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Abstract

We present a method for performing hierarchical object detection in images guided1

by a deep reinforcement learning agent. The key idea is to focus on those parts2

of the image that contain richer information and zoom on them. We train an3

intelligent agent that, given an image window, is capable of deciding where to4

focus the attention among five different predefined region candidates (smaller5

windows). This procedure is iterated providing a hierarchical image analysis.6

We compare two different candidate proposal strategies to guide the object search:7

with and without overlap. Moreover, our work compares two different strategies to8

extract features from a convolutional neural network for each region proposal: a9

first one that computes new feature maps for each region proposal, and a second10

one that computes the feature maps for the whole image to later generate crops for11

each region proposal.12

Experiments indicate better results for the overlapping candidate proposal strategy13

and a loss of performance for the cropped image features due to the loss of spatial14

resolution. We argue that, while this loss seems unavoidable when working with15

large amounts of object candidates, the much more reduced amount of region16

proposals generated by our reinforcement learning agent allows considering to17

extract features for each location without sharing convolutional computation among18

regions.19

1 Introduction20

When we humans look at an image, we always perform a sequential extraction of information in21

order to understand its content. First, we fix our gaze to the most salient part of the image and, from22

the extracted information, we guide our look towards another image point, until we have analyzed all23

its relevant information. This is our natural and instinctive behavior to gather information from our24

surroundings.25

Traditionally in computer vision, images have been analyzed at the local scale following a sliding26

window scanning, often at different scales. This approach analyses the different image parts inde-27

pendently, without relating them. Just by introducing a hierarchical representation of the image, we28

can more easily exploit the relationship between regions. We propose to use a top-down scanning29

which firstly takes a global view of the image to sequentially focus on the local parts that contain the30

relevant information (e.g. objects or faces).31

Our algorithm is based on an intelligent agent trained by reinforcement learning that is capable of32

making decisions to detect an object in a still image, similarly to [2]. The agent first analyzes the33

whole image, and decides in which region of the image to focus among a set of predefined ones.34

Inspired by [9], our agent can top-down explore a set of five different predefined region candidates:35
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four regions representing the four quadrants plus a central region. Two different strategies have been36

studied: proposing overlapping or non-overlapping candidates. The agent stops its search when37

it finds an object. Reinforcement learning is useful for our task because there is no single way of38

completing it. The agent can explore the hierarchical representation in different ways and still achieve39

its goal. Then, instead of programming every step that the agent should do, we train it so that it40

makes decisions under uncertainty to reach its target. Notice that the final goal of object detection is41

to define a bounding box around the object and that, in our work, these bounding boxes are limited to42

the predefined regions in the hierarchy.43

Most state of the art solutions for object detection analyze large amounts of region proposals. These44

algorithms need to leverage the bottleneck of describing all these proposals by reusing convolutional45

feature maps of the whole image. In our work though, as the reinforcement learning agent and the46

hierarchy allow us to analyze a very reduced number of regions, we can feed each region visited by47

the agent through a convolutional network to extract its features, allowing us to work with region48

representations of higher spatial resolution, which are also more informative than those cropped from49

a feature map of the whole image. To study this trade-off, we have trained and compared two different50

models based on each of these two principles: the Image-Zooms model, which extracts descriptors51

at each region, and the Pool45-Crops model, which reuses feature maps for different regions of the52

same image.53

The first contribution of our work is the introduction of a hierarchical representation to top-down54

(zoom-in) guide our agent through the image. We explore how the design of the hierarchy affects55

the detection performance and the amount of visited regions. The second contribution is the study56

between extracting features for each region instead of reusing feature maps for several locations.57

We show the gain of the region-specific features for our scheme, and argue that the computational58

overhead is minor thanks to the very reduced amount of regions considered by the agent.59

2 Related Work60

Reinforcement learning is a powerful tool that has been used in a wide range of applications. The61

most impressive results are those from DeepMind [11], who have been able to train an agent that62

plays Atari 2600 video games by observing only their screen pixels, achieving even superhuman63

performance. Also they trained a computer that won the Go competition to a professional player for64

the first time [16]. More specifically to traditional computer vision tasks, reinforcement learning has65

been applied to learn spatial glimpse policies for image classification [10, 1], for captioning [20] or66

for activity recognition [21]. It has also been applied for object detection in images [2], casting a67

Markov Decision Process, as our approach does.68

The traditional solutions for object detection are based on region proposals, such as Selective Search69

[19], CPMC [3] or MCG [13] and other methods based on sliding windows such as EdgeBoxes [23].70

