to have a sufficient number of samples per category in
every case.

In evaluation, we show prediction results with HyperFast in a single forward pass, as well as
predictions by ensembling main networks generated in multiple forward passes. We also experiment
with performing gradient steps with the training data of the meta-testing datasets on the generated
main networks, including the random features projection matrix, PCA parameters and linear layers.

10−1 100 101 102 103

Runtime (fit + predict) (s)

60

62

64

66

68

70

72

B
a
la

n
ce

d
A

cc
u

ra
cy

mini -test (≤ 1000 train samples, ≤ 100 features, ≤ 10 classes), 15 datasets
KNN

Log. Reg.

XGBoost

LightGBM

CatBoost

ASKL 2.0

AutoGluon

SAINT

TabPFN

MLP

HyperFast

1s 3s 10s 30s 1m 5m 15m 1h
Runtime Budget (fit + predict)

2

4

6

8

A
v
g
.

B
a
la

n
ce

d
A

cc
u

ra
cy

R
a
n

k

mini -test (≤ 1000 train samples, ≤ 100 features, ≤ 10 classes), 15 datasets

Figure 2: Runtime (fit + predict) vs. performance and average rank for given runtime budgets on the
mini-test (small-sized version of the 15 meta-test datasets with ≤ 1000 training examples, ≤ 100
features and ≤ 10 classes restrictions).

7



Results on small-sized datasets. We first compare HyperFast to the other methods on a small-sized
setting with datasets having ≤ 1000 training samples, ≤ 100 features and ≤ 10 classes, in order to
compare to TabPFN. As shown in Figure 2, HyperFast delivers superior results in both performance
and runtime, with better prediction capabilities up to 3 orders of magnitude faster than competing
methods. Simple ML methods such as KNN and Log. Reg. also deliver instant predictions, but do not
achieve remarkable performance. Interestingly, an MLP (with an architecture identical to the network
generated by HyperFast, including the RF+PCA layers) performs on par with XGBoost. However,
HyperFast surpasses gradient-boosting techniques in both runtime and performance. LightGBM
stands out as the only boosting machine that achieves a higher balanced accuracy in a similar runtime
to a single forward pass by HyperFast. Yet, an ensemble of networks generated by HyperFast
outperforms all fine-tuned boosting machines in under 3 seconds. TabPFN is noted for its rapid
predictions and outperforms SAINT. But on average, it falls behind gradient boosting machines and
neural models, including HyperFast. AutoML systems are superior to the other baselines when given
higher runtime budgets. However, HyperFast still outperforms both AutoGluon and ASKL 2.0 for
runtimes up to 1h, obtaining the lowest rank throughout all the budgets in the mini test.

10−1 100 101 102 103

Runtime (fit + predict) (s)

67.5

70.0

72.5

75.0

77.5

80.0

82.5

B
a
la

n
ce

d
A

cc
u

ra
cy

Big test, 15 datasets

KNN

Log. Reg.

XGBoost

LightGBM

CatBoost

ASKL 2.0

AutoGluon

SAINT

MLP

HyperFast

1s 3s 10s 30s 1m 5m 15m 1h
Runtime Budget (fit + predict)

2

4

6

8

A
v
g
.

B
a
la

n
ce

d
A

cc
u

ra
cy

R
a
n

k

Big test, 15 datasets

Figure 3: Runtime (fit + predict) vs. performance and average rank for given runtime budgets on the
big test: 15 large/medium-sized meta-datasets.

Results on medium/large-scale datasets. Figure 3 benchmarks the algorithms on a large real-world
collection of datasets. We observe that HyperFast achieves the overall best performance in a wide
range of runtime budgets, ranging from 1 second to 5 minutes. For more extended budgets, up to 1h
per dataset, HyperFast’s performance is on par with other AutoML systems. Specifically, HyperFast,
ASKL 2.0, and AutoGluon all achieve an average rank of approximately 3.0. In comparison, gradient-
boosting machines plateau at a balanced accuracy of 78.4% and rank above 5.9, being outperformed
by the MLP. SAINT obtains the lowest performance, using the hyperparameter configuration that the
authors implement for the biggest datasets they consider in their benchmark, which are of similar size
to the ones considered in this evaluation. No hyperparameter optimization is performed for SAINT in
the big test since larger architectures do not fit in GPU memory for the larger datasets.

6 Conclusion

We present HyperFast, a meta-trained hypernetwork designed to perform instant classification of
tabular data by encoding task information in the prediction of the weights of a target network in a
single forward pass. Our experiments show that HyperFast consistently improves performance over
traditional ML methods and tabular-specific DL architectures in a matter of seconds. Remarkably, it is
able to replace the traditional training of a neural network, and achieves competitive results with state-
of-the-art AutoML frameworks trained for 1h. HyperFast eliminates the necessity for hyperparameter
tuning, making it a highly accessible, off-the-shelf model that can be specially useful for fast
classification tasks. We also explore how we can leverage all training data by creating ensembles of
generated networks and fine-tuning them on inference, significantly boosting performance at almost
no additional computational cost. Future work should consider expanding this framework to a general
architecture or multi-hypernetwork setting that is able to handle regression tasks, multi-domain and
high-dimensional non-tabular settings such as audio streams, 3D, and video.

8



Acknowledgments and Disclosure of Funding

This work was partially supported by a grant from the Stanford Institute for Human-Centered Artificial
Intelligence (HAI) and by NIH under award R01HG010140. This research has been conducted using
the UK Biobank Resource under Application Number 24983.

References
[1] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification (2nd Edition).

Wiley-Interscience, USA, 2000.

[2] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr Kuleshov, Mark DePristo,
Katherine Chou, Claire Cui, Greg Corrado, Sebastian Thrun, and Jeff Dean. A guide to deep
learning in healthcare. Nature medicine, 25(1):24–29, 2019.

[3] Allison McCarn Deiana, Nhan Tran, Joshua Agar, Michaela Blott, Giuseppe Di Guglielmo,
Javier Duarte, Philip Harris, Scott Hauck, Mia Liu, Mark S Neubauer, et al. Applications and
techniques for fast machine learning in science. Frontiers in big Data, 5:787421, 2022.

[4] Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A
transformer that solves small tabular classification problems in a second. In The Eleventh
International Conference on Learning Representations, 2023.

[5] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu. Federated learning.
Synthesis Lectures on Artificial Intelligence and Machine Learning, 13(3):1–207, 2019.

