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ABSTRACT

This paper deals with Polarimetric Synthetic Aperture
Radar image time series exploitation. A Binary
Partition Tree (BPT) is proposed to process this
data. The BPT is a region-based and multi-scale data
representation that contains useful information about the
data structure at different detail levels. Two different
alternatives are proposed for modeling the target behavior
in the temporal dimension leading to distinct BPT
representations. Both approaches are analyzed and
discussed and some examples of possible BPT-based
applications are presented. These sample applications
are employed to process a real RADARSAT-2 time series
dataset to exemplify its capabilities.
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1. INTRODUCTION

During the past years some space-borne Polarimetric
Synthetic Aperture Radar (PolSAR) missions have
become operative, making possible the collection of
image time series datasets. These datasets contain some
acquisitions of the same scene at different time instants,
making possible not only a better characterization about
the scene, but also about its temporal evolution.

However, the analysis and interpretation of SAR images
is difficult due to the presence of speckle. The speckle
is produced by the coherent processing of the SAR
image focusing, conforming a combination of all the
individual targets within a resolution cell, resulting in a
grainy appearance over distributed targets that is refered
to as speckle noise. Note that the speckle is a true
electromagnetic measure but, due to its complexity, it
is considered as noise and, consequently, it must be
characterized statistically.

To deal with PolSAR image interpretation we propose
to employ the Binary Partition Tree (BPT) [8] as a
data abstraction. This structure will be defined in

Section 2, whereas on Section 3 it will be discussed how
it may be extended to deal with time series datasets.
Section 5 will present some results with real data and
Section 6 will describe some applications to analyze the
temporal information. Finally, some conclusions about
the proposed technique are discussed in Section 7.

2. BINARY PARTITION TREE

The Binary Partition Tree (BPT) was introduced in [8]
in the context of image processing as a region-based
and multi-scale image representation. It is a hierarchical
representation conforming a binary tree where each
node represents a connected region of the image that is
composed by the merging of its two child nodes. As a
consequence, the leaves of the tree may be considered as
the individual pixels of the image whereas the root node
of the tree represents the whole image. Between them,
there are a wide number of nodes represent regions of
the image at different detail levels. This representation
contains useful information about the scene structure
at different scales that may be useful for a range of
applications.

Data processing based on the BPT representation may
be decomposed into two basic steps: BPT construction
and BPT exploitation, as presented on Fig. 1. BPT
construction is the generation of the tree structure
from the original data. Since it only exploits internal
relationships within the data, it may be seen as
application independent. A representation of the BPT
construction is shown on Fig. 2. On the other hand, when
the BPT has been constructed, it has to be exploited for
a particular application. A tree pruning is proposed in
[8] as the extraction of the useful or interesting regions
from within the tree. As this depends on the particular
application, this step is application dependent.

Recently, the BPT has been extended to process PolSAR
images [1] and hyperspectral images [9][5]. For PolSAR
data, it has demonstrated to be a useful data abstraction
for speckle filtering and segmentation, being able to
extract homogeneous regions of the image of very
different sizes while also preserving the spatial resolution



Figure 1: BPT-based processing scheme.

Figure 2: BPT construction example with 4 initial
regions.

and small details [4]. In this paper the extension of
this BPT structure to process temporal series of PolSAR
images is addressed, presenting a comparison of two
different approaches depending on target characterization
on the temporal domain.

3. TIME SERIES BPT

In order to extend the BPT representation to the temporal
dimension, two different approaches are presented, based
on the temporal characterization of the target that is
assumed:

• On the one hand, it may be assumed that a target
is completely characterized by the polarimetric
response and, consequently, a change in terms
of its polarimetric response among the temporal
dimension may be assumed as a target change.
On this approach, the temporal dimension is just
another additional dimension of the data, leading
to a three-dimensional Space-Time BPT (ST BPT)
representation.

• On the other hand, the target response may be
supposed to follow a particular temporal evolution
among the temporal dimension. Therefore a target is
characterized by the complete polarimetric temporal
evolution among all the acquisitions. On this
approach, the temporal dimension is employed as
an additional feature of the target characterization,
resulting in a tree representing spatial regions with
similar polarimetric temporal evolution. In the
following, this representation is referred to as
Temporal Evolution BPT (TE BPT).

As proposed on [8], the BPT may be constructed by an
iterative algorithm in a bottom-up approach. Starting

from the original pixels, at each iteration the two most
similar adjacent regions are merged until the root of the
tree is generated. In order to apply this algorithm, the
following elements have to be defined in order to be able
to construct the BPT from the original data.

