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Abstract: In the field of autonomous driving, cooperative perception through vehicle-to-vehicle 1

communication significantly enhances environmental understanding by leveraging multi-sensor data, 2

including LiDAR, cameras, and radar. However, traditional early or late fusion methods face challenges 3

such as high bandwidth and computational resources, which make it difficult to balance the data 4

transmission efficiency with the perception accuracy of the surrounding environment, especially 5

for the detection of smaller objects such as pedestrians. To address these challenges, this paper 6

proposes a novel cooperative perception framework based on two-stage intermediate-level sensor 7

feature fusion, specifically designed for complex traffic scenarios where pedestrians and vehicles 8

coexist. In such scenarios, the model demonstrates superior performance in detecting small objects 9

like pedestrians compared to mainstream perception methods, while also improving the cooperative 10

perception accuracy for medium and large objects such as vehicles. Furthermore, to thoroughly validate 11

the reliability of the proposed model, we conducted both qualitative and quantitative experiments 12

on mainstream simulated and real-world datasets. The experimental results demonstrate that our 13

approach outperforms state-of-the-art perception models in terms of mAP, achieving up to a 4.1% 14

improvement in vehicle detection accuracy and a remarkable 29.2% enhancement in pedestrian 15

detection accuracy. 16

Keywords: autonomous driving; cooperative perception; data fusion; object detection; LiDAR system; 17

sensor fusion 18

1. Introduction 19

With the rapid development of autonomous driving technologies, self-driving cars [1–3] are 20

gradually entering everyday life and becoming an essential component of future intelligent transporta- 21

tion systems. Emerging paradigms such as intelligent connected vehicles, vehicle-road cooperation, 22

vehicular networks, and smart mobility are reshaping the automotive industry and accelerating the ad- 23

vancement of modern transportation systems [4,5]. Among the core technologies enabling autonomous 24

driving, LiDAR point clouds play a crucial role in environmental perception by supporting accurate 25

3D object detection and precise localization in real-world scenarios. However, conventional 3D object 26

detection algorithms often struggle in complex environments particularly with small or occluded 27

objects resulting in reduced detection accuracy. 28

In recent years, the reliability of vehicle-to-vehicle (V2V) collaborative perception algorithms 29

[6–8] has significantly improved, largely driven by advancements in neural network architectures and 30

the intelligent fusion of multi-modal sensor data, such as LiDAR, images, and radar. Compared to 31

single-vehicle perception, V2V collaboration allows multiple connected autonomous vehicles (CAVs) to 32

share and integrate complementary sensory information across different viewpoints. This collaborative 33

approach addresses limitations caused by occlusion and field-of-view constraints, improving global 34

perception performance in dynamic traffic environments. Furthermore, sophisticated feature fusion 35
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strategies have demonstrated strong robustness in recognizing objects even under adverse weather 36

and congested traffic conditions [9]. 37

Current cooperative perception fusion methods among vehicles are mainly categorized into three 38

types: early fusion, late fusion, and intermediate fusion [10]. These fusion strategies differ significantly 39

in terms of sensor data redundancy, total data volume, and the effectiveness of fusion results. In 40

early fusion approaches, raw sensor data from different connected autonomous vehicles (CAVs) are 41

aggregated to build a global driving environment perspective [11]. Although such methods have 42

demonstrated remarkable performance in addressing occlusion and field-of-view limitations inherent 43

in single-vehicle perception, they come at the cost of high communication resource demands. The heavy 44

transmission load and large volume of shared data can lead to communication network congestion and 45

latency, thereby affecting the usability and stability of the models in real-world applications. Under 46

the premise of limited communication bandwidth, early fusion becomes increasingly impractical 47

and inefficient in complex traffic scenarios with large data volumes, ultimately constraining the 48

effectiveness of perception performance. 49

Late sensor data fusion methods (Late fusion) [12,13] achieve global collaborative perception by 50

merging the perception results independently generated by individual vehicles. Compared with early 51

fusion methods, late fusion only requires the transmission of processed detection results, allowing 52

each vehicle to independently process its own sensor data and then perform unified data fusion 53

afterward. This approach facilitates system modularization and enables autonomous detection and 54

decision-making by individual vehicles, thus reducing dependence on real-time, high-bandwidth 55

communication. However, current collaborative perception approaches based on late fusion rely 56

heavily on the local perception results of individual vehicles rather than the aggregated global data. If 57

all participating vehicles were able to share sensor data, it would allow for more statistically meaningful 58

data processing, leading to more accurate detection and tracking of objects in the environment. 59