[6] Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers, Frank Hutter, Michel
Lang, Rafael Gomes Mantovani, Jan N van Rijn, and Joaquin Vanschoren. Openml benchmark-
ing suites. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021.

[7] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. A hypercube-based encoding for
evolving large-scale neural networks. Artificial life, 15(2):185–212, 2009.

[8] David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings, 2017.

[9] David Krueger, Chin-Wei Huang, Riashat Islam, Ryan Turner, Alexandre Lacoste, and Aaron
Courville. Bayesian hypernetworks, 2018.

[10] Christos Louizos and Max Welling. Multiplicative normalizing flows for variational bayesian
neural networks. In Proceedings of the 34th International Conference on Machine Learning -
Volume 70, ICML’17, page 2218–2227. JMLR.org, 2017.

[11] Lior Deutsch. Generating neural networks with neural networks. arXiv preprint
arXiv:1801.01952, 2018.

[12] Neale Ratzlaff and Li Fuxin. HyperGAN: A generative model for diverse, performant neural
networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 5361–5369. PMLR, 09–15 Jun 2019.

[13] Konstantin Schürholt, Boris Knyazev, Xavier Giró i Nieto, and Damian Borth. Hyper-
representations as generative models: Sampling unseen neural network weights. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural
Information Processing Systems, 2022.

[14] Maor Ashkenazi, Zohar Rimon, Ron Vainshtein, Shir Levi, Elad Richardson, Pinchas Mintz,
and Eran Treister. Nern – learning neural representations for neural networks, 2022.

[15] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV,
2020.

9



[16] Andrey Zhmoginov, Mark Sandler, and Maksym Vladymyrov. Hypertransformer: Model
generation for supervised and semi-supervised few-shot learning. In International Conference
on Machine Learning, pages 27075–27098. PMLR, 2022.

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[18] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks
for one shot learning. Advances in neural information processing systems, 29, 2016.

[19] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning.
Advances in neural information processing systems, 30, 2017.

[20] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In International conference on machine learning, pages 1126–1135.
PMLR, 2017.

[21] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami,
and Yee Whye Teh. Neural processes. ICML Workshop on Theoretical Foundations and
Applications of Deep Generative Models, 2018.

[22] Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes.
In International Conference on Machine Learning, pages 1704–1713. PMLR, 2018.

[23] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. Advances in neural information processing systems, 30,
2017.

[24] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, page 785–794, New York, NY, USA, 2016. Association for Computing Machinery.

[25] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[26] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and
Andrey Gulin. Catboost: unbiased boosting with categorical features. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[27] Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still
outperform deep learning on typical tabular data? In Thirty-sixth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2022.

[28] Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Inf.
Fusion, 81(C):84–90, may 2022.

[29] Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. Knowledge-
Based Systems, 212:106622, 2021.

[30] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter.
Auto-sklearn 2.0: Hands-free automl via meta-learning. arXiv:2007.04074 [cs.LG], 2020.

[31] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and
Alexander Smola. Autogluon-tabular: Robust and accurate automl for structured data. arXiv
preprint arXiv:2003.06505, 2020.

[32] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep
learning models for tabular data. Advances in Neural Information Processing Systems, 34:18932–
18943, 2021.

10



[33] Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Ganesh Ramakrishnan, Micah
Goldblum, Colin White, et al. When do neural nets outperform boosted trees on tabular data?
arXiv preprint arXiv:2305.02997, 2023.

[34] Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. CoRR, abs/2110.01889, 2021.

[35] Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel
on tabular datasets. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages
23928–23941. Curran Associates, Inc., 2021.

[36] Sercan Ö. Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. Proceedings
of the AAAI Conference on Artificial Intelligence, 35(8):6679–6687, May 2021.

[37] Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
Saint: Improved neural networks for tabular data via row attention and contrastive pre-training.
arXiv preprint arXiv:2106.01342, 2021.

[38] Jannik Kossen, Neil Band, Clare Lyle, Aidan N Gomez, Thomas Rainforth, and Yarin Gal.
Self-attention between datapoints: Going beyond individual input-output pairs in deep learning.
Advances in Neural Information Processing Systems, 34:28742–28756, 2021.

[39] Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American mathemati-
cal society, 68(3):337–404, 1950.

[40] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances
in neural information processing systems, 20, 2007.

[41] Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. In Y. Bengio, D. Schu-
urmans, J. Lafferty, C. Williams, and A. Culotta, editors, Advances in Neural Information
Processing Systems, volume 22. Curran Associates, Inc., 2009.

[42] Bharath Sriperumbudur and Nicholas Sterge. Approximate kernel pca using random features:
Computational vs. statistical trade-off. arXiv preprint arXiv:1706.06296, 2017.

[43] David Lopez-Paz, Suvrit Sra, Alex Smola, Zoubin Ghahramani, and Bernhard Schölkopf.
Randomized nonlinear component analysis. In International conference on machine learning,
pages 1359–1367. PMLR, 2014.

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[45] Emily R. Bartusiak, Míriam Barrabés, Aigerim Rymbekova, Julia Gimbernat-Mayol, Cayetana
López, Lorenzo Barberis, Daniel Mas Montserrat, Xavier Giró-I-Nieto, and Alexander G.
Ioannidis. Predicting dog phenotypes from genotypes. In 2022 44th Annual International
Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pages 3558–3562,
2022.

[46] Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John Danesh, Paul
Downey, Paul Elliott, Jane Green, Martin Landray, et al. Uk biobank: an open access resource
for identifying the causes of a wide range of complex diseases of middle and old age. PLoS
medicine, 12(3):e1001779, 2015.

[47] International HapMap 3 Consortium et al. Integrating common and rare genetic variation in
diverse human populations. Nature, 467(7311):52, 2010.

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

11



[49] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[50] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
4367–4375, 2018.

[51] Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille. Few-shot image recognition by
predicting parameters from activations. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7229–7238, 2018.

[52] Junyang Qian, Yosuke Tanigawa, Wenfei Du, Matthew Aguirre, Chris Chang, Robert Tibshi-
rani, Manuel A Rivas, and Trevor Hastie. A fast and scalable framework for large-scale and
ultrahigh-dimensional sparse regression with application to the uk biobank. PLoS genetics,
16(10):e1009141, 2020.

[53] Yosuke Tanigawa, Junyang Qian, Guhan Venkataraman, Johanne Marie Justesen, Ruilin Li,
Robert Tibshirani, Trevor Hastie, and Manuel A Rivas. Significant sparse polygenic risk scores
across 813 traits in uk biobank. PLoS Genetics, 18(3):e1010105, 2022.

