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Giró-i-Nieto
§
, and Jordi Torres

†§

†
Barcelona Supercomputing Center (BSC)
§
Universitat Politècnica de Catalunya
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Abstract
Deep learning algorithms base their success on building high learning capacity models with
millions of parameters that are tuned in a data-driven fashion. These models are trained
by processing millions of examples, so that the development of more accurate algorithms is
usually limited by the throughput of the computing devices on which they are trained. In this
work, we explore how the training of a state-of-the-art neural network for computer vision can
be parallelized on a distributed GPU cluster. The effect of distributing the training process is
addressed from two different points of view. First, the scalability of the task and its performance
in the distributed setting are analyzed. Second, the impact of distributed training methods on
the final accuracy of the models is studied.
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1 Introduction

Methods based on deep neural networks have established the state-of-the-art in computer vision
tasks [15, 27, 9], machine translation [29], speech generation [21] and even defeated the world
champion in the game of Go [26]. Although the development of these algorithms spans over
many decades [16], their potential has been unlocked by the increased computational power of
specific accelerators, e.g. Graphical Processing Units (GPUs), and the creation of large-scale
datasets [8, 13]. Even with the use of specific hardware devices, training these algorithms is so
computationally intensive that can take days, or even weeks, to converge on a single machine.
Scaling these problems to distributed settings that can shorten the training times has become
a crucial challenge both for research and industry applications.
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Affective Computing [22] has recently garnered much research attention. Machines that are
able to understand and convey subjectivity and affect would lead to a better human-computer
interaction that is key in some fields such as robotics or medicine. Despite the success in some
constrained environments such as emotional understanding of facial expressions [18], automated
affect understanding in unconstrained domains remains an open challenge which is still far from
other tasks where machines are approaching or have even surpassed human performance. In
this work, we will focus on the detection of Adjective Noun Pairs (ANPs) using a large-scale
image dataset collected from Flickr [12]. These mid-level representations, which are a rising
approach for overcoming the affective gap between low level image features and high level affect
semantics, can then be used to train accurate models for visual sentiment analysis or visual
emotion prediction.

In this work, we explore how the training of Convolutional Neural Networks (CNNs) for ANP
classification can be accelerated through distribution in a GPU cluster. Our contributions are
three-fold: (1) we study the trade-off between final classification accuracy and speedup and
analyze the results both from the learning and HPC standpoints, (2) distribute the training
in a way that makes the most of the cluster resources, leveraging intra-node and inter-node
parallelism, and (3) propose a modification of the distributed configuration, in order to reduce
the resources being used while training.

2 Related Work

The massive number of convolutions and matrix multiplications in neural networks has led to
GPU implementations with CUDA [20] and efficient, task specific primitives using cuDNN [7].
Early deep learning frameworks such as Caffe [10] provided fast and easy access to such primi-
tives, but were initially designed for single machine operation, without support for distributed
environments. Efforts towards distributing the former frameworks with traditional HPC tools
such as Spark or MPI resulted in projects such as SparkNet [19] or Theano-MPI [17]. Native
support for distributed settings is included in more recent frameworks such as TensorFlow [2]
or MXNet [6]. However, scaling the training algorithms from a single machine environment
to a distributed setting poses two main challenges. From the computing performance stand-
point, optimizing the use of resources is the main goal, whereas from the learning side, the final
accuracy should not suffer a drop when compared to its single machine counterpart.

We will consider the task of distributing Convolutional Neural Networks (CNNs), a specific
type of feed-forward neural networks. CNNs are composed by a series of layers applying a
specific operation to their input, e.g. convolution, dot product or pooling, and are trained to
minimize a cost objective by means of gradient descent and backpropagation over batches of
data. Two main approaches are proposed in the literature [14] to train CNNs on a multi-GPU
environment, either in a single machine or in a distributed setting: model parallelism and data
parallelism. Model parallelism splits layers in the CNN among different GPUs, i.e. each GPU
operates over the same batch of input data, but applying different operations on them, and is
mostly used for operations with a large number of parameters that may not fit in the GPU’s
memory. On the other hand, data parallelism consists in placing a replica of the model on each
GPU, which then operates on a different batch of data. Model replicas share parameters, so
that this method is equivalent to having a larger batch size. Modern CNN architectures aim
to reduce the number of parameters while increasing the number of layers, finding a bottleneck
when storing intermediate activations in memory. Unlike model parallelism, data parallelism
only introduces one synchronization point regardless of the number of GPUs, thus reducing
communication overhead and making it more suitable for current CNN architectures. Besides,
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balancing the load between GPUs is straightforward in this paradigm, while it would require
from careful tuning for each specific CNN architecture and number of GPUs in a model paral-
lelism approach. For these reasons, we will consider multi-GPU data parallelism for both single
machine and distributed settings.