Therefore, to achieve optimal overall performance, it is essential to consider the global nature of sensor 60

data within the perception range and perform thorough and effective fusion accordingly. 61

Intermediate-level feature fusion [14–16] refers to the extraction of intermediate feature maps 62

within each connected autonomous vehicle (CAV) using a predictive model, followed by the filtering 63

and aggregation of these features in the intermediate feature space. Unlike early fusion methods 64

that require the transmission of raw sensor data, intermediate fusion techniques only transmit these 65

processed feature maps to other CAVs or to edge computing servers in the infrastructure. These 66

intermediate features are then fused and decoded by each autonomous vehicle to generate final 67

perception results. As a compromise in V2V cooperative perception strategies, intermediate-level 68

fusion has the potential to significantly reduce inter-vehicle communication bandwidth requirements 69

compared to early fusion, while also demonstrating strong performance in enhancing perception 70

accuracy [17,18]. Compared to late fusion methods, this approach avoids the limitations caused by 71

reliance on local perception results from individual vehicles by efficiently compressing representative 72

global information of the environment into intermediate features, thereby achieving a better trade-off 73

between transmission efficiency and perceptual effectiveness. 74

Based on the aforementioned challenges in perception accuracy and bandwidth constraints, this 75

paper introduces a novel collaborative perception framework that addresses these limitations through 76

an efficient Two-Stage Intermediate-level Feature Fusion (TS-IFF) strategy. The proposed framework 77

focuses on the effective aggregation of multi-scale features while maintaining low communication 78

overhead. By integrating a dynamic fusion model, TS-IFF enables adaptive and robust feature com- 79

bination, leading to enhanced 3D object detection performance in complex traffic scenarios. The key 80

contributions of this work are summarized as follows: 81

1. We design a collaborative perception architecture based on a novel TS-IFF framework, which 82

hierarchically fuses intermediate features to balance perception accuracy and communication 83

bandwidth. 84
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2. To enhance the detection of small and occluded objects, we propose a dual-branch fusion strategy 85

that combines high-resolution pseudo-image features with contextual intermediate-level features 86

for richer semantic representation. 87

3. We introduce a Dynamic Weight Learning Mechanism (DWLM) to learn fusion weights for different 88

feature types, and develop an Adaptive Feature Selection Module (AFSM) to selectively aggregate 89

the most informative components during the fusion process. 90

2. Related work 91

2.1. 3D Object Detection 92

Accurate object perception is crucial for safety in autonomous driving. The current leading 3D 93

object detection models primarily use deep learning on 3D point clouds, a key area in 3D object detec- 94

tion [19]. These models directly process raw point cloud data to reduce information loss and utilize 95

3D geometry. PointNet [20] achieves end-to-end recognition through point-wise feature extraction 96

and global pooling. To improve local geometric modeling, DGCNN [21] introduces dynamic com- 97

positional convolution via a graph convolutional network that enables point adjacency adjustments. 98

Transformer-based models like Point Transformer [22] further improve accuracy by integrating global 99

and local information with self-attention. These methods refine feature extraction and point cloud 100

representation by utilizing sparse structures to balance computational efficiency and information 101

preservation. Techniques such as anchor points [23] and center strategies [24,25] improve accuracy and 102

real-time performance. In addition, BirdNet+ adopts a BEV-based approach using Faster R-CNN to 103

directly predict 3D object boxes, achieving competitive accuracy and efficiency on KITTI and nuScenes 104

[26]. It highlights the effectiveness of compact BEV representations for real-time 3D detection across 105

diverse environments. 106

While using point clouds preserves 3D information, data sparsity especially at large distances 107

or in complex environments poses a challenge for feature extraction. Sparse distributions hinder 108

the network’s ability to generate accurate feature representations, impacting detection accuracy and 109

robustness. Solutions such as voxelization and bird’s-eye-view projection are used to improve the 110

geometry of LiDAR point clouds. For example, VoxelNet [27] encodes voxel features with PointNet++ 111