[54] Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic gradient descent. In
International Conference on Learning Representations (ICLR), pages 1–15, 2015.

[55] James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D Cox. Hyperopt: a
python library for model selection and hyperparameter optimization. Computational Science &
Discovery, 8(1):014008, 2015.

[56] Brent Komer, James Bergstra, and Chris Eliasmith. Hyperopt-sklearn: automatic hyperparameter
configuration for scikit-learn. In ICML workshop on AutoML, volume 9, page 50. Citeseer
Austin, TX, 2014.

[57] John Novembre, Toby Johnson, Katarzyna Bryc, Zoltán Kutalik, Adam R Boyko, Adam Auton,
Amit Indap, Karen S King, Sven Bergmann, Matthew R Nelson, et al. Genes mirror geography
within europe. Nature, 456(7218):98–101, 2008.

12



A Further Motivations of HyperFast

In this study, we are particularly interested in ensuring adaptability to large dataset sizes, filling the
gap present in the current landscape of pre-trained models for instant tabular data classification, where
models like TabPFN [4] are promising but inherently limited to small datasets due to the constraints
of the Transformer architecture. In contrast, we explore a different route with HyperFast, a pre-trained
hypernetwork-based framework capable of rapid classification without such limitations. A key aspect
of this adaptability comes from the architecture design, providing invariance to permutations of input
samples with scalability with respect to the dataset size, as well as feature-permutation invariance.

HyperFast solves the classification task by taking a set of labeled datapoints (support set) and
generating the weights of a neural model that can be directly used to classify new unseen datapoints.
Previous work [50, 51] considered generating weights for specific layers (e.g., the last classification
layer), while training the rest of the feature extractor. Here, we go one step further and consider
generating all the weights of the model that performs the classification in a single forward pass.

We also focus on applications and scenarios where the computational budget can be limited. We
address this concern by decoupling the complexity of specialized models that perform individual
tasks from a general meta-model. In other words, we train a high-capacity meta-model to encode
task-specific characteristics in the weights of a smaller model. This setting allows a large meta-learner
to be trained just once, while many lightweight models generated by the meta-learner can be used for
deployment in different applications such as edge computing and IoT devices, where computational
resources are constrained, and fast inference is indispensable. Additionally, the meta-learner can
be used in data streaming applications, where models need to be updated or trained frequently. The
meta-learner can instantly generate a model that is ready for deployment, but the generated weights
might not be optimal. Thus, we also explore further improvements to quickly boost the performance
before deployment and leverage all the power of the framework. For example, ensembles of multiple
generated models can be used, or the generated weights can be used as an initial point for fine-tuning.
More detail on many of the possibilities to improve model performance can be found in the Additional
Results Section.

B Experimental Setup

B.1 Datasets

OpenML We integrate the OpenML Curated Classification benchmarking suite 2018 (OpenML-
CC18) [6]. OpenML-CC18 consists of 72 diverse and curated classification tasks, and we keep 70
datasets, excluding the vision datasets Fashion-MNIST and CIFAR-10. We split each dataset into
80% train and 20% test.

HapMap3 HapMap3 [47] is a publicly available dataset that contains single-nucleotide polymor-
phisms (SNPs) sequences of whole-genome data from humans with subpopulation annotations.
Samples are filtered for the 10 largest human subpopulations, which are used as categories for the
hapmap datasets. Individuals are split into 75% for train and 25% for test. SNPs with missing values
for any sample are discarded. Finally, 5 different datasets are created by randomly sampling 784
SNP positions from different sections of the chromosomes, which are encoded as binary values. For
every created dataset, labels are permuted to avoid overfitting to the positions of the labels of each
subpopulation.

Dogs Similarly, Dogs [45] is a dataset of dog DNA sequences. The dataset consists of the geno-
typing array of purebred dogs from 75 breeds. Dog breeds can be organized into clades, which are
groups of dog breeds that share a common ancestor. Since the number of samples per breed in the
dataset is very low, breeds are clustered into clades, and the 10 most common clades are kept and used
as categories for the dogs datasets. Samples are split into 75% for train and 25% for test. SNPs with
missing values for any sample are discarded. Finally, 30 different datasets are created by randomly
sampling 784 positions from different sections of the chromosomes. For every created dataset, labels
are permuted to avoid overfitting to the positions of the labels of each clade.

13



UK Biobank The UK Biobank [46] is a large-scale biobank, from which we use the genotyping
array data and full phenotypes as processed in [52]. We include 8 of the most predictive binary
phenotypes according to their polygenic risk score (PRS) model:

• Hair colour (natural, before greying) red: red hair

• Hair colour (natural, before greying) blonde: blonde hair

• Hair colour (natural, before greying) dark brown: dark brown hair

• Hair colour (natural, before greying) black: black hair

• Ease of skin tanning (Never tan, only burn): skin burn

• Ease of skin tanning (Get very tanned): skin tan

• Hair colour (natural, before greying) brown: brown hair

• Malabsorption/coeliac disease: malabsorption-coeliac

In order to allow proper phenotype prediction modeling, it is a standard practice to stick to a single
population, to avoid the prediction being biased by other factors. In this case, we filter by the majority
population in the UK Biobank, which is British individuals with European ancestry. Then, we create
a balanced dataset for each phenotype by selecting all samples of the minority class (presence of the
phenotype), and randomly selecting the same number of samples from the majority class. Variants
(features) are selected based on the PRS model weights reported [53]. We split each dataset into 80%
train and 20% test.

Table 1: Meta-validation datasets Dmeta-val. Train size is the number of training instances in dtrain, and
Test size is the number of test instances in dtest.

Dataset name Train size Test size Feature size Categorical Classes

cylinder-bands 432 108 37 19 2
wdbc 455 114 30 0 2
eucalyptus 588 148 19 5 5
mfeat-zernike 1600 400 47 0 10
cmc 1178 295 9 7 3
dresses-sales 400 100 12 11 2
breast-w 559 140 9 0 2
red hair 24638 6160 1621 1621 2
blonde hair 62297 15575 6968 6968 2
dark brown hair 202459 50615 5662 5662 2
black hair 23001 5751 1649 1649 2
skin burn 94972 23744 3158 3158 2
skin tan 108592 27148 4130 4130 2
brown hair 114502 28626 4024 4024 2
malabsorption-coeliac 3672 918 423 423 2

Table 2: Meta-testing datasets Dmeta-test. Train size is the number of training instances in dtrain, and
Test size is the number of test instances in dtest. Subscripts i..j and (·) denote the interval of indices
and the total number of datasets of the same group used, respectively.