3 Dataset

Adjective Noun Pairs (ANPs) are powerful mid-level representations [3] that can be used for
affect related tasks such as visual sentiment analysis or emotion recognition. A large-scale ANP
ontology for 12 different languages, namely Multilingual Visual Sentiment Ontology (MVSO),
was collected by Jou et al. [12] following a model derived from psychology studies, Plutchick’s
Wheel of Emotions [23]. The noun component in an ANP can be understood to ground the
visual appearance of the entity, whereas the adjective polarizes the content towards a positive
or negative sentiment, or emotion [12]. These properties try to bridge the affective gap between
low level image features and high level affective semantics, which goes far beyond recognizing
the main object in an image. Whereas a traditional object classification algorithm may rec-
ognize a baby in an image, a finer-grained classification such as happy baby or crying baby is
usually needed to fully understand the affective content conveyed in the image. Capturing the
sophisticated differences between ANPs poses a challenging task that benefits from leveraging
large-scale annotated datasets by means of high learning capacity models [5].

In our experiments we consider a subset of the English partition of MVSO, the tag-restricted
subset, which contains over 1.2M samples covering 1,200 different ANPs. Since images in
MVSO were downloaded from Flickr and automatically annotated using their metadata, such
annotations have to be considered as weak labels, i.e. some labels may not match the real
content of the images. The tag-pool subset contains those samples for which the annotation
was obtained from the tags in Flickr instead of other metadata, so that annotations are more
likely to match the real ground truth.

4 CNN architecture

Since the first successful application of CNNs to large-scale visual recognition, the design of
improved architectures for improved classification performance has focused on increasing the
depth, i.e. the number of layers, while keeping or even reducing the number of trainable param-
eters. This trend can be seen when comparing the 8 layers in AlexNet [15], the first CNN-based
method to win the Image Large Scale Visual Recognition Challenge (ILSVRC), with the dozens,
or even hundreds, of layers in Residual Nets (ResNets) [9]. Despite the huge increase in the
overall depth, a ResNet with 50 layers has roughly half the parameters in AlexNet. However,
the impact of an increased depth is more notorious in the memory footprint of deeper architec-
tures, which store more intermediate results coming from the output of each single layer, thus
benefiting from multi-GPU setups that allow the use of larger batch sizes.

We adopt the ResNet50 CNN [9] on our experiments, an architecture with 50 layers that
maps a 224 × 224 × 3 input image to a 1,200-dimensional vector representing a probability
distribution over the ANP classes in the dataset. Overall, the model contains over 25 × 106

single-precision floating-point parameters involved in over 4×109 floating-point operations that
are tuned during training. It is important to notice that the more computationally demanding
a CNN is, the larger the gains of a distributed training due to the amount of time spent doing
parallel computations with respect to the added communication overhead.
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Cross-entropy between the output of the CNN and the ground truth, i.e. the real class
distribution, is used as loss function together with an L2 regularization term with a weight
decay rate of 10−4. The parameters in the model are tuned to minimize the former cost
objective using batch gradient descent.

5 Distributed CNN training

The process of training CNNs with batch gradient descent can be decomposed in two main
steps: forward and backwards passes through the net. The forward pass computes the outputs
for a batch of data, and an error with respect to the desired result is then calculated. Such
error, or cost, is then differentiated with respect to every parameter in the CNN during the so
called backwards pass. Finally, the resulting gradients are used to update the weights in the
net. These steps are iteratively repeated until convergence, i.e. until a local minima in the error
function is reached.