[28] and applies a region proposal network, while SECOND [29] boosts performance with sparse 112

convolution. CenterPoint refines the backbone outputs into feature maps and predicts the object centers 113

from heat maps. However, in real urban driving environments (with obstacles such as buildings, 114

trees, and traffic signs), individual vehicle perception from a single point of view is prone to occlusion, 115

leading to information loss or misclassification [30,31]. Therefore, the integration of sensor data from 116

multiple CAVs is a promising approach to improve 3D object recognition in real traffic conditions. 117

2.2. Cooperative Perception 118

To overcome the limitations of single-vehicle perception in complex environments, coopera- 119

tive perception with multiple AVs has become widely adopted [32]. LiDAR and camera data from 120

surrounding vehicles or roadside infrastructures are important sources for sharing observations in 121

cooperative perception. Intermediate-level feature fusion provides a balance between performance 122

and efficiency by effectively merging features from nearby vehicles. F-Cooper [33], the first inter- 123

mediate collaborative perception system, uses feature-level fusion by taking the maximum value of 124

overlapping regions. Based on this, CoFF [34] addresses F-Cooper’s disregard for low-confidence 125

features. Attention mechanisms, including visual transformers such as V2X-ViT [35] and CoBEVT [36], 126

further improve the relationships between features. In high-resolution detection, MSwin [37] captures 127

spatial interactions over large distances, while AttFusion [38] applies self-attention to specific spatial 128

locations. AdaFusion [39] introduces adaptive fusion models with trainable neural networks. CORE 129

[12] reconstructs incomplete scenes perceived by a single vehicle into a comprehensive view using a 130

compressor, an attention module and a reconstruction module. However, most existing cooperative 131

perception methods focus on merging a single type of intermediate features, overlooking the benefits 132
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of combining multiple feature types. Therefore, we propose a novel perceptual model that integrates 133

intermediate features across different stages. 134

Figure 1. Overview of a Collaborative Perception Framework based on Two-Stage Intermediate-Level Feature
Fusion (TS-IFF). The system fuses LiDAR data from multiple autonomous vehicles, here demonstrated with three
collaborating CAVs. Each point cloud data is voxelized to generate voxel-level pseudo-images. Pseudo-images
are passed through a feature extraction layer (FPN) to extract corresponding intermediate features. Our proposed
fusion module integrates the features from both stages and from all CAVs. A final Single Shot Detector (SSD)
produces the detection results. Note that⊕ represents concatenation. In the visual representation, different colored
arrows illustrate data flow, while bold red lines highlight connections related to the fusion of pseudo-image
features.

3. Overall network architecture 135

The overall structure of the network is shown in Figure 1, which can be divided into the following 136

five parts: 137

1. Data Generation: Following the methodology of [38], a spatial graph is first constructed to effec- 138

tively integrate the relative poses and geographic locations of each connected and autonomous 139

vehicle (CAV), enabling reliable sharing of localization information across the network. Then, the 140

LiDAR data from each CAV in the network is projected onto a unified reference self-coordinate 141

plane for alignment. The aligned point cloud features are broadcasted to all participating CAVs 142

in the cooperative perception system, forming the initial stage of inter-vehicle feature interaction 143

and preparing for the next phase of point cloud encoding and extraction. 144

2. Feature Encoding and Extraction: Each CAV processes the received point cloud features using a 145

combination of a Voxel Feature Encoding (VFE) module and a PointPillar-based feature extraction 146

network. The VFE module generates voxelized features with different resolutions, resulting in 147

pseudo-images. These pseudo-images from different viewpoints are handled in two ways: (1) 148

they are broadcast to a central dynamic fusion module to be integrated with the intermediate-level 149

features from the ego CAV, and (2) they are retained locally to enable the extraction of intermediate 150

features by the CAV itself. This stage enables distributed-local encoding and centralized fusion 151