Dataset name Train size Test size Feature size Categorical Classes

hapmap1..5 (5) 1660 554 784 784 10
phoneme 4323 1081 5 0 2
wilt 3871 968 5 0 2
pendigits 8793 2199 16 0 10
satimage 5144 1286 36 0 6
credit-approval 552 138 15 9 2
banknote-authentication 1097 275 4 0 2
bank-marketing 36168 9043 16 9 2
pc4 1166 292 37 0 2
kc2 417 105 21 0 2
diabetes 614 154 8 0 2

14



Table 3: Meta-training datasets Dmeta-train. Train size is the number of training instances in dtrain, and
Test size is the number of test instances in dtest. Subscripts i..j and (·) denote the interval of indices
and the total number of datasets of the same group used, respectively.

Dataset name Train size Test size Feature size Categorical Classes

dogs1..30 (30) 1372 458 784 784 10
sick 3017 755 29 22 2
Bioresponse 3000 751 1776 0 2
splice 2552 638 60 60 3
qsar-biodeg 844 211 41 0 2
MiceProtein 864 216 77 0 8
isolet 6237 1560 617 0 26
connect-4 54045 13512 42 42 3
analcatdata_authorship 672 169 70 0 4
kr-vs-kp 2556 640 36 36 2
optdigits 4496 1124 64 0 10
analcatdata_dmft 637 160 4 4 6
churn 4000 1000 20 4 2
mfeat-karhunen 1600 400 64 0 10
mfeat-factors 1600 400 216 0 10
kc1 1687 422 21 0 2
texture 4400 1100 40 0 11
Internet-Advertisements 2623 656 1558 1555 2
har 8239 2060 561 0 6
jungle_chess_2pcs_raw_endgame_complete 35855 8964 6 0 3
car 1382 346 6 6 4
credit-g 800 200 20 13 2
adult 39073 9769 14 8 2
nomao 27572 6893 118 29 2
jm1 8708 2177 21 0 2
numerai28.6 77056 19264 21 0 2
first-order-theorem-proving 4894 1224 51 0 6
dna 2548 638 180 180 3
Devnagari-Script 73600 18400 1024 0 46
mfeat-morphological 1600 400 6 0 10
madelon 2080 520 500 0 2
pc3 1250 313 37 0 2
blood-transfusion-service-center 598 150 4 0 2
vehicle 676 170 18 0 4
vowel 792 198 12 2 11
balance-scale 500 125 4 0 3
segment 1848 462 16 0 7
pc1 887 222 21 0 2
tic-tac-toe 766 192 9 9 2
semeion 1274 319 256 0 10
letter 16000 4000 16 0 26
electricity 36249 9063 8 1 2
GesturePhaseSegmentationProcessed 7898 1975 32 0 5
cnae-9 864 216 856 0 9
ozone-level-8hr 2027 507 72 0 2
ilpd 466 117 10 1 2
wall-robot-navigation 4364 1092 24 0 4
mfeat-fourier 1600 400 76 0 10
spambase 3680 921 57 0 2
mnist_784 56000 14000 784 0 10
PhishingWebsites 8844 2211 30 30 2
climate-model-simulation-crashes 432 108 18 0 2
steel-plates-fault 1552 389 27 0 7
mfeat-pixel 1600 400 240 0 10

15



The collection of OpenML datasets is randomly shuffled and divided into meta-training (Table 3),
meta-validation (Table 1), and meta-testing (Table 2) sets, with a 75%-10%-15% split, respectively.
Dogs datasets for dog clade (group of breeds) prediction are used in meta-training, British humans
datasets from the UK Biobank (UKB) for phenotype prediction are used in meta-validation, and
HapMap3 datasets for subpopulation prediction are used in the meta-test. This strict separation
ensures we meta-learn and evaluate on substantially different distributions and tasks.

B.2 HyperFast and Baselines Implementation

B.2.1 HyperFast Training Details

In the meta-training stage, HyperFast weights are learnt by generating the weights of a smaller
model that solves a different training task t ∈ Tmeta-train at each training step. t is derived from
a randomly selected dataset d from the collection of meta-training datasets Dmeta-train. However,
the gradient signal is too noisy for weight updates at every training step. We fix this issue by
accumulating gradients across different tasks before performing an optimization step. We experiment
with gradient accumulation of 2, 3, 5, 10, 25, 50, and 100 steps. In our experiments we find that,
in general, a larger number of accumulation steps always yields a more stable loss curve. That is,
the meta-model learns better from observing the variations across different datasets, rather than
solving one task at a time. We use a total of 25 gradient accumulation steps, which already allows
a stable training, without excessively prolonging convergence. We also experimented with solving
multiple tasks in a single pass, but it was not possible in many cases due to memory constraints.
Another key architectural design choice that significantly stabilizes the training process is sharing
the core parameters between hypernetwork modules. As a shared module we use 2 feed-forward
layers with a hidden dimensionality of 1024 and ReLU activations. We also experimented with
deeper shared modules and different architectures based on attention mechanisms and convolutions,
however, training stability and model generalization were inferior. The HyperFast used in this work
has 1.27 B parameters (4.7 GB of memory), which generates the weights of smaller models of 52.65
M parameters (200.8 MB). The model is trained for 100 000 steps with a learning rate of 0.0003 with
the AdamW optimizer [54], which required 20 hours on a single NVIDIA Tesla V100 SXM2 GPU.

B.2.2 Baselines Hyperparameter Selection

For hyperparameter tuning of the baselines, we use Hyperopt [55], a Python library for hyperpa-
rameter optimization that uses Bayesian optimization. For XGBoost and CatBoost we adapt the
hyperparameter search spaces from [28] and [4], which also tried other search spaces fixing the
number of iterations and yielded suboptimal performance. For LightGBM we use the default hyper-
parameter search space defined in Hyperopt-sklearn [56]. For KNN and Logistic Regression we use
the ranges used in [4], and for SAINT the search space implemented in [34]. For the MLP, we use
the exact same architecture as the main network produced by HyperFast, including the initial RF
and PCA transformation layers. We perform hyperparameter tuning on the training hyperparameters,
fixing the number of epochs to 1,000,000 and performing early stopping based on the validation
loss. For TabPFN we consider up to 4096 data permutations for ensembling. Table 4 details the
hyperparameter search spaces, as well as the sampling method used in every range for hyperparameter
selection.

