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Abstract—In this paper, we propose the use of the Binary
Partition Tree (BPT) as a region-based and multi-scale image
representation to process multidimensional SAR data, with spe-
cial emphasis on polarimetric SAR data. We also show that
this approach could be extended to other types of remote
sensing imaging technologies, such as hyperspatial imagery. The
Binary Partition Tree contains a lot of information about the
image structure at different detail levels. At the same time, this
structure represents a convenient vehicle to exploit both the
statistical properties, as well as the geometric properties of the
multidimensional SAR data given by the covariance matrix. The
BPT construction process and its exploitation for PolSAR and
temporal data information estimation is analyzed in this work. In
particular, this work focuses on the speckle noise filtering problem
and the temporal characterization of the image dynamics. Results
with real data are presented to illustrate the capabilities of
the BPT processing approach, specially to maintain the spatial
resolution and the small details of the image.

Keywords—SAR, PolSAR, speckle filtering, Binary Partition
Tree.

I. INTRODUCTION

Polarimetric SAR (PolSAR) and multitemporal SAR data
have demonstrated their significance for the analysis and
the characterization of the Earth surface, as well as for the
quantitative retrieval of biophysical and geophysical parame-
ters. A set of complex radar scattered echoes are coherently
processed in order to achieve high spatial resolution. As a
consequence of this coherent processing and the fact that
each resolution cell is a combination of a certain number
of elementary echoes, the received signal is affected by the
speckle term. Despite speckle is determined by the scattering
process itself, its complexity makes it necessary to consider it
from a stochastic point of view and then, to assume the speckle
term as a noise component. The speckle is a handicap in SAR
imagery processing and consequently some speckle filtering
process is needed. Under the assumption that multidimensional
SAR data are distributed according to the zero-mean, complex
Gaussian distribution, the objective of this filtering process is

to obtain, i.e., to estimate the covariance matrix characterizing
the multidimensional data.

Multidimensional SAR data are non stationary as they
reflect the complexity of the environment. Assuming that all
the stochastic processes involved in the filtering process are
ergodic, multidimensional SAR data filters must adapt to this
non stationarity [1], as well as to the geometry of the covari-
ance matrix. Most recent state-of-the-art filtering techniques
[2], [3] are based on this approach, tending to define a different
homogeneity neighbourhood for each image pixel. In this
paper, we propose to tackle this issue by relying on an image
region-based multi-scale representation by means of a Binary
Partition Tree (BPT) [4] and to perform the image processing,
in terms of filtering or segmentation tasks, directly by pruning
the BPT. Since the BPT operates in the space defined by
the covariance matrix, this processing approach may take into
account the matrix geometry by defining a proper metric. In
this work, we focus into two central applications: PolSAR data
speckle filtering and the temporal characterization of temporal
series of PolSAR data. Finally, we also demonstrate that this
approach can be also applied in the case of hyperspectral data.

II. STATISTICAL CHARACTERIZATION OF
MULTIDIMENSIONAL SAR DATA

A multidimensional SAR system records a set of m SAR
images, represented by the target vector

k = [S1, S2, . . . , Sm]T (1)

where Sk, for k = 1, 2, . . . ,m, represents each one of the
complex SAR images and T denotes the vector transposition.
The gain which can be achieved by a multidimensional SAR
system, respect to a one-dimensional one, results from the fact
that the same scattering mechanism is sampled m times under
some type of diversity. One of the best examples of multi-
dimensional SAR data corresponds to PolSAR data, where
the diversity is achieved by changing the polarization of the
transmitted field and the receiving antenna. Another example
of multidimensional SAR data is the acquisition of temporal
series of data over the same ares of observation. As it may be
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observed, both sources of diversity may be combined together.
Most of the PolSAR systems alternate between horizontal
and vertical polarization states. Under the hypothesis that the
different SAR images are able to be described by means of
zero-mean, complex, Gaussian distributions, the target vector
k has the following distribution

pk(k) =
1

πm|C|
exp(−kHC−1k) (2)

where H refers to the transpose complex conjugation and C is
the positive definite, Hermitian covariance matrix

C = E{kkH}

=


E{S1S

∗
1} E{S1S

∗
2} · · · E{S1S

∗
m}

E{S2S
∗
1} E{S2S

∗
2} · · · E{S2S

∗
m}

...
...

