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to determine if a specific family of methods (e.g., trees,
linear models, neural networks) achieves greater success than
others with genomic data. ML methods have different induc-
tive biases that contribute to their capabilities in modeling
certain data distributions. While there is some intuition for
using ML methods on DNA sequences (e.g., trees work
well with discrete data; linear models capture differences
in mean values and additive relationships; kernel methods
compare pairs of sequences), there is not a clear consensus
on which ML method works best with DNA (specifically
SNP sequences). Furthermore, non-linear ML methods for
SNP sequence analysis are largely unexplored. Given the
success of ML on a wide variety of tasks and the lack
of exploration of ML on SNP data, we investigate ML
approaches for dog breed and phenotype prediction. We use
multiple classifiers and regressors to better understand which
techniques work well with SNP sequences. We find that
linear models are highly competitive for breed classification.
Additionally, we show that a Multi-Layer Pereceptron (MLP)
without activation functions (therefore an overparameterized
and regularized logistic regression) outperforms non-linear
neural networks. On the other hand, non-linear techniques
show strong performance for regression tasks. Recent work
confirms these trends [5], [10], [11].

Finally, we show how these models perform when the
number of input features (i.e., SNPs) is highly reduced.
The price of genomic sequencing is proportional to how
many DNA positions are sequenced, and genotyping array
technologies can be developed to obtain a few specific
genomic positions at a very low cost. Therefore, showing that
predicting breed and (some) phenotypes can be performed
with a very low number of SNPs could impact future designs
of genotyping arrays and decrease the cost of sequencing
dog DNA. This has a clear benefit for both commercial
and research applications. In this paper, we demonstrate that
accurate phenotype prediction is possible with only 0.5% of
the available SNPs.

II. METHOD
A. Dataset

Dogs have 38 pairs of non-sex chromosomes [12], [13]
with approximately 2.4 billion genetic positions [14]. We
analyze a subset of this genetic code in our experiments.
Specifically, we use the same genotyping array employed
by the company Embark. Our dataset — derived from [3] —
consists of 198,473 SNPs for 482 different purebred dogs of
75 breeds. In other words, each data sample is a sequence
of 198,473 input features represented as binary values.

Dog breeds can be organized into clades, which are groups
of dog breeds that are believed to have a common ancestor.
Because our dataset includes so many dog breeds, we visual-
ize the dataset with clade information to understand higher-
level relationships of the clades. Then, we can extend our
conclusions to the breeds within the clades. Figure 1 shows
the distribution of samples in our dataset based on dog clade
and illustrates the unbalanced nature of our dataset, with
some clades (and thus breeds) containing significantly more

Fig. 1: Dog clades in the dataset. Each color represents a
different clade, and the size of the colorblock represents the
number of dogs in the dataset of that clade.

samples than others. For example, the Terrier clade includes
112 samples, while the Mediterranean clade includes only
10 samples.

Figure 2 shows the first two components of a Principal
Component Analysis (PCA) [15], [16] and a t-Distributed
Stochastic Neighbor Embedding (tSNE) [17] of the SNPs
sequences in our dataset. Each data sample is color-coded
based on its clade, and some clusters are labeled with breed
information. This further shows the unbalanced nature of
the dataset in terms of breeds. For example, the York-
shire Terrier breed occurs 75 times in the dataset, while
the Alaskan Husky appears only twice. To ensure that we
evaluate breed classification methods on every dog breed, we
randomly select one data sample per breed to include in a
testing dataset. The training dataset consists of the remaining
samples. The resulting training and testing datasets contain
407 and 75 samples, respectively. Only 337 samples in our
dataset have height and weight labels (in centimeters and
kilograms, respectively), so we use these samples for the
height and weight regression tasks. In this case, there are
291 training samples and 46 testing samples. Although it
is typical to use data augmentation in machine learning to
artificially increase the size of the dataset, it is not common
to use data augmentation with SNP sequences. Instead,
we employ regularization techniques to help the machine
learning methods avoid overfitting.