The extraction of such proposals was independent of the classifier that would score and select which71

regions compose the final detection. These methods are computationally expensive because rely on72

a large number of object proposals. Then the first trends based on Convolutional Neural Networks73

appeared, such as Fast R-CNN [6], that already studied how to share convolutional computation74

among locations, as they identified that the extraction of features for the hypothesized objects was the75

bottleneck for object detection.76

More recent proposals such as Faster R-CNN [15] have achieved efficient and fast object detection77

by obtaining cost-free region proposals sharing full-image convolutional features with the detection78

network. Directly predicting bounding boxes from an image is a difficult task, and for this reason,79

approaches such as Faster R-CNN rely on a number of reference boxes called anchors, that facilitate80

the task of predicting accurate bounding boxes by regressing these initial reference boxes. One key81

of our approach is the refinement of bounding box predictions through the different actions selected82

by the reinforcement learning agent. Besides Faster R-CNN or other approaches such as YoLo83

[14] or MultiBox [4] based on anchors, there are other works that are based on the refinement of84

predictions. Yoo et al. [22] propose the AttentionNet. They cast an object detection problem as an85

iterative classification problem. AttentionNet predicts a number of weak directions pointing to the86

target object so that a final accurate bounding box is obtained. The state-of-the-art in object detection87

is the Single Shot MultiBox Detector (SSD) [8], which works with a number of default boxes of88
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different aspect ratios and scales per each feature map location, and also adjusts them to a better89

match to the object shape.90

Another approach that supports this idea is the Active Object Localization method proposed by91

Caicedo and Lazebnik [2]. Their method trains an intelligent agent using deep reinforcement learning92

that is able to deform bounding boxes sequentially until they fit the target bounding box. Each action93

that the agent does to the bounding box can change its aspect ratio, scale or position. Our main94

difference to this approach is that we add a fixed hierarchical representation that forces a top-down95

search, so that each action zooms onto the predicted region of interest.96

How to benefit from super-resolution has also been studied by other works. In the paper of Lu et al.97

[9] a model is trained to determine if it is required to further divide the current observed region98

because there are still small objects on it, and in this case, each subregion is analyzed independently.99

Their approach could also be seen as hierarchical, but in this case they analyze each subregion when100

the zoom prediction is positive, whereas we just analyze the subregion selected by the reinforcement101

learning agent. On contrast to their proposal, we analyze fewer regions and then we can afford102

extracting high-quality descriptors for each of them, instead of sharing convolutional features.103

3 Hierarchical Object Detection Model104

In this work we define the object detection problem as the sequential decision process of a goal-105

oriented agent interacting with a visual environment that is our image. At each time step the agent106

should decide in which region of the image to focus its attention so that it can find objects in a few107

steps. We cast the problem as a Markov Decision Process, that provides a framework to model108

decision making when outcomes are partly uncertain.109

3.1 MDP formulation110

In order to understand the models for the object detection task that we have developed, we first define111

how the Markov Decision Process is parameterized.112

State The state is composed by the descriptor of the current region and a memory vector. The113

type of descriptor defines the two models we compare in our work: the Image-Zooms model and the114

Pool45-Crops model. These two variations are explained in detail in Section 3.3. The memory vector115

of the state captures the last 4 actions that the agent has already performed in the search for an object.116

As the agent is learning a refinement of a bounding box, a memory vector that encodes the state of117

this refinement procedure is useful to stabilize the search trajectories. We encode the past 4 actions in118

a one-shot vector. As there are 6 different actions presented in the following section, the memory119

vector has 24 dimensions. This type of memory vector was also used in [2].120

Actions There are two types of possible actions: movement actions that imply a change in the121

current observed region, and the terminal action to indicate that the object is found and that the122

search has ended. One particularity of our system is that each movement action can only transfer the123

attention top-down between regions from a predefined hierarchy. A hierarchy is built by defining five124

subregions over each observed bounding box: four quarters distributed as 2x2 over the box and a125

central overlapping region. We have explored two variations of this basic 2x2 scheme: a first one126

with non-overlapped quarters (see Figure 1), and a second one with overlapped quarters (see Figure127

2), being the size of a subregion 3/4 of its ancestor. Then, there are five movement actions, each one128

associated to one of the yellow regions. If, on the other hand, the terminal action is selected, there is129

no movement and the final region is the one marked with blue.130

Reward The reward functions used are the ones proposed by Caicedo and Lazebnik [2]. The131

reward function for the movement actions can be seen in Equation 1 and the reward function for the132

terminal action in Equation 2. Given a certain state s, a reward is given to those actions that move133

towards a region b’ with a greater Intersection Over Union (IoU) with the ground truth g than the134

region b considered at the previous step. Otherwise, the actions are penalized. For the trigger action,135

the reward is positive if the Intersection Over Union of the actual region b with the ground truth is136
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Figure 1: Image hierarchy of three levels with non-overlapped quarters

