

From Partition Trees to Semantic Trees

Xavier Giró and Ferran Marqués

Image Processing Group
Signal & Communications Department
Technical university of Catalonia (UPC)

- 1. Introduction ←
- 2. Image representation
- 3. Semantics representation
- 4. Detection algorithm
- 5. Undirected detection
- 6. Examples
- 7. Conclusions

Introduction

Bridge the semantic gap

Semantics

- 1. Introduction
- 2. Image representation ←
- 3. Semantics representation
- 4. Detection algorithm
- 5. Undirected detection
- 6. Examples
- 7. Conclusions

Colour-based segmentation [5]

[5] P.Salembier and F.Marqués, "Region-based representations of image and video: segmentation tools for multimedia services", IEEE Trans. Circuits and Systems for Video Technology (1999).

Binary Partition Tree [6]

[6] P.Salembier and L.Garrido, "Binary Partition Tree as an efficient representation for image processing, segmentation and information retrieval", IEEE Trans. On Image Processing (2000).

Example: Colour-based BPT

Visual descriptors for each BPT node [7]

[7] V.Vilaplana et al, "Region-based extraction and analysis of visual objects information", CBMI, Riga, Latvia (2005).

- 1. Introduction
- 2. Image representation
- 3. Semantics representation ←
- 4. Detection algorithm
- 5. Undirected detection
- 6. Examples
- 7. Conclusions

Dual model (perceptual and semantic) of Semantic Classes

- Semantic model with Description Graph [9].
- A <u>Description Graph</u> (DG) models a semantic class by assigning semantic instances and their Relations to its vertices.

Example: DG of the semantic class "Curve traffic sign"

[9] X.Giró and F.Marqués, "Detection of semantic objects using Description Graphs", ICIP, Genoa, Italy (2005).

Hierarchical decomposition in Semantic Trees (STs)

Example: ST of the semantic class "Curve traffic sign"

- 1. Introduction
- 2. Image representation
- 3. Semantics representation
- 4. Detection algorithm ←
- 5. Undirected detection
- 6. Examples
- 7. Conclusions

- Detection of a given semantic class (top-down approach).
- Detection problem > Building a ST on a BPT.

Analysis is decomposed in 3 basic steps.

Only instances composed by BPT nodes can be detected.

1) Perceptual Analysis

Example: Detection of classes "H" and "I" based on their perceptual models

- based on VD similarity
- class-specific detectors may also be used (eg. face).

- 2) Semantic Analysis
 - Top-down semantic expansion

Example: Detection of class "E" based on its semantic model

2) Semantic Analysis

Graph matching between DG nodes and ST nodes in the mesh.

Semantic Mesh

Description Graph

class "M"

2) Semantic Analysis

- Discard matchings that create cycles through the Mesh.
- A cycle is created when a single instance is multiply considered in the same higher semantic instance (eg. one shoe as part of two different legs for the same person).

Example: Refusal of two nodes (in grey)

3) Conflict resolution

- Each ST node can only sustain one ST node.
- Otherwise, one single instance would be part of more than one higher semantic instance (eg. 1 mouth for 2 faces)
- Keep the highest and most confident node if conflict.

Example: Conflict resolution among three potential instances of class "F".

- 1. Introduction
- 2. Image representation
- 3. Semantics representation
- 4. Detection algorithm
- 5. Undirected detection ←
- 6. Examples
- 7. Conclusions

Undirected detection

If no previous knowledge about which class to detect, an exhaustive perceptual analysis with all models in the database may launch a bottom-up semantic expansion.

Example: Undirected detection of class "G"

- 1. Introduction
- 2. Image representation
- 3. Semantics representation
- 4. Detection algorithm
- 5. Undirected detection
- 6. Examples ←
- 7. Conclusions

Example: Syntactic-based BPT [15]

[15] C.Ferran-Bennstrom and J.R.Casas, "Object representation using colour, shape and structure criteria in a binary partition tree," ICIP, Genoa, Italy (2005).

Semantic class: Frontal face

ST

Segmentation

Detected object

Segmentation

Detected object

Semantic class: Italian Flag

Segmentation

www.eurunion.org

Detected object

(a) f=0.94, (b) f=0.97

Semantic class: Laptop

- 1. Introduction
- 2. Image representation
- 3. Semantics representation
- 4. Detection algorithm
- 5. Undirected detection
- 6. Examples
- 7. Conclusions ←

Conclusions

- Generic approach.
- Stored preanalysis (BPT+VD) allows fast semantic retrieval.
- Human-intuitive semantic models (Description Graphs) with direct application to analysis algorithms.
- Description Graphs introduce context in analysis.
- Performance depends on models accuracy.
- Future work:
 - Fusion of SVMs feature detectors in perceptual analysis.
 - · Semi-supervised semantic models creation.
 - Evaluation with annotated databases (TRECVid, ImageEval, CHIL ?)

- 1. Introduction
- 2. Image representation
- 3. Semantics representation
- 4. Detection algorithm
- 5. Undirected detection
- 6. Examples
- 7. Conclusions