In this implementation we use the data parallelism paradigm, in which we define two kind
of nodes. First, the worker nodes each has a replica of the model, operating on separate batches
of data. Second, the parameter server (PS) nodes store and update the model parameters [1].
In essence, the worker will receive the model parameters, compute it on a batch of data, and
send back the gradients to the PS where the model will be updated in order to improve it [4].
However, different model update policies can be chosen at the PS to perform the training

Synchronous mode: In this case, the PS waits until all worker nodes have computed the
gradients with respect to their data batches. Once the gradients are received by the PS, they are
applied to the current weights and the updated model is sent back to all the worker nodes. This
method is as fast as the slowest node, as no updates are performed until all worker nodes finish
the computation, and may suffer from unbalanced network speeds when the cluster is shared
with other users. However, faster convergence is achieved as more accurate gradient estimations
are obtained. Authors in [4] present an alternative strategy for alleviating the slowest worker
update problem by using backup workers.

Asynchronous mode: every time the PS receives the gradients from a worker, the model
parameters are updated. Despite delivering an enhanced throughput when compared to its
synchronous counterpart, every worker may be operating on a slightly different version of the
model, thus providing poorer gradient estimations. As a result, more iterations are required
until convergence due to the stale gradient updates. Increasing the number of workers may
result in a throughput bottleneck by the communication with the PS, in which case more PS
need to be added.

Mixed mode: mixed mode appears as a trade-off between adequate batch size and through-
put by performing asynchronous updates on the model parameters, but using synchronously
averaged gradients coming from subgroups of workers. Larger learning rates can be used thanks
to the increased batch size, leading to a faster convergence, while reaching throughput rates close
to those in the asynchronous mode. This strategy also reduces communication as compared to
the pure asynchronous mode.

Others: improvements on the traditional gradient descent algorithm that can be applied to
distributed settings have been proposed in the literature [31, 24, 25]. In this work, however, we
focus on scaling problems from single node to distributed settings with minimal modifications
to the training algorithm.

4

Distributed training strategies for deep learning on a GPU cluster. Vı́ctor Campos et al.

6 Experimental setup

We evaluate our experiments in a GPU cluster, where each node is equipped with 2 NVIDIA
Kepler K80 dual GPU cards, 2 Intel Xeon E5-2630 8-core processors and 128GB of RAM.
Inter-node communication is performed trough a 56Gb/s InfiniBand network. The CNN ar-
chitectures and their training are implemented with TensorFlow1, running on CUDA 7.5 and
using cuDNN 5.1.3 primitives for improved performance. Since the training process needs to
be submitted through Slurm Workload Manager, task distribution and communication between
nodes is achieved with Greasy2.

Unlike other works where each worker is defined as a single GPU [4, 11], we use all available
GPUs in each node to define a single worker. Given the dual nature of the NVIDIA K80 cards,
four model replicas are placed in each node. We follow the mixed approach to synchronously
average the gradients for all model replicas in the same node before communicating with the
PS, which then performs asynchronous model updates. This setup offers two main advantages:
(1) communication overhead is reduced, as only a single collection of gradients needs to be
exchanged through the network for each set of four model replicas, and (2) each worker has a
larger effective batch size, providing better gradient estimations and allowing the use of larger
learning rates for faster convergence.

The loss function is minimized using RMSProp [28] per-parameter adaptive learning rate
as optimization method with a learning rate of 0.1, decay of 0.9 and ε = 1.0. Each worker has
an effective batch size of 128 samples, i.e. 32 images are processed at a time by each GPU.
To prevent overfitting, data augmentation consisting in random crops and/or horizontal flips
is asynchronously performed on CPU while previous batches are processed by the GPUs. The
CNN weights are initialized using a model pre-trained on ILSVRC [8], practice that has been
proven beneficial even when training on large-scale datasets [30].

Previous publications on distributed training with TensorFlow [1, 4] tend to use different
server configurations for worker and PS tasks. Given that a PS only stores and updates the
model and there is no need for GPU computations, CPU-only servers are used for this task.
On the other hand, most of the worker job involves matrix computations, for which servers
equipped with GPUs are used. All nodes in the cluster used in these experiments are GPU
equipped nodes, which means that placing PS and workers in different nodes would result in
under-utilization of GPU resources. We study the impact of sharing resources between PS
and workers as compared to the former configuration and whether this setup is suitable for a
homogeneous cluster where all nodes are equipped with GPU cards.