16



Table 4: Hyperparameter search spaces for baseline methods. Hyperparameter configurations are
drawn using the sampling technique specified in every range.

Model Hyperparameter Sampling Range

KNN n_neighbors randint [1, 16]

Log. Reg.

penalty choice [l1, l2, none]
max_iter randint [50, 500]
fit_intercept choice [True, False]
C loguniform [e−5, 5]

XGBoost

learning_rate loguniform [e−7, 1]
max_depth randint [1, 10]
subsample uniform [0.2, 1]
colsample_bytree uniform [0.2, 1]
colsample_bylevel uniform [0.2, 1]
min_child_weight loguniform [e−16, e5]
alpha loguniform [e−16, e2]
lambda loguniform [e−16, e2]
gamma loguniform [e−16, e2]
n_estimators randint [100, 4000]

LightGBM

num_leaves randint [5, 50]
max_depth randint [3, 20]
learning_rate loguniform [e−3, 1]
n_estimators randint [50, 2000]
min_child_weight loguniform [e−5, e4]
subsample uniform [0.2, 0.8]
colsample_bytree uniform [0.2, 0.8]
reg_alpha choice [0, 0.1, 1, 2, 5, 7, 10, 50, 100]
reg_lambda choice [0, 0.1, 1, 5, 10, 20, 50, 100]

CatBoost

learning_rate loguniform [e−5, 1]
random_strength randint [1, 20]
l2_leaf_reg loguniform [1, 10]
bagging_temperature uniform [0, 1]
leaf_estimation_iterations randint [1, 20]
iterations randint [100, 4000]

SAINT

dim choice [32, 64, 128, 256]
depth choice [1, 2, 3, 6, 12]
heads choice [2, 4, 8]
dropout choice [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]

MLP

learning rate loguniform [e−9, e−3]
batch size uniform [10, 2048]
optimizer choice [Adam, AdamW, SGD, RMSprop]
patience uniform [10, 50]
validation split uniform [0.05, 0.5]

C Additional Results

C.1 Toy datasets

In Figure 4 we compare HyperFast to traditional ML methods on toy datasets from scikit-learn [48]:
make_moons in the top row, make_circles in the middle row, and a linearly separable dataset in the
bottom row, all with Gaussian noise added. We can see how HyperFast models correctly the moons
and circles without overfitting to the outliers, and creates a reasonably linear decision boundary
for the bottom case. In contrast, tree-based methods overfit to the training data and fail to model
accurately the distributions, creating abrupt and inaccurate decision boundaries in most cases.

17



Figure 4: Classifiers comparison with the decision boundaries for toy binary classification datasets.

C.2 How Can We Leverage All Labeled Data of a Large Dataset?

In a single forward pass, HyperFast can generate a set of weights for a smaller model ready for
inference using a set of labeled samples. However, for datasets with large training sets it is not
possible to use all available labeled data in a single forward pass due to memory and efficiency
constraints, thus possibly losing relevant information from the dataset that could be valuable for the
generation of weights to solve the task. We compare different options to leverage all labeled data in
the generation of the final inference model in Figure 5.

100 101 102 103

Runtime (fit + predict) (s)

83

84

85

86

87

A
cc

u
ra

cy

Single forward pass (Batch sizes)

Ensembles (Num. members)

Optimization (Num. steps)

Stacking (Probabilities, Num. members)

Stacking + Ensembling (Intermediate act. + Probabilities, Num. members)

Optimization + Ensembling (1024 steps, Num. members)

Figure 5: Performance as a function of runtime for different approaches to fully leverage all training
data in the generation of the final inference model with HyperFast. Batch sizes considered in a
single forward pass: [64, 128, 256, 512, 784, 1024, 2048, 4096, 8192, 16384]. Number of members
considered in options involving ensembling or stacking: [1, 2, 3, 4, 8, 10, 15, 20, 32]. Optimization
steps trials: [0, 2, 3, 4, 8, 16, 32, 64, 256, 1024, 4096].

We first experiment with increasing the batch size in a single forward pass. As we can expect, larger
batch sizes yield significantly better performance, but at the cost of a much slower runtime. This
is mainly due to the singular value decomposition (SVD) performed in the PCA module, although
implemented and optimized for GPU, the computation time scales rapidly with the number of input
samples when an excessively large batch size is used. Thus, for the trained HyperFast and for the rest
of experiments, we use a fixed maximum batch size of 2048 samples, which yields very good results
in less than a second.

Multiple models can be generated from different subsets of datapoints, each capturing different
variations between samples. Additionally, the random features projection matrix is reinitialized in

18



every forward pass of HyperFast, injecting more variability in all the following generated layers
across models, even if the same subset of samples is used in different forward passes. We combine
the predictions of multiple generated models with soft-voting ensembles, and we observe that bigger
ensembles make more accurate predictions. Another alternative we experiment with is stacking
the predictions of multiple main models using a Logistic Regression as the meta-learner. However,
performance stagnates and does not improve with more stacking members. We also try a variant of
stacking, where instead of stacking predictions from multiple models and fitting a single meta-learner,
we stack the predictions and all intermediate activations from a single model and fit a meta-learner. We
repeat the process for several main models and meta-learners, creating an ensemble of meta-learners.
Although it is a more expensive process, we find that it yields better results than traditional stacking,
performing on par with ensembling but with higher runtimes. Furthermore, we consider the weights
generated by HyperFast as an starting point for fine-tuning the model on all training data. Note that
in this case, all model weights are optimized: random features, PCA parameters, and linear layer
weights. In Figure 5 we see that optimizing the generated model in a single forward pass with all the
training data, results are worse than ensembling for a small runtime budget. But for larger runtimes,
optimization outperforms ensembling and stacking on their own. Finally, we combine the two fastest
and best performing options, i.e., Optimization + Ensembling, where we generate models in different
forward passes, optimize them, and combine the fine-tuned models by ensembling. We perform 1024
fine-tuning steps in each generated network with a batch size of 2048, using the AdamW optimizer
with a learning rate of 1e-4, and a scheduler that reduces the learning rate by a factor of 0.1 when the
loss stagnates for 10 steps. We observe that although this combination requires more runtime, a single
fine-tuned model matches the performance of large ensembles of non-optimized models, and a large
ensemble of fine-tuned models yields the best results. In our sweep experiments, we show results by
starting with a single forward pass, then increasing the ensemble size by performing multiple forward
passes until GPU memory is overloaded. Then, we restart the sweep by optimizing each generated
model and ensembling the fine-tuned networks.