. . .
...

E{SmS
∗
1} E{SmS

∗
2} · · · E{SmS

∗
m}

 . (3)

Since E{k} = 0, the information of interest about the area
illuminated by the radar is contained in the matrix C. Hence,
this matrix needs to be estimated from the original data (1). As
observed in (3), the information is not only contained in the
SAR images intensities, but also on the correlation structure
given by the off-diagonal complex elements of (3).

The process to estimate C is referred to as the multidimen-
sional speckle reduction process. The estimation is performed
from the so-called one-look, sample covariance matrix Z.
The most standard approach to estimate C is the multilook
technique

Zn =
1

n

n∑
i=1

Zi =
1

n

n∑
i=1

kikH
i (4)

where Zi and ki correspond, respectively, to the single-look
sample covariance matrix and the target vector of the i-th pixel,
out of n, employed to estimate C from the total number of
samples n. The main drawback of (4) is that C is estimated at
the expense of spatial resolution and spatial details. In order to
overcome this problem, other approaches have been presented
in the literature to estimate C. Considering (4), and under the
hypothesis that n > m, the matrix Zn is described by means
of a Wishart distribution W(C, n) [5][6]

pZ(Z) =
n3n|Z|n−3

|C|nπ3
∏3

i=1 Γ(n− i+ 1)
etr(−nC−1Z) (5)

where etr(X) is the exponential of the matrix trace and n ≥ 3.

III. BINARY PARTITION TREE

The Binary Partition Tree (BPT) was introduced in [4]
as a region-based and multi-scale image representation. It
contains information of the image structure at different detail
levels within a tree. In this hierarchical structure, each node
represents a connected region of the image. The tree leaves
represent single pixels and all the other nodes represent the
region composed by merging its two child nodes. Finally, the
root node represents the whole image. Thus, the tree edges
describe the inclusion relationship between nodes. Between
the leafs and the root there are a wide number of nodes
representing image regions with different detail level. This
multi-scale representation contains a lot of useful information

about the image structure that can be exploited for different
applications.

In order to be able to exploit the information provided
by the Wishart distribution in (5), one must account for
the limitation that n ≥ 3. When the covariance matrix is
constructed in a pixel basis, as the hermitian product kikH

i ,
the resulting matrix is of rank one which prevents the use of
the Wishart distributuon. In order to solve it, the covariance
matrices at pixel level need to be regularized to assure rank
three matrices. This regularization may be obtained by means
of a 3/times3 multilook filter. In order to reduce the loss of
spatial resolution, a bilateral filter may be also considered [7].

To construct the BPT representation from an image, an
iterative algorithm is employed in a bottom-up approach [4].
In the initial state, every pixel of the image becomes a one-
pixel region. At every step, the two most similar regions are
merged and this process is repeated until the root of the tree,
containing the whole image, is generated. In order to apply
this algorithm, two important concepts need to be determined
[8]:

1) A region model: Traditionally, under the complex
Gaussian model, the estimated covariance matrix
Z is employed to measure the region polarimetric
information, see (4). Additionally, since during the
BPT construction process regions of different sizes
coexist, the region size information should be taken
into account and will be included in the region model.

2) A similarity measure on the region model space
to compare two neighboring regions d(X,Y ). Two
types of measures will be analyzed in this work.
On the one hand measures based on the statistical
distribution and on the other hand measures based on
the covariance matrix subspace geometry.
The revised Wishart measure [9] dw is based on
a statistical test assuming Wishart distributions and
that one region statistics are known. However, since
this measure is not symmetric, a modified symmetric
version will be applied

dsw(X,Y ) =
(
tr(Z−1

X ZY ) + tr(Z−1
Y ZX)