7 Results and discussion

7.1 Intra-node GPU parallelism

We first study the scalability of deploying multiple replicas with synchronous model updates
on a single node of the GPU cluster. Due to the dual nature of the NVIDIA K80 cards, up to
four model replicas can be deployed in every node. To ensure proper weight sharing between
model replicas, the variables in the computation graph are stored in RAM, whereas each GPU
performs all the operations of the CNN on a different batch of data. Gradients computed
for each replica are averaged before performing the weights update, step that becomes the
synchronization point in the graph.

1https://www.tensorflow.org/
2https://github.com/jonarbo/GREASY
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To prevent overfitting, data augmentation consisting in random crops and/or horizontal flips
is asynchronously performed on CPU while previous batches are processed by the GPUs. The
CNN weights are initialized using a model pre-trained on ILSVRC [8], practice that has been
proven beneficial even when training on large-scale datasets [30].

Previous publications on distributed training with TensorFlow [1, 4] tend to use different
server configurations for worker and PS tasks. Given that a PS only stores and updates the
model and there is no need for GPU computations, CPU-only servers are used for this task.
On the other hand, most of the worker job involves matrix computations, for which servers
equipped with GPUs are used. All nodes in the cluster used in these experiments are GPU
equipped nodes, which means that placing PS and workers in different nodes would result in
under-utilization of GPU resources. We study the impact of sharing resources between PS
and workers as compared to the former configuration and whether this setup is suitable for a
homogeneous cluster where all nodes are equipped with GPU cards.

7 Results and discussion

7.1 Intra-node GPU parallelism

We first study the scalability of deploying multiple replicas with synchronous model updates
on a single node of the GPU cluster. Due to the dual nature of the NVIDIA K80 cards, up to
four model replicas can be deployed in every node. To ensure proper weight sharing between
model replicas, the variables in the computation graph are stored in RAM, whereas each GPU
performs all the operations of the CNN on a different batch of data. Gradients computed
for each replica are averaged before performing the weights update, step that becomes the
synchronization point in the graph.

1https://www.tensorflow.org/
2https://github.com/jonarbo/GREASY
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Figure 2a shows the throughput as a function of the number of GPUs. We observe how we
can speed up the training almost linearly with respect to the number of GPUs when performing
synchronous updates, confirming the optimality of this policy for intra-node paralellism.

7.2 Throughput increase through distributed training

Parameter servers perform tasks that do not require from GPUs. However, given the ho-
mogeneus configuration of the cluster in which these experiments are performed, using nodes
exclusively as PS would imply under-utilization of resources. In this section, we study the
impact of sharing resources between PS and worker tasks.

Table 1 shows the trade-off between speedup and resource requirements when using 4 worker
nodes with 4 GPUs each, following the mixed approach described in Section 5. Despite providing
the largest speedup, the configuration where 3 dedicated PS are used requires from 7 nodes
instead of 4. Should these additional GPU-equipped nodes be available, results in Figure 1
show how for a fixed number of nodes, solutions where all of them are used as workers provide
the largest speedups. Given this figures, sharing resources between worker and PS tasks emerges
as the most efficient solution for homogeneus GPU cluster such as the one considered in our
experiments.

Figure 1: Throughput comparison between different distributed setups. Setting the proper
number of parameter servers (PS) is key to maximizing throughput.

Results in Table 2 and Figure 2b show how the throughput speedup is close to linear for
the configurations where resources are shared between PS and worker tasks. These figures
demonstrate the scalability of the proposed approach while constraining the number of nodes
required to achieve them.