After validating these results with the meta-validation datasets, we recommend using HyperFast with
a single forward pass for instant predictions, or using ensembles to obtain good predictions in a very
short runtime. If best performance is required and runtime is not a priority, fine-tuning + ensembling
is the best choice.

C.3 Ablation Experiments

Table 5: Ablation studies on HyperFast performing a single forward pass. Time results are shown for
a single GPU. HF size denotes the number of trainable parameters of HyperFast, i.e., the meta-model,
while Model size denotes the size of the generated model.

Variation Bal. acc. (%) Bal. acc. diff. Fit time (s) Pred. time (s) HF size Model size

Base model (784 PCs) 81.496 - 0.600 0.125 1.27 B 52.65 M
No RF 75.387 -6.108 0.126 0.114 1.27 B 1.85 M
No RF-PCA 73.704 -7.792 0.029 0.109 1.26 B 1.23 M
First 512 PCs only 81.347 -0.149 0.625 0.125 547 M 43.03 M
First 256 PCs only 81.235 -0.261 0.640 0.042 140 M 34.25 M
dRF=16 384 (214) 81.059 -0.436 0.510 0.116 1.27 B 26.95 M
No concat PCA to hypern. modules 80.727 -0.769 0.583 0.125 1.26 B 52.65 M
1 linear layer in shared module 80.790 -0.706 0.637 0.125 1.27 B 52.65 M
No residual conn. in hypern.L 77.835 -3.660 0.620 0.125 1.27 B 52.65 M
No residual con. in main model 80.318 -1.178 0.633 0.125 1.27 B 52.65 M
No NN bias using PCA features 81.305 -0.191 0.625 0.125 1.27 B 52.65 M
No NN bias using interm. act. 80.703 -0.793 0.628 0.125 1.27 B 52.65 M
No NN biases 79.714 -1.781 0.628 0.125 1.27 B 52.65 M
Random init. linear layers main 72.229 -9.267 0.437 0.125 - 52.65 M

In Table 5, we present ablation studies for the HyperFast framework, exploring variations affecting
both hypernetwork modules and the generated model. First, we consider removing the RF and both
RF and PCA modules, obtaining a fixed-sized input by keeping the first 784 features or applying
zero padding. The weight generation time is reduced from 0.6s to 0.12s and 0.03s, since the main
time bottleneck is the RF matrix multiplication and SVD to obtain the PCs. Also, the main model
size is greatly reduced as RFs account for most parameters, but the drop in performance is one of
the most significant. This is because RF and PCA not only allow transforming any dataset to a fixed
number of features, but also homogenize the input data to HyperFast and the generated network

19



across datasets. For example, the first feature post RF-PCA holds the most variance, with subsequent
features capturing the maximum variance that is orthogonal to the previous dimensions, with minimal
information loss. Also, histogram distributions are similar across datasets with zero mean. These
properties help in learning important meta-features across different dataset distributions. If we scale
down RF-PCA by reducing the number of PCs used and the RF dimensionality, we observe that
model size is significantly reduced while the drop in performance is not critical, which shows that
most dataset relevant information is preserved, even using 512 or 256 PCs. These observations can
help create even more efficient HyperFast desings in the future. In addition, PCA representations
concatenated to hypernetwork inputs retain key information without a major parameter increase. We
also observe that reducing the shared hypernetwork module from 2 to 1 layer degrades performance,
and residual connections in both the hypernetwork and main model are key to retain post-PCA and
per class information, while not increasing model size and runtime. We also analyze the retrieval-
based component of HyperFast. We observe that NN biases in the last classification layer improve
predictions while maintaining model size, especially using the intermediate activations of the main
network as features. Finally, if we replace the weights produced by HyperFast by random weights,
and base the prediction solely on the Nearest Neighbor-based component, we observe the biggest
drop in performance.

C.4 Extended Results of Experiments

Extending the results of the main paper, Table 6 shows per dataset results on the mini test, for a
total runtime budget of 5 minutes and 10 repetitions. These results show that HyperFast is the
best option for a rapid deployment setting, outperforming TabPFN, AutoML systems and other
methods. Additionally, Table 7 shows the results for a total runtime budget of up to 1h for the mini
test. Allowing a sufficient amount of time for hyperparameter tuning on such small datasets, the
results are more diverse. AutoML systems and HyperFast are the best overall performing methods,
followed by the MLP matching the architecture of HyperFast’s generated main network, including
the RF+PCA initial layers. HyperFast obtains the best average rank, while the ensemble of HyperFast
and AutoGluon obtains the best mean balanced accuracy.

Table 6: Balanced accuracy results per dataset on the mini test for a runtime budget of 5 minutes.
The mean rank of each method is also shown, for 10 repetitions with different selection of samples
and features to subset and create the mini test.

Log. Reg. XGBoost LightGBM CatBoost MLP ASKL 2.0 SAINT TabPFN AutoGluon HyperFast