interactions. (Section 3.1) 152

3. Feature Projection: A Feature Pyramid Network (FPN) [40] is used to extract intermediate features 153

from the pseudo-images. The network follows a top-down structure, first extracting semantic 154

features through downsampling blocks with 2D convolution, batch normalization, and ReLU 155

activation, and then processing them through upsampling and lateral connections to generate 156

multi-scale intermediate-level features. The projected features are unified in channel dimension, 157

concatenated, and transmitted to the feature fusion module. Through the Dynamic Weight 158
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Learning Mechanism (DWLM), local pseudo-image features are adaptively fused, enabling 159

fine-grained feature interaction across multiple CAVs. (Section 3.2) 160

4. Feature Fusion: All pseudo-images and intermediate-level features from participating CAVs are 161

aggregated via the proposed dynamic fusion strategy. The system performs cross-agent feature 162

integration by assigning adaptive weights to each feature channel based on its contribution. 163

The Adaptive Feature Selection Module (AFSM) refines the joint features further to ensure 164

that the final representation maintains discriminative cues from both local and shared contexts. 165

(Section 3.3) 166

5. Object Detector: Finally, a standard Single Shot Detector (SSD) network [41] is applied to the fused 167

intermediate features to classify 3D objects and regress their locations. The end-to-end detection 168

result is enhanced by the preceding multi-agent collaborative encoding and fusion steps. 169

3.1. Feature Encoding and Extraction 170

We used the VFE module from [27] to project the original point cloud onto the bird’s-eye-view 171

(BEV) plane. This process involves calculating the (X, Y, Z) 3D indices of each point and transforming 172

point-level features into voxel-level features, represented as a four-dimensional tensor V ∈ RC×H×W×Z. 173

To further process these features, we integrated the PointPillars method [31], which reorganizes the 174

tensor by collapsing the Z dimension through scatter operations and pooling, resulting in a columnar 175

structure. Essentially, PointPillars treats vertical columns (pillars) on the BEV plane as spatial bins, 176

aggregating and encoding features from all points within the same pillar to create a dense 2D pseudo- 177

image Fp ∈ RC×H×W that effectively represents the 3D point cloud. 178

The pseudo-image generated by PointPillars and the intermediate features extracted by a FPN 179

differ fundamentally in structure and representation. PointPillars converts the raw point cloud into a 180

2D pseudo-image by dividing the space into vertical columns and applying PointNet to each pillar. 181

This process compresses the 3D spatial information into a BEV feature map, emphasizing efficiency 182

and regular grid alignment suitable for 2D convolution. 183

In contrast, the intermediate features extracted via a FPN operate on multi-scale hierarchical 184

representations of the input, often preserving richer semantic and spatial context across resolutions. 185

When applied to point cloud data (e.g., using sparse convolution backbones), FPN features retain 186

more local geometric details and cross-scale dependencies, which are essential for detecting objects 187

of varying sizes and densities in 3D space. In summary, while PointPillars emphasizes structured 188

efficiency via BEV pseudo-images, FPN-derived features focus on multi-level abstraction and geometric 189

richness, often at a higher computational cost but with improved accuracy in complex scenes. 190

To optimize the input resolution of the pseudo-image, we adjusted the voxel size, experimenting 191

with values ranging from 0.4 meters down to 0.12 meters, which controls the dimensions [C, H, W] 192

of the pseudo-image. Our experiments indicate that higher pseudo-image resolution improves the 193

performance of downstream feature-fusion-based object detection tasks. However, when extracting 194

intermediate-level features from the pseudo-image using the FPN [40], the downsampling modules 195

produce intermediate features with a fixed output resolution. Thus, the spatial resolution of the 196

intermediate FPN features remains unchanged despite variations in the input pseudo-image resolution. 197

A schematic diagram illustrating the point cloud feature encoding process is provided in Figure 2. 198

3.2. Feature Fusion and Object Detection 199

Pseudo-images generated from raw point cloud data effectively capture the spatial structure 200

of the environment, preserving detailed geometric information, while intermediate-level features 201

extracted from point clouds provide rich multi-scale contextual semantics. In this paper, we propose a 202

novel collaborative perception