Figure 2: Image hierarchy of three levels with overlapped quarters

greater than a certain threshold τ , and negative otherwise. We consider τ = 0.5 , because it is the137

threshold for which a detection is considered positive, and η is 3, as in [2].138

Rm(s, s′) = sign(IoU(b′, g)− IoU(b, g)) (1)

Rt(s, s
′) =

{
+η if IoU(b, g) ≥ τ
−η otherwise

(2)

3.2 Q-learning139

The reward of the agent depending on the chosen action a at state s is governed by a function Q(s,a),140

that can be estimated with Q-learning. Based on Q(s,a), the agent will choose the action that is141

associated to the highest reward. Q-learning iteratively updates the action-selection policy using the142

Bellman equation 3, where s and a are the current state and action correspondingly, r is the immediate143

reward and maxaQ(s′, a′) represents the future reward. Finally γ represents the discount factor. In144

our work, we approximate the Q-function by a Deep Q-network trained with Reinforcement Learning145

[11].146

Q(s, a) = r + γmaxaQ(s′, a′) (3)

3.3 Model147

In our work we study two different approaches for visual feature extraction, which are used to train148

a Deep Q-Network. Figure 3 depicts the two variations with the common reinforcement learning149

network.150
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We compare two models to extract the visual features that define the state of our agent: the Image-151

Zooms model and the Pool45-Crops model. For the Image-Zooms model, each region is resized to152

224x224 and its visual descriptors correspond to the feature maps from Pool5 layer of VGG-16 [17].153

For the Pool45-Crops model, the image at full-resolution is forwarded into VGG-16 [17] through154

Pool5 layer. As Girshick [6], we reuse the feature maps extracted from the whole image for all the155

regions of interest (ROI) by pooling them (ROI pooling). As in SSD [8], we choose which feature156

map to use depending on the scale of the region of interest. In our case, we only work with the Pool4157

and Pool5 layers, that are the two last pooling layers from VGG-16. Once we have a certain region of158

interest from the hierarchy, we decide which feature map to use by comparing the scale of the ROI159

and the scale of the feature map. For large objects, the algorithm will select the deeper feature map,160

whereas for smaller objects a shallower feature map is more adequate.161

The two models for feature extraction result into a feature map of 7x7 which is fed to the common162

block of the architecture. The region descriptor and the memory vector are the input of the Deep163

Q-network that consists of two fully connected layers of 1024 neurons each. Each fully connected164

layer is followed by a ReLU [12] activation function and is trained with dropout [18]. Finally the165

output layer corresponds to the possible actions of the agent, six in our case.166

Figure 3: Hierarchical Object Detection Models

3.4 Training167

In this section we will explain the particularities that we chose to train the Q-network.168

Exploration-Exploitation To train the deep Q-network with reinforcement learning we use an169

ε-greedy policy, that starts with ε=1 and decreases until ε=0.1 in steps of 0.01. Then, we start with170

random actions, and at each epoch the agent takes decisions relying more on the already learnt policy.171

Actually, in order to help the agent to learn the terminal action, which in random could be difficult to172

learn, we force it each time the current region has a IoU > 0.5. With this approach we can accelerate173

the training. Notice that we always do exploration, so we do not get stuck into a local minimum.174

Learning trajectories One fact that we detected while training was that we should not impose175

which object of the image to look first. At each time step, the agent will focus on the object in the176

current region with the highest overlap with its ground-truth. This way, it is possible then that the177

target object changes during the top-down exploration.178
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Training parameters The weights for the Deep Q-network were initialized from a normal distribu-179

tion. For learning, we used Adam optimizer [7] with a learning rate of 1e-6 to avoid that the gradients180

explode. We trained each model for 50 epochs.181

Experience Replay As we have seen previously, Bellman Equation 3 learns from transitions182

formed by (s, a, r, s’), which can also be called experiences. Consecutive experiences in our algorithm183

are very correlated and this could lead to inefficient and unstable learning, a traditional problem in184

Q-learning. One solution to make the algorithm converge is collecting experiences and storing them185

in a replay memory. Random minibatches from this replay memory are used to train the network. We186

used an experience replay of 1,000 experiences and a batch size of 100.187

Discount factor To perform well in the long-run, the future rewards should also be taken into188

account and not only the most immediate ones. To do this, we use the discounted reward from189