hapmap1 45.768 ± 2.09 45.492 ± 4.07 47.005 ± 2.45 44.437 ± 1.78 45.642 ± 3.94 45.140 ± 5.58 38.373 ± 2.45 40.270 ± 1.47 47.401 ± 2.28 47.480 ± 0.99
hapmap2 50.781 ± 3.51 46.152 ± 2.86 48.096 ± 2.79 45.446 ±1.41 47.111 ± 1.62 49.923 ± 1.10 42.943 ± 3.57 41.816 ± 1.15 49.689 ± 1.77 50.392 ± 2.85
hapmap3 48.002 ± 1.65 45.315 ± 2.34 46.020 ± 2.84 44.401 ± 2.00 47.324 ± 1.63 40.856 ± 17.40 38.199 ± 3.54 41.337 ± 0.89 46.678 ± 2.46 48.002 ± 1.08
hapmap4 48.699 ± 1.64 45.444 ± 2.71 46.171 ± 1.08 45.621 ± 3.03 48.493 ± 1.15 47.801 ± 2.65 43.513 ± 1.85 43.303 ± 1.69 50.601 ± 1.24 48.787 ± 1.79
hapmap5 49.071 ± 2.49 49.378 ± 2.52 48.636 ± 2.85 46.543 ± 1.25 48.977 ± 1.96 43.616 ± 18.94 42.290 ± 5.39 42.353 ± 2.35 49.741 ± 1.72 50.303 ± 2.05
phoneme 62.307 ± 3.76 80.854 ± 1.49 81.100 ± 1.59 82.223 ± 1.05 78.463 ± 1.20 83.310 ± 0.88 80.022 ± 1.12 80.956 ± 1.30 80.392 ± 1.14 80.073 ± 1.09
wilt 67.793 ± 10.57 82.902 ± 4.20 83.628 ± 3.68 84.600 ± 3.16 86.491 ± 4.17 88.123 ± 1.99 50.000 ± 0.00 90.903 ± 3.71 88.809 ± 1.69 88.508 ± 2.52
pendigits 93.396 ± 0.55 95.916 ± 0.52 96.593 ± 0.32 97.355 ± 0.54 97.454 ± 0.60 97.261 ± 0.24 77.635 ± 2.37 98.447 ± 0.23 97.766 ± 0.18 98.427 ± 0.43
satimage 78.745 ± 1.52 85.239 ± 0.88 85.435 ± 0.94 85.611 ± 1.51 84.179 ± 0.68 72.184 ± 31.04 85.310 ± 1.84 85.566 ± 1.00 85.796 ± 0.97 86.153 ± 1.32
credit-approval 83.928 ± 0.36 85.691 ± 0.29 85.152 ± 1.10 84.667 ± 0.37 82.925 ± 1.35 84.626 ± 0.47 83.553 ± 1.28 81.243 ± 0.00 84.865 ± 0.51 80.894 ± 1.33
banknote-auth. 98.693 ± 0.00 99.722 ± 0.30 99.738 ± 0.15 99.738 ± 0.15 100 100 99.869 ± 0.18 100 100 100
bank-marketing 65.340 ± 2.47 63.275 ± 6.20 65.891 ± 3.92 66.265 ± 3.40 64.711 ± 3.66 62.109 ± 8.55 54.375 ± 4.14 59.862 ± 2.59 60.173 ± 3.21 67.770 ± 0.38
pc4 67.834 ± 1.01 74.549 ± 2.40 73.316 ± 2.95 74.905 ± 1.34 69.753 ± 2.32 78.255 ± 3.03 69.136 ± 3.56 74.436 ± 1.63 71.215 ± 2.47 76.866 ± 2.67
kc2 62.656 ± 0.81 59.381 ± 0.96 61.561 ± 0.75 59.847 ± 2.30 63.899 ± 4.38 65.997 ± 1.89 62.684 ± 5.85 69.715 ± 0.00 63.713 ± 1.62 66.572 ± 2.64
diabetes 66.000 ± 0.00 71.260 ± 1.78 68.911 ± 0.03 68.748 ± 0.07 70.441 ± 2.07 69.145 ± 1.45 57.667 ± 4.94 70.204 ± 0.00 69.063 ± 1.01 69.681 ± 1.50
Mean rank 6.84 ± 0.3 5.28 ± 0.8 5.25 ± 0.4 5.71 ± 0.8 4.89 ± 0.6 3.41 ± 0.7 7.60 ± 0.7 5.27 ± 0.2 4.04 ± 0.5 3.31 ± 0.6
Mean bal. acc. 65.934 ± 0.53 68.705 ± 0.59 69.150 ± 0.23 68.694 ± 0.48 69.058 ± 0.63 68.556 ± 5.02 61.705 ± 1.13 68.027 ± 0.35 69.727 ± 0.64 70.661 ± 0.32

For the large datasets setting, Figure 6 shows the results of the different classifiers separated for fully
categorical and numerical datasets. HyperFast obtains the best balanced accuracy results across all
runtime regimes for categorical datasets. In contrast, gradient-boosting machines obtain better results
for small time budgets on numerical datasets, but AutoML systems and HyperFast rapidly match and
surpass their performance when more time is given to create larger ensembles and fine-tune each
member. We show detailed results per dataset in Table 8 for a 1h runtime budget. In a large-scale
setting, tree-based gradient-boosting machines and the MLP are outperformed by AutoML systems
which, in fact, train multiple instances of these gradient boosting algorithms and neural networks
(among other models) to build a stronger predictor. The resulting ensemble is increasingly powerful
when long fitting time budgets are allowed. Although our focus is on fast classification, HyperFast is
still competitive in most datasets. In fact, if we combine the power of both HyperFast and AutoGluon
in an ensemble we obtain the best results, which suggest that including HyperFast in AutoML systems
could be very beneficial.

20



Table 7: Balanced accuracy results per dataset on the mini test for a runtime budget of 1h. The
mean rank of each method is also shown. These extended experiments also include HyperFast +
AutoGluon, an ensemble of HyperFast and AutoGluon. Thus, the average rank does not correspond
to the main paper experiments. LR: Logistic Regression, XGB: XGBoost, LGBM: LightGBM, CatB:
CatBoost, ASKL2: ASKL 2.0, AG: AutoGluon, HF: HyperFast.

LR XGB LGBM CatB MLP ASKL2 SAINT TabPFN AG HF HF + AG

hapmap1 46.763 42.562 45.126 45.285 45.71 42.544 44.17 40.407 46.583 47.832 48.511
hapmap2 45.395 47.472 45.091 47.103 47.668 47.055 35.981 41.787 50.164 49.230 51.175
hapmap3 49.675 47.075 48.769 41.839 43.422 50.087 49.298 40.275 49.511 49.701 50.251
hapmap4 49.063 49.222 45.415 43.37 46.376 48.371 44.757 40.572 48.516 49.640 46.664
hapmap5 50.122 48.972 48.727 45.51 52.133 49.301 48.065 40.621 50.922 50.929 48.574
phoneme 62.433 80.566 81.535 81.265 78.891 80.646 80.716 80.033 82.97 80.715 80.622
wilt 73.656 78.682 72.006 86.32 85.359 91.073 50.0 86.429 90.964 91.073 89.259
pendigits 93.521 96.32 96.448 97.752 96.721 98.062 72.179 98.78 98.125 98.590 97.682
satimage 78.876 84.916 85.534 85.845 85.063 85.444 82.188 86.674 84.907 87.093 86.035
credit-appr. 79.806 85.821 84.831 83.362 80.392 85.31 84.181 81.243 83.67 82.063 81.414
banknote-auth. 98.693 100.0 99.673 99.673 100.0 100.0 98.693 100.0 100.0 100.0 100.0
bank-marketing 65.898 61.686 64.215 53.457 70.508 62.458 57.073 62.027 60.153 68.195 69.282
pc4 68.273 71.05 74.826 70.269 69.076 74.24 50.0 74.436 71.658 78.212 78.016
kc2 64.704 62.897 60.624 60.022 62.897 62.897 66.238 69.715 62.897 62.760 67.442
diabetes 66.0 70.981 65.574 67.5 69.259 65.0 50.0 70.204 69.778 70.907 72.259
Mean rank 7.35 5.59 6.82 7.41 5.59 4.88 8.41 6.06 4.29 2.77 3.35

Mean bal. acc. 66.192 68.548 67.893 67.238 68.898 69.499 60.902 67.547 70.055 71.129 71.146

10−1 100 101 102 103

Runtime (fit + predict) (s)

20

40

60

80

B
a
la

n
ce

d
A

cc
u

ra
cy

Categorical datasets

KNN

Log. Reg.