)
·

·(nx + ny) (6)

where tr(.) represents the matrix trace, ZX and ZY

represent the estimated covariance matrices for re-
gions X and Y , respectively, and nx and ny represent
their number of pixels.
For comparison purposes a new version of the sym-
metric revised Wishart dissimilarity will be used, only
taking into account the diagonal elements of the Z
matrix and assuming all off-diagonal values equal to
zero

ddw(X,Y ) =

(
3∑

i=1

(
ZX

2
ii + ZY

2
ii

ZXiiZY ii

))
· (nx + ny)

(7)
where ZXij and ZY ij represent the (i,j)-th element
of the estimated covariance matrices ZX and ZY ,
respectively. It is interesting to note that since this
distance only considers the information provided only
by the diagonal elements of the covariance matrix,
that is, by construction it assumes diagonal matrices
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of rank three, an initial regularization process is not
necessary.
Another family of dissimilarities that is analyzed are
based on the positive definite matrix cone geometry
[10]

dsg(X,Y ) = ‖log
(
Z

−1/2
X ZY Z

−1/2
X

)
‖F +

+ln

(
2nxny
nx + ny

)
(8)

where ‖.‖F represents the Frobenius matrix norm,
log(.) represents the matrix logarithm and ln(.) rep-
resents the natural logarithm.
As for the Wishart dissimilarities, a new version is
defined employing only the information contained in
the diagonal elements of the covariance matrix

ddg(X,Y ) =

√√√√ 3∑
i=1

ln2
(
ZXii

ZY ii

)
+ ln

(
2nxny
nx + ny

)
(9)

Again in this case, no initial regularization is needed as the
the distance, by constructions, assumes ranks three matrices.

IV. BPT PRUNING

The BPT is a hierarchical representation of the image
structure at different details levels. Thus, it depends only
on the image and consequently it is application independent.
One possible approach to develop BPT-based applications is
to select a set of meaningful regions within the tree. As
mentioned in [4], an image segmentation could be obtained
by tree pruning.

The BPT punning process policy depends of the final appli-
cation. For the PolSAR speckle noise filtering application, the
main objective is to obtain the biggest possible homogeneous
regions of the image. The BPT and its multi-scale nature can
be exploited for this application. Then, an homogeneity-based
tree pruning can be performed. A region homogeneity measure
φ has to be defined to be able to define a pruning process. In
[11], the following criterion based on the Frobenius matrix
norm is proposed

φR(X) =
1

nx

nx∑
i=1

‖Xi − ZX‖2F
‖ZX‖2F

(10)

where Xi is the estimated covariance matrix for the i-th pixel
within region X .

Note that this measure depends on all the pixel values
within the X region and not only on its model, as the
dissimilarity measure. Additionally, φR is independent of the
region size, since it is an average over all the region pixels.
This is an important property of the homogeneity measure in
order to define the region homogeneity independently of its
size. The measure (10) can be seen as the mean information
loss when modeling all the pixels within a region with its
estimated covariance matrix. Finally, to determine if a region is
homogeneous or not, a maximum value δp for the homogeneity
measure has to be defined, called pruning threshold. Then, the
nodes of the tree are scanned from the top to the leaves and the
punning is done at the first node, that represents the region Xi,

having φR(Xi) < δp. Consequently, this punning selects the
biggest homogeneous regions from the tree. In this paper δp
will be expressed in dB scale, corresponding to 10 · log10(φR).

V. POLSAR SPECKLE FILTERING RESULTS

The described homogeneity based BPT pruning for Pol-
SAR speckle noise filtering has been tested with a real PolSAR
dataset. Fig. 1 shows the image corresponding to PolSAR
data that was acquired in a measurement campaign conducted
by the DLR in 1999 with its experimental SAR system, E-
SAR, over the Oberpfaffenhofen test-site, southern Germany.
Data were collected at L-band, with a spatial resolution of
1.5m× 1.5m in fully linear polarimetric mode.

Fig. 1: Pauli RGB (R: Double bounce, G: Volume, B: Single
bounce) coding of the original E-SAR image.

On Fig. 5, different pruning results are shown over the same
BPT constructed with the dsw dissimilarity (6). Increasing the
pruning threshold δp results into bigger regions of the pruned
tree, as less homogeneous regions are accepted.