3.1. Region model

Each node of the BPT is populated with a region model
that represents all the pixels of the region it embodies. It
should be representative enough for all the applications
on that the BPT is intended to be used. For the ST BPT,
the same region model as for a PolSAR image BPT may
be employed, as proposed on [2], corresponding to the
PolSAR covariance matrix

Z = 〈kkH〉n =
1

n
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kikH
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where ki represents the scattering vector of the i-th pixel,
n represents the number of pixels of the region and H

represents the complex hermitian transpose.

For the TE BPT, the temporal dimension should be
included within the region model, as this is part of the
target characterization. Consequently, an extended region
model Ze is employed
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where N represents the number of acquisitions of the
dataset, Zii is a 3 by 3 covariance matrix representing
the polarimetric information of the i-th acquisition, as
expressed in (1), and Ωij is a 3 by 3 complex matrix
representing the correlation between the acquisitions i
and j.

3.2. Data connectivity

As mentioned before, the BPT representation contains
connected regions of the data at different scales. A
data connectivity has to be defined for both approaches,
since they are representing regions on different domains.
For the ST BPT, the 10 connectivity is employed in
the space-time domain, as represented on Fig. 3. Each
pixel is connected with the 8 neighbors on the same
acquisition and with the pixels on the same position from
the acquisitions just before and after.

On the TE evolution BPT, since it is a spatial data
representation, the classical 8 connectivity may be
employed, as shown on Fig. 4.



Figure 3: Space-Time BPT pixel connectivity.

Figure 4: Temporal Evolution BPT pixel connectivity.

3.3. Similarity measure

The proposed BPT construction algorithm is based on the
iterative merging of the most similar adjacent regions.
Therefore, a similarity measure between regions has to
be defined. This measure should be defined on the region
model space, involving two different measures for the
proposed representations. However, a generic extension
of the similarity measure is proposed to take into account
the temporal evolution of the extended model presented
in (2).

Different similarity measures where proposed and
analyzed for a single PolSAR image BPT construction in
[3], where the geodesic similarity measure dsg , based on
the positive definite matrix cone geometry [6], resulted
into the best results
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∥∥∥log (Z−1/2
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where ZX and ZY represent the estimated covariance
matrices for regions X and Y , respectively, nx and
ny represent their number of pixels, ‖.‖F represents
the Frobenius matrix norm, log(.) represents the matrix
logarithm and ln(.) represents the natural logarithm.

The geodesic similarity measure (3) is employed for the
ST BPT construction process, whereas for the TE BPT
an extension of this measure is proposed to take into
account the complete polarimetric temporal evolution.
This extended deg is based on comparing all the pairs of
Zii matrices for both regions based on the dsg measure
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where ZXii represents the Zii component of the X
region, as shown on (2). The same idea may also be
applied to extend other similarity measures.

Note that both similarity measures exploit all the
polarimetric information under the Gaussian hypothesis.

4. BPT PRUNING

As mentioned in Section 2, the BPT exploitation may
be performed by a tree pruning process. This process
looks for the useful or interesting nodes for a particular
application within the tree. For speckle filtering and
segmentation [4] it may be useful to look for the
largest homogeneous regions on the scene. This process
involves, then, the definition of a homogeneity measure
φ for both BPTs. The pruning criterion is defined by
imposing a threshold δp over this measure.

For the ST BPT the relative error homogeneity measure
may be employed, as for the case of a single PolSAR
image BPT pruning, since the same region model is used

φ(X) =
1

nx
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‖Zi − ZX‖2F
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< δp (5)

where Zi is the estimated covariance matrix for the i-th
pixel within region X , having nx pixels, and δp is the
pruning factor, usually expressed in dB.

For the TE BPT an extension of this measure to the whole
temporal evolution may be applied. Accordingly, the
extended homogeneity measure φe may be defined as

φe(X) =
1
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where Zi
jj is the Zjj covariance matrix for the i-th pixel

within region X and ZXjj
is the Zjj covariance matrix

of the region model Ze for the X region.

The homogeneity measures defined in (5) and (6) may
be seen as the relative Mean Squared Error (MSE) that is
committed when representing all the pixels of a region by
its region model. Consequently, all the pruned regions of
the BPT will be the largest regions having a relative MSE
below the pruning threshold δp.

5. RESULTS

The proposed BPT representations have been employed
to process a real RADARSAT-2 dataset consisting of
8 Full-Pol images acquired at FQ13 ascending mode
from Flevoland, The Netherlands. This dataset was
acquired during the ESA AgriSAR 2009 campaign,
devoted to analyze the agricultural fields with PolSAR.
The acquisition dates range from April 4th, 2009 to
September 29th, 2009 with an acquisition every 24 days.
From the whole data a cut of 4000 by 2000 pixels have
been selected and coregistered, as shown on Fig. 5.