Figure 2 also alludes to the complexity of phenotype
prediction based on SNPs. Some clades (and thus breeds)
are more separable than others. For example, PCA sepa-
rates Terrier, Asian Spitz, New Guinea Singing Dog, and
Wolf clades. Since these clades contain distinctive SNPs
sequences, predicting phenotypes of dogs in these clades
should be easier than predicting the phenotypes of a Standard
Schnauzer. Although a large cluster of overlapping clades
occurs in the PCA plot based on two components, analyz-
ing more components could decompse this cluster further.
Instead of analyzing each combination of components, we
use a tSNE to further separate the data. The tSNE shows a
more dispersed visualization of dog clades, enabling a fine-
grained analysis of the clusters. We see that the tSNE plot
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Fig. 2: Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (tSNE) of the SNPs sequences

in the dataset. Results are color-coded according to dog clade.

separates the Wolf clade from the other clades, similar to
the PCA plot. It also shows distinctive clusters, such as the
clusters with German Shepherd Dog and Rottweiler. Thus,
these breeds might be easier to classify and predict height
and weight for accurately. On the other hand, Xoloitzcuintli
dogs might be more difficult to identify because they have
so few samples in the dataset without a distinct cluster.

B. Breed Classifiers and Phenotype Regressors

We explore several multi-class classification methods to
identify 75 different dog breeds. We use logistic regression
[18]; K-Nearest Neighbors Classifier (KNN) [19], [20];
linear and non-linear Support Vector Machines (SVMs)
[21]; Decision Tree Classifier [22], [23]; Random Forest
Classifier [24]; AdaBoost [23], [25], [26]; Multi-Layer Per-
cpetrons [23], [27]; Gaussian Naive Bayes; and Gaussian
Process Classifier [28]. These methods fall into two major
categories: linear and non-linear methods.

To evaluate linear versus non-linear methods more explic-
itly, we design a Multi-Layer Perceptron (MLP) network that
operates in both linear and non-linear modes, depending on
whether or not Rectified Linear Unit (ReLU) [29] (i.e., a
non-linear activation function) is utilized. We also explore the
effects of regularization — in the form of batch normalization
and dropout — on this task. Through all these experiments,
the base architecture of the MLP remains the same: two
hidden layers of 1,500 nodes. Only the input layer’s size
adapts to the length of the input sequences (i.e., from 20
SNPs to 198,473 SNPs). We refer to the base architecture
without batch normalization, dropout, or activation functions
as MLPI (Standard). Its over-parameterized architecture
provides further regularization and increases the expressive
capacity of the network to handle longer input sequences.

We utilize multiple univariate regressors to predict height
and weight of the dogs. Again, we explore both linear
and non-linear techniques. Specifically, we use Elastic Net
(linear regression with L1/LASSO and L2/Ridge regulariza-
tion); XGBoost; Support Vector Regressors; and K-Nearest
Neighbors Regressor. While linear methods could suffice
to separate breeds, the relationship between genome and
height/weight could be non-linear and require non-linear
techniques for accurate phenotype prediction. We conduct
a grid search to determine hyperparameters (e.g., learning
rate, kernel, regularization) used for each method.

III. RESULTS

In total, we have 198,473 SNPs available per
sequence to analyze. However, we wish to investigate
how few SNPs are necessary to correctly predict dog
phenotypes. Thus, we conduct all our experiments for
different fractions of the whole genomic sequence.
Let z represent a percent of SNPs, where z €
{0.01%,0.02%, ...,0.1%, 0.5%, 1%, 5%, 10%, 50%, 100%}.
At a minimum, we analyze only 20 SNPs (when z = 0.01%),
and at a maximum we analyze all 198,473 SNPs available
(when z = 100%). For every x, we conduct 20 experiments
with each of the classification and regression methods. Each
time a new experiment commences, a new subset of the
full SNPs sequences is randomly sampled. To obtain the
results shown in Figures [3| and [] we average the results
of the 20 experiments per method and per percentage and
calculate the standard deviation of the experimental results.
The small standard deviation bars in our figures indicate
that there is not much variation in the randomly selected
SNPs. A proper selection of SNPs (i.e., not random) could
lead to better accuracies, but we leave this as future work.
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Fig. 3: Breed Classification Results. Results plotted in green indicate tree-based and boosting methods;
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Multi-Layer Perceptron (MLP) methods; and blue indicate Support Vector Machine (SVM) methods. All other methods are

plotted in different colors.
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Fig. 4: Height and Weight Regression Results. Results for height and weight predictions of a method are shown in the same

color.