It is worth to notice that in the same image there are regions
with very different sizes. Large homogeneous areas, as the
agricultural fields in the left part of the image, whereas point
scatterers or details from the urban area in the center of the
image are preserved as very small regions.

A 512x512 pixels area of the original data is selected to
see a more detailed view of the results. The 7x7 multilook
is shown in Fig. 3b for comparison purposes. In Figs. 3c-
3f different results are shown corresponding to the same
tree pruning process over different BPTs constructed with
the different similarity measures proposed in the previous
section. If compared with the 7x7 multilook, the BPT based
filtering preserves much better original image spatial resolution
and spatial details. Comparing the results obtained with the
different similarity measures presented in the previous section
one may observe that there are very subtle differences between
the results. This similarity of results allows to demonstrate
that the BPT representation tool is very robust respect to
the similarity measure employed for the BPT construction
process. In addition, is is important to notice that the colours
of the regions, which depends on the physical scattering
process, does not change respect to the original image. This
maintenance of the physical information indicates that a part
of the robustness, the BPT representation approach does not
degrades the physical information content of the data.
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(a) δp = −2dB

(b) δp = −1dB

(c) δp = 0dB

Fig. 2: Pauli RGB (R: Double bounce, G: Volume, B: Single
bounce) processed images.

VI. TEMPORAL INFORMATION ESTIMATION

In the previous sections, the BPT has been employed
to represent PolSAR data for a single temporal acquisition.
Nevertheless, a SAR system can also image the same area of
observation at different times, being able to provide a temporal
series of data. Every single acquisition may contain m complex
SAR images, see (1), so each of the acquisitions can also
present polarimetric diversity. Consequently, if we consider
PolSAR data, the incorporation of temporal diversity adds an
additional dimension to every pixel consisting on time.

In the previous scenario of increased dimensionality, the
BPT can be also considered as a tool to represent the data in
a hierarchical structure. Nevertheless, the regions will be no

(a) Original (b) 7x7 multilook

(c) ddw, δp = −1dB (d) dsw, δp = −1dB

(e) ddg , δp = −1dB (f) dsg , δp = −1dB

Fig. 3: Detail Pauli RGB (R: Double bounce, G: Volume,
B: Single bounce) original and BPT processed images with
δp = −1dB over different trees constructed employing various
similarity criteria.

longer two dimensional spatial regions, but three dimensional
space-time regions. Consequently, it is necessary to adapt the
BPT structure to include the temporal dimension information
by adapting: the region model, the similarity measure and the
homogeneity criteria. Regarding the region model, there exit
two options to include temporal information.

A first option to include temporal information is to maintain
the regions models as the 3x3 estimated covariance matrix
Z [12].Thus, the temporal dimension represents an additional
data dimension. Hence, the BPT contains connected regions
of the data in the space-time domain having similar estimated
covariance matrix Z. A second approach that may be con-
sidered is to consider the time information within the region
model. This different point of view allows to assume the
variation of the polarimetric information, i.e., the temporal
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signature of the target, as an intrinsic characteristic or property
of the target itself. In order to include the time information
in the characterization of the target results in the augmented
covariance matrix ZN

ZN =


Z11 Ω12 · · · Ω1N

ΩH
12 Z22 · · · Ω2N

...
...

. . .
...

ΩH
1N ΩH

2N · · · ZNN

 (11)

where N represents the number of temporal acquisitions, Zii

is a 3 by 3 covariance matrix representing the polarimetric
information of the i-th acquisition and Ωij is a 3 by 3
complex matrix representing the interferometric information
among the acquisitions i and j. This approach generates a tree
containing spatial connected regions of the data set and will
produce region contours constant along time. In conclusion, by
assuming this extended model a node will represent a group
of pixels presenting similar temporal evolution.