XGBoost

LightGBM

CatBoost

ASKL 2.0

AutoGluon

SAINT

MLP

HyperFast

10−1 100 101 102 103

Runtime (fit + predict) (s)

40

50

60

70

80

B
a
la

n
ce

d
A

cc
u

ra
cy

Numerical datasets

KNN

Log. Reg.

XGBoost

LightGBM

CatBoost

ASKL 2.0

AutoGluon

SAINT

MLP

HyperFast

Figure 6: (left) Categorical datasets of the big test. (right) Numerical datasets of the big test.

When it comes to individual datasets, HyperFast outperforms other methods, especially in fully
categorical datasets. One reason is the use of PCA projections before the neural layers, and the
concatenation of the global average and per class average of the PCA projections to each hypernetwork
module. Previous work on genetic datasets [57] demonstrated the capability of PCA-based methods
to capture the variation of samples and structure of the data. In the case of more diverse tabular
datasets that have no underlying structure, the use of PCA does not have a negative impact. As a
result, we have observed HyperFast also outperforming other baselines in diverse OpenML tabular
datasets. When using a large number of principal components (PCs) (784) there is no information loss
for datasets with d features if d ≤ 784, which is the case for most datasets considered. Information
loss in datasets with d > 784 is minimal, since we keep the first 784 PCs associated with the largest
eigenvalues, while the remaining components explain the least amount of variance in the data. The
ablation studies show that even decreasing the number of PCs to 512, performance is not very affected,
while removing the PCA transformation results in the largest drop in performance.

D Limitations

In terms of number of samples, HyperFast takes a fixed number of training samples (support set)
to predict a single set of weights. For very large datasets, the generated main network in a single
forward pass will not deliver optimal results, as the sample of datapoints used for the generation
might not fully represent the entire dataset. However, rapid improvements can be obtained with the
optimization and ensembling techniques detailed previously, enabling any dataset size to be used.
Regarding the number of features, there is also no limitation, as HyperFast projects the original data
with the random features and PCA module to a fixed size, and feature selection can be used with

21



Table 8: Balanced accuracy results per dataset on the big test for a runtime budget of 1h. The mean
rank of each method is also shown. These extended experiments also include HyperFast + AutoGluon,
an ensemble of HyperFast and AutoGluon. Thus, the average rank does not correspond to the main
paper experiments. LR: Logistic Regression, XGB: XGBoost, LGBM: LightGBM, CatB: CatBoost,
ASKL2: ASKL 2.0, AG: AutoGluon, HF: HyperFast.

LR XGB LGBM CatB MLP SAINT ASKL2 AG HF HF + AG

hapmap1 73.445 68.117 70.75 68.445 72.976 61.874 76.397 76.712 74.490 77.529
hapmap2 73.357 62.651 70.622 68.028 73.268 62.326 75.869 76.782 75.855 79.633
hapmap3 75.32 66.742 71.436 70.031 75.949 60.51 76.784 79.548 74.338 77.743
hapmap4 75.45 72.692 71.346 68.536 73.462 52.228 76.815 79.894 79.282 80.070
hapmap5 79.105 67.059 72.009 71.0 80.106 61.833 80.797 82.374 80.158 83.637
phoneme 64.553 84.717 86.633 84.94 83.247 81.384 87.437 86.422 82.839 84.568
wilt 69.974 89.15 86.32 90.166 90.221 50.0 91.128 93.051 93.903 92.996
pendigits 94.563 98.998 99.14 99.184 99.457 94.622 99.232 99.454 99.410 99.548
satimage 80.822 89.39 89.824 89.67 88.584 86.325 89.332 90.759 90.731 90.616
credit-appr. 79.806 86.949 84.831 85.48 83.362 81.105 84.66 83.702 81.584 82.883
banknote-auth. 98.693 99.673 100.0 99.673 100.0 99.673 100.0 100.0 100.0 100.0
bank-marketing 64.951 70.335 72.853 73.771 72.334 71.687 75.186 70.406 72.363 71.410
pc4 68.273 75.022 74.631 69.466 72.656 55.36 68.468 72.049 77.821 73.850
kc2 64.704 57.749 60.624 61.692 61.692 67.908 65.17 62.897 69.578 69.578
diabetes 66.0 72.056 65.574 68.204 72.185 50.0 64.574 68.704 70.407 71.833
Mean rank 7.59 6.65 5.41 6.24 4.88 8.35 3.71 3.06 3.29 3.00
Mean bal. acc. 75.268 77.420 78.440 77.886 79.967 69.122 80.790 81.517 81.511 81.736

ensembling for very high-dimensional datasets. Note that if the number of selected features for an
ensemble member is much larger than the number of PCs used, some information might be lost. To
address this, one can train larger versions of HyperFast by increasing the number of retained PCs.

Our work prioritizes a simple yet effective method suitable for most tabular datasets within a con-
strained computational environment. Future work could explore expanding HyperFast to regression
tasks and transitioning to a large-scale setup utilizing multiple GPUs for the meta-training of the
model, where most information could be retained for very large numbers of features or different
modalities (e.g., high resolution images). We also leave as future work the study of dataset distribution
differences from meta-training and how it affects generalization performance. Lastly, in terms of
number of categories, the HyperFast version discussed in this paper supports up to 100 classes.
Nonetheless, training a HyperFast to accommodate more categories would increase linearly the
complexity of the initial layers of the hypernetwork modules, which accounts for very small memory
and computational requirements.

22


	Introduction
	Related Work
	Background
	Meta-learning problem setting

	HyperFast
	Random Features and PCA
	Hypernetwork modules

	Experiments
	Conclusion
	Further Motivations of HyperFast
	Experimental Setup
	Datasets
	HyperFast and Baselines Implementation
	HyperFast Training Details
	Baselines Hyperparameter Selection


	Additional Results
	Toy datasets
	How Can We Leverage All Labeled Data of a Large Dataset?
	Ablation Experiments
	Extended Results of Experiments

	Limitations