Results after processing the dataset with the proposed
BPT structures are shown on Fig. 6. Due to the
difficulties to represent the whole dataset, only the results
over the first acquisition are shown. Note, however, that



Figure 5: Flevoland dataset with 8 acquisitions in Pauli
representation.

(a) ST BPT, φ (b) TE BPT, φe

Figure 6: Pauli representation for the first acquisition
after processing the full dataset with the Space-Time BPT
and the Temporal Evolution BPT employing δp = −3dB.

the entire dataset has been processed, employing the time
series representations presented on Section 3.

Comparing Figs. 6a and 6b, similar results are observed,
but, if results are examined closely, some differences
in terms of the region contours appear, as it may be
seen on Fig. 7, where a detailed are is shown over the
second acquisition. More contours appear within the
agricultural fields in Fig. 7b and the spatial contours of
the fields are not as clearly defined as in Fig. 7c. Note,
in fact, that both results are not fully comparable since
the two different BPT representations contain regions that
are characterized in a different manner, as described in
Section 3. The additional contours within fields obtained
by the ST BPT are probably caused due to temporal
contours, since some parts of the fields are connected
with regions in acquisitions before or after. This effect
may not be observed in TE BPT since it contains spatial
(two-dimensional) regions. On the other hand, the spatial
contours are more clearly defined in the TE BPT since
an increase on contrast may be seen when comparing the
whole polarimetric temporal evolution of the region in
front of just the response from one acquisition. To see
clearly this differences between the two BPT approaches,

(a) Original (b) ST BPT, φ (c) TE BPT, φe

Figure 7: Pauli representation for a crop of the second
acquisition after processing the full dataset with the ST
BPT and the TE BPT for δp = −3dB.

(a) 1st (b) 2nd (c) 3rd (d) 4th (e) 5th (f) 6th (g) 7th (h) 8th

(i) 1st (j) 2nd (k) 3rd (l) 4th (m) 5th (n) 6th (o) 7th (p) 8th

Figure 8: Region contours over all the acquisitions of the
region marked in Fig. 7b, employing the ST BPT (first
row) and for the region marked in Fig. 7c, employing the
TE BPT (second row).

Fig. 8 shows the region shapes of the regions marked
in Figs. 7b and 7c. As explained before, the regions
contained within the ST BPT have arbitrary shapes in the
space-time domain, whereas the TE BPT contains spatial
regions corresponding to the same scene area on all the
acquisitions.

In order to see the maintenance of the polarimetric
information of these processed images, the H/A/ᾱ
polarimetric decomposition [7] is employed to compare
the retrieved parameters with the ones obtained with the
7x7 multilook filter. Results are shown on Fig. 9 for the
second acquisition area shown on Fig. 7a.

Similar values are obtained in terms of the H/A/ᾱ
parameters for the BPT approaches with respect to the
multilook filter. Additionally, their ability to obtain
large regions corresponding to the agricultural fields
improves the polarimetric information estimation and
reduces considerably the effects of the speckle noise, as it
may be seen specially over the anisotropy (A) parameter.
Moreover, Fig. 10 shows the temporal evolution of
these parameters among the 8 different acquisitions for
an agricultural field of the image. Once again, very
similar trends are observed for the multilook and for the
BPT-based approaches, indicating that the polarimetric
temporal evolution is also preserved.



(a) 7x7 ML, H (b) ST BPT, H (c) TE BPT, H

(d) 7x7 ML, A (e) ST BPT, A (f) TE BPT, A

(g) 7x7 ML, ᾱ (h) ST BPT, ᾱ (i) TE BPT, ᾱ

Figure 9: H/A/ᾱ parameters of the area presented in
Fig. 7a after processing the full dataset with the ST BPT
and with the TE BPT for δp = −3dB.
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Figure 10: H/A/ᾱ parameters evolution for an
agricultural field. The full dataset has been processed
with the TE BPT, with the 7x7 multilook filter and with
the ST BPT employing δp = −3dB.

(a) δp = −5dB (b) δp = −3dB (c) δp = −1dB

Figure 11: Number of temporal changes for different
pruning factors δp. No changes is represented in blue and
7 changes in red.

6. TEMPORAL ANALYSIS

On the previous Section, the capabilities of the proposed
PolSAR time series BPT representations to detect and
characterize homogeneous regions on these datasets have
been shown. In this Section some applications are
depicted to show how the temporal information may be
extracted and analyzed from within these regions of the
tree. However, they are just some examples to show the
potentialities of this time series data analysis. In fact, the
exploitation of these datasets is a big challenge that is
now starting to be studied and developed.