In order to adapt the different distances to consider the
region model introduced in (11), we propose to consider
only the information provided by the polarimetric covariance
matrices Zii. We do not consider the information provided
by the off-diagonal matrices Zij as this matrices contain
interferometric information that may produce irregular regions
not adapted tho the signal spatial morphology. In the case of
the geodesic distance proposed in (8), the extension is assumed
as

dg(X,Y ) =
N∑
i=1

dsg(ZXii
,ZYii

). (12)

Finally, the homogeneity criteria presented in (10) can be
also consider temporal information by assuming the previous
extension of the similarity criteria, i.e.,

φM (X) =
1

nx

nx∑
i=1

∑N
j=1 ‖Zi

jj − ZXjj
‖2F∑N

j=1 ‖ZXjj
‖2F

< δp. (13)

To demonstrate the validity of this extension, a RADARSAT-2
Fine Quad-Pol (FQ13 ascending pass) dataset over Flevoland,
the Netherlands is considered. The scene is composed by an
area of agricultural fields with some sea surface and urban
areas. The dataset contains 8 images from April 4th, 2009 to
September 29th, 2009 with an acquisition every 24 days, see
Fig. 4.

The extension of the BPT into the temporal dimension has
been employed to process the previous dataset, see Fig. 4, as
it can be observed in Fig.

To simplify the representation only the results over the
second acquisitions are shown. As one may observe, the
extension of the BPT still maintains the properties indicated
in the previous section as the spatial resolution and the spatial
details, as well as the physical information, represented by the
colour, are preserved.

VII. PROCESSING HYPERSPECTRAL IMAGERY USING
BPT

As presented, BPT representation possesses some inter-
esting features to deal with PolSAR times series images.
Nevertheless, it must be remarked that BPT is not a specific

Fig. 4: Full dataset with 8 temporal acquisitions.

(a) Original (b) Extended BPT, φM

Fig. 5: Pauli representation for the second acquisition pro-
cessed with the BPT with extended model. Results are shown
for δp = −3dB.

tool for this type of data. Note that BPT can be built and
employed to process another remote sensing data coming from
a different signal nature, as for instance hyperspectral imagery
(HSI).

A hyperspectral image is typically a compilation of a few
hundred spectral images captured at different wavelengths. For
this data, BPT representation can also be computed in order
to define processing strategies dealing with many applications
such as filtering, segmentation [13], classification [14], and
object detection [15]. As indicated, the BPT construction is
mainly based on the region merging algorithm definition.
Concerning HSI data, the definition of a region model and
a merging criterion has been previously studied in [14].
This work proposes as region model the set of normalized
histograms of the pixels belonging to each region for each
spectral band [16]. Concerning the similarity measure, the
principal coordinates of each region are extracted from local
dimensional reduction technique MDS and evaluated by using
the classical Wilk’s Statistical Test. Once BPT is constructed,
this representation defines a search space which can be used for
instance to construct a robust object identification scheme. In
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it, the spatial and spectral information are integrated in order to
analyze hyperspectral images with a region-based perspective.
In the context of object detection, this representation is a very
powerful tool, since spatial and spectral descriptors can be
computed for each region. Therefore, a likelihood distance
can be evaluated in other to measure if a region correspond
to an instantiation of the object of interest. The experimental
results shown in Fig.6 demonstrate the good performances of
this BPT-based approach. In this example, the goal is to detect
the buildings on HYDICE hyperspectral data containing 167
spectral bands and a spatial resolution of 3 m.

(a) HSI Color composition (b) Building detection result

Fig. 6: Building detection example using BPT-based detection.

VIII. CONCLUSIONS

As it has been demonstrated in this work, Binary Partition
Trees (BPTs) are a powerful multiscale representation tool for
multitemporal polarimetric SAR (PolSAR) data. This work
has considered the application of BPTs for PolSAR data
speckle noise filtering, as well as for the estimation of tem-
poral information for multitemporal acquisitions. As shown,
BPTs allow an easy inclusion of the concept of distance to
differentiate different regions of the data. Among the different
distances comparing different homogeneous areas represented
by covariance matrices, the geodesic distance has shown the
best performance. Nevertheless, the small differences obtained
with other distances support the idea that BPTs are robust.
Finally, BPTs have been also applied to hyperspectral imagery
supporting their versatility.
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