Figure [3] indicates that many methods achieve success on
the breed classification task, and balanced accuracy increases
as more SNPs are analyzed. Logistic regression achieves
the best performance overall (92% balanced accuracy) when
all SNPs are analyzed. The top five methods are all linear:
logistic regression, MLP2 (MLP1 with batch normalization),
linear SVM, MLP1, and MLP3 (MLP1 with dropout and
batch normalization). The non-linear MLP4 is the only
MLP network that does not achieve high success on this
task. Instead, it performs comparably to other non-linear
methods, such as the non-linear SVM and the Decision Tree
Classifier, even with the regularization features (i.e., batch
normalization and dropout) that aid the same architecture in
achieving top-5 success. These results are consistent with
other work that show linear techniques outperform or match
performance of more complex non-linear methods [5], [10],
[11]. We believe that linear models outperform non-linear
ones because the relationship between dog SNP sequences

and breeds, given enough genomic positions, is additive. The
linear methods correctly identify dog breeds from genomic
sequences, even when only a few SNPs are considered.
For example, many methods achieve 50% balanced accuracy
after analyzing only 0.5% of SNPs (i.e., 992 SNPs). Even
when only 0.01% of SNPs (i.e., 20 SNPs) are analyzed, linear
SVM, MLP1, and logistic regression achieve 31%, 31%, and
28% balanced accuracy, respectively.

In general, balanced accuracy increases as the number
of SNPs increases. However, performance of the MLPs de-
creases slightly when substantially more SNPs are analyzed
(e.g., 0.5%+ SNPs for MLP3; 50%+ for MLP2). The MLP
architecture has a large number of parameters when the
inputs are very long sequences and fails to find accurate so-
lutions via gradient descent. Increasing the size of the dataset
and using stronger regularization could improve performance
for networks for longer sequences. An MLP architecture
is highly customizable in terms of its size, regularization
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techniques, and hyperparameters. Many experiments may be
required before a successful MLP architecture and training
parameters are found. By comparison, logistic regression
requires less design during startup. However, it can suffer
from long training times, especially when input sequence
lengths are extremely long. Despite the greater challenges
in designing a MLP, MLPs are fully differentiable. Thus,
they can be combined with other neural networks to create
a system with end-to-end backpropogation for other ML
tasks. Each method has trade-offs to consider when designing
systems for genomic data processing.

Figure [] shows that most regression methods achieve
similar performance for both height and weight prediction
and that all methods’ performance increases as more SNPs
are analyzed. With only 0.5% of SNPs, KNN achieves an R?
value of approximately 0.8 and maintains this trend when
more SNPs are analyzed. However, for fewer percentages
of SNPs, these methods cannot predict phenotypes as well
as the classification methods predict breeds. Although the
linear methods perform the best for the breed classification
task, both non-linear and linear methods achieve comparable
success on these regression tasks. In fact, non-linear methods
surpass the linear Elastic Net method for most percentages
of SNPs. Overall, simple methods (logistic regression and
KNN) seem to outperform many of the popular and state-of-
the-art techniques (e.g., neural networks and boosting trees).

Results indicate that phenotype predication can be ac-
complished with relatively few SNPs for dogs. Considering
the full length of dog chromosome data is approximately
~2.4 billion positions, it is impressive that dog breed can
be predicted with 50% balanced accuracy with only 40
randomly selected SNPs. Because dogs have been selectively
bred, their genome sequences have been pushed apart. For
other organisms that have not been selectively bred, we
expect that more SNPs are needed to determine salient
information.

IV. CONCLUSION

We predict dog phenotypes from their genotypes and
explore how few SNPs are required to predict a dog’s breed,
height, and weight. Because we analyze dog breeds that
result from selective breeding, we observe that phenotype
prediction can be achieved with as few as 0.5% of SNPs
with high accuracy. Even just 0.02% of SNPs achieves
50% balanced accuracy for breed classification. We also
observe that linear classification methods outperform non-
linear methods, while non-linear methods often match linear
methods for regression tasks. We will extend our future
work to predict more phenotypes, both of dogs and of other
organisms.
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