7.3 Convergence speedup through distributed training

When studying the impact of distribution on the training process, there are two main factors to
take into account. First, the time required for the model to reach a target loss value, which is
the target function being optimized, determines which is the speedup on the training process.
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Configuration Throughput Speedup Efficiency

1 Node 124.18 img/sec - -
7 Nodes (4 Workers + 3 PS) 396.62 img/sec 3.19 0.46
4 Nodes (4 Workers + 3 PS) 374.73 img/sec 3.02 0.76
4 Nodes (4 Workers + 1 PS) 292.22 img/sec 2.35 0.58

Table 1: Comparison between different configurations when using 4 workers. Using dedicated
nodes for the parameter servers slightly improves the throughput, but involves a much larger
resource utilization. The efficiency is the relation between the speedup and the number of used
nodes, it shows more clearly the grade of the resources exploitation.

(a) (b)

Figure 2: Throughput speedup when using different number of resources. (a) Parallelism
speedup inside a node using different number of GPUs. (b) Distribution speedup using nodes
with 4 GPUs each, using the best configuration in Figure 1.

Second, the final accuracy determines how the asynchronous updates affect the optimization of
the cost function.

Despite the throughput increase is close to linear with respect to the number of nodes, Figure
3 shows how the time required by each setup to reach a target loss value does not benefit linearly
from the additional nodes. This result is expected, since for an asynchronous gradient descent
method with N workers each model update is performed with respect to weights wich are N−1

Configuration Throughput Speedup Efficiency

1 Node 124.18 img/sec - -
2 Nodes (2 Workers + 1 PS) 195.60 img/sec 1.58 0.79
4 Nodes (4 Workers + 3 PS) 383.09 img/sec 3.09 0.77
8 Nodes (8 Workers + 7 PS) 809.10 img/sec 6.52 0.82

Table 2: Throughput achieved by each distributed configuration. Speedup and efficiency figures
are computed with respect to the 1 node scenario.
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steps old on average.
The final accuracies on the test set reached by each configuration are detailed in Table

3. None of the distributed setups is able to reach the final accuracy of the single node model,
confirming that the stale gradients have a negative impact on the final minima reached at which
the model converges. Moreover, we found keeping a similar throughput between worker nodes
to be a critical factor for a successful learning process, since workers that are constantly behind
the rest of nodes do nothing but aggravate the stale gradients problem.

Workers (GPUs) Test Accuracy Time (h) Speedup

1 Node (4) 0.228 106.43 1.00
2 Nodes (8) 0.217 62.78 1.69
4 Nodes (16) 0.202 37.99 2.80
8 Nodes (32) 0.217 22.50 4.73

Table 3: Results on the test set for the different distributed configurations. Despite benefitting
from larger throughputs, setups with more nodes require more iterations to converge.

Figure 3: Train loss evolution for the different distributed configurations. The more nodes, the
faster a target loss value is reached.

8 Conclusions and Future Work

Distributed training strategies for deep learning architectures will become more important as
the size of datasets increases. They allow researchers to receive earlier feedback on their ideas
and increase the pace at which algorithms are developed, thus understanding the best practices
to distribute training of these models is a key research area. In our work, we studied how
to adapt the training algorithm to the available hardware resources in order to accelerate the
training of a CNN on a homogeneus GPU cluster. First, we showed how close to linear speedups
can be achieved through intra-node parallelism. Based on these results, we developed a mixed
approach where this efficiency is leveraged and the amount of inter-node communication is
reduced as compared to a pure asynchronous policy. When properly tuning the number of
parameter servers for each configuration, this method yields a important speedup in the number
of samples per second processed by the system even for the setup with the minimum hardware
overhead.

In spite of the good scalability demonstrated in terms of throughput, configurations with
more nodes require from additional training steps to reach the same target loss value, although
the increased throughput compensates this issue and still reduces the training time considerably.
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This drawback becomes more important when increasing the number of nodes, so results suggest
that different strategies should be employed for highly distributed settings with dozens of nodes.

Future work comprises two main research lines. First, the development of tools to gain more
insight on the performance of each individual component that can help to detect bottlenecks
and push even further the scalability of the system. On the other hand, we plan to implement
and evaluate a pure synchronous gradient descent strategy. Despite solving the stale gradients
problem, the overall throughput of this method is determined by the slowest worker, thus being
less efficient than the mixed approach proposed in this work but using backup workers might
be an option for achieve a great accuracy and maintain the performance. Besides, the increase
in the effective batch size may have a negative impact on the generalization capabilities of the
model, effect that will require further evaluation and experimentation.
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