Bellman Equation 3 with a value of γ = 0.90. We set the gamma high because we are interested in190

balancing the immediate and future rewards.191

4 Experiments192

Our experiments on object detection have used images and annotations from the PASCAL VOC193

dataset [5]. We trained our system on the trainval sets of 2007 and 2012, and tested it on the test194

set of 2007. We performed all the experiments for just one class, the aeroplane category, and only195

considering pictures with the target class category. This experiment allows us to study the behavior196

of our agent and estimate the amount of regions that must be analyzed to detect an object.197

4.1 Qualitative results198

We present some qualitative results in Figure 4 to show how our agent behaves on test images. These199

results are obtained with the Image-Zooms model with overlapped regions, as this is the one that200

yields best results, as argued in the following sections. We observed that for most images, the model201

successfully zooms towards the object and completes the task in a few steps. As seen in the second,202

third and fourth rows, with just two or three steps, the agent selects the bounding box around the203

object. The agent also performs accurately when there are small instances of objects, as seen in the204

first and last rows.205

4.2 Precision-Recall curves206

We will analyze the precision and recall curves for different trained models, considering that an object207

is correctly detected when the Intersection over Union (IoU) of its bounding box compared to the208

ground truth is over 0.5, as defined by the Pascal VOC challenge [5].209

The Precision-Recall curves are generated by ranking all regions analyzed by the agent. The sorting210

is based on the reward estimated by the sixth neuron of the Q-network, which corresponds to the211

action of considering the region as terminal.212

Upper bound and random baselines Our results firstly include baseline and upper-bound ref-213

erences for a better analysis. As a baseline we have programmed an agent that chooses random214

actions and detection scores at each time step. As an upper-bound, we have exploited the ground215

truth annotations to manually guide our agent towards the region with the greatest IoU. The result216

of these random baselines and upper-bounds for hierarchy type can be seen in Figure 5. It is also217

important to notice that the best upper-bound option does not even achieve a a recall of 0.5. This218

poor performance is because more than half of the ground truth objects do not fit with the considered219

region proposals, so they cannot be detected in our framework.220

Overlapped and non-overlapped regions The results obtained with the upper-bound and baseline221

methods provide enough information to compare the overlapped and non-overlapped schemes. The222

overlapped regions scheme is the one that provides higher precision and recall values, both for the223

upper-bound and the random models. This superiority of the overlapped case can be explained by the224

slower reduction of spatial scale with respect to the non-overlapped model: as bounding box regions225
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Figure 4: Visualizations of searches for objects

are larger due to the overlap, their division in equal-size subregions also generate larger subregions.226

This also implies that the agent will require more steps to reach a lower resolution, but this finer227

top-down exploration is shown as beneficial in our experiments as the chances of missing an object228

during the descent are also lower.229

Model comparison The Image-Zooms model and the Pool45-Crops model are compared in Figure230

6. Results clearly indicate that the Image-Zooms model performs better than the Pool45-Crops model.231

We hypothesize that this loss of performance is due to the loss of resolution resulting from the232

ROI-pooling over Pool4 or Pool5 layers. While in the Image-Zooms model the 7x7 feature maps233

of Pool5 have been computed directly from a zoom over the image, in the Pool45-Crops model the234

region crops over Pool4 or Pool5 could be smaller than 7x7. While these cases would be upsampled235

to the 7x7x512 input tensor to the deep Q-Net, the source feature maps of the region would be of236

lower resolution than their counterparts in the Image-Zoom model.237

Models at different epochs We study the training of our Image-Zooms model by plotting the238

Precision-Recall curves at different epochs in Figure 7. As expected, we observe how the performance239

of the model improves with the epochs.240

4.3 Number of regions analyzed per object241

An histogram of the amount of regions analyzed by our agent is shown in 8. We observe that the242

major part of objects are already found with a single step, which means that the object occupies the243

major part of the image. With less than 3 steps we can almost approximate all objects we can detect.244

5 Conclusions245

This paper has presented a deep reinforcement learning solution for object detection. Our solution is246

characterized by a top-down exploration of a hierarchy of regions guided by an intelligent agent.247

Our experiments indicate that objects can be detected with very few proposals from an appropriate248

hierarchy, but that working with a predefined set of regions clearly limits the recall. A possible249
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Figure 5: Baselines and upper-bounds Figure 6: Comparison of the two models

Figure 7: Image-Zooms at different epochs Figure 8: Regions analyzed per object

solution to this problem would be refining the approximate detections provided by the agent with a250

regressor, as in [15].251

Finally, our results indicate the limitations of cropping region features from the convolutional layers,252

especially when considering small objects. We suggest that, given the much smaller amount of region253

proposals considered by our reinforcement learning agent, feeding each region through the network254

is a solution that should be also considered.255
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