The ST BPT, as mentioned in Section 3, characterizes a
target by its polarimetric response and, consequently, a
change on its response is considered as a target change
resulting in a temporal contour. As proposed on [2],
the change detection application arises automatically
when analyzing these temporal contours. A map may
be generated showing the number of contours on the
temporal dimension, indicating the number of temporal
changes among all the acquisitions. Fig. 11 shows these
maps for different pruning factors over the Flevoland
dataset. As it may be seen, increasing the pruning factor
results into larger regions in the temporal dimension,
appearing with a smaller number of temporal contours
on Fig. 11. This observation is consistent with [1], where
the same behavior was observed when processing a single
PolSAR image. As one may expect, the number of
changes over the agricultural areas are larger, which is
more clear in Fig. 11c, for large values of δp.

The results shown on Fig. 11 give an idea of the number
of changes of the different parts of the scene. However,
there is no indication about the relevance or importance
of these changes. Moreover, due to the arbitrary shapes
of the regions in the space-time domain, as shown on
Figs. 8a-8h, these maps appear noisy since the regions
cannot be tightly related to a particular area of the scene
on all the acquisitions. To circumvent these limitations
of the analysis based on the ST BPT, another temporal



(a) ts, δp = −5dB (b) ts, δp = −3dB (c) ts, δp = −1dB

Figure 12: Temporal stability measure ts for different
pruning factors δp. ts = 0 is represented in blue and
ts = 2.5 in red.

analysis is proposed based on the TE BPT. Note that,
on this representation, the regions can be clearly related
to particular areas of the scene, since it contain spatial
regions. As there are no temporal contours on the TE
BPT, a temporal stability measure ts is proposed over
the extended model (2) to measure the relevance of the
temporal changes among all the acquisitions Zii

ts =
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N(N − 1)

N∑
i=1

N∑
j=i+1

∥∥∥log (Z
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ii ZjjZ
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The ts measure defined in (7) may be seen as the
average geodesic similarity measure [6] between all pair
of acquisitions of the dataset. A region presenting
low values of ts indicates that the area of the scene
it represents has not changed significantly in terms of
polarimetric response between all the acquisitions and
vice-versa. Fig. 12 represents the ts measure over
the Flevoland dataset for the same pruning factors as
Fig. 11. It may be clearly seen that the changes produced
in the agricultural areas are more relevant in terms
of the polarimetric target response, resulting in larger
ts. Similar trends are observed when varying δp: for
larger values of the pruning threshold smaller values
are obtained for ts due to the larger amount of speckle
filtering and the consequent reduction of the polarimetric
changes caused by the speckle noise. However, since
large values of δp also produce larger regions, an
homogeneous regions mixture may be produced for very
large values of δp, resulting into an incorrect result of the
ts measure since the estimated region models may be no
longer valid.

Note that these change detection and temporal stability
applications are based on the similarity measures defined
before, which are sensitive to the full polarimetric
information under the Gaussian hypothesis. As a
consequence, these applications are naturally sensitive to
all this information.

7. CONCLUSIONS

In this paper the extension of the BPT data representation
to PolSAR time series has been addressed. Two different
approaches to deal with the temporal dimension of the
data have been proposed. These approaches have been
presented from the conceptual point of view of the target
temporal characterization resulting, then, general enough
to be applied for the extension of other methods to time
series data.

The Space-Time BPT (ST BPT) is the extension of the
BPT when assuming that a target is characterized by a
particular polarimetric response. This approach results
in dealing with the temporal dimension as an additional
independent dimension of the data. Consequently, this
structure may extract 3-dimensional space-time regions
of the data having similar polarimetric response. It has
a large amount of flexibility, being able to represent,
for instance, regions with contours that are not fixed
over time. However, its flexibility may produce some
problems when interpreting the results, as the regions can
not be clearly related to a specific scene area.

On the other hand, if it is assumed that the polarimetric
response of a target follows an intrinsic temporal
evolution, this temporal information may be employed
to extend the target characterization resulting in the
Temporal Evolution BPT (TE BPT). This approach
extracts 2-dimensional spatial regions of the scene
following a similar polarimetric temporal evolution. It
is easier to interpret than the ST BPT since its regions
are uniquely related to a particular scene area but it
may not be able to properly represent regions having not
fixed contours over time. However, probably most of
the region contours over land may be considered fixed.
Moreover, this extended target characterization allows
a better contrast within regions producing more precise
region contours.

These BPT structures may be useful for different
applications involving PolSAR time series exploitation.
As examples, two different applications have been
defined to detect temporal changes and to measure the
polarimetric temporal stability of the scene regions.
Nevertheless, the full polarimetric information may be
extracted to analyze and interpret the temporal evolution
of the scene, which may be useful for many applications
in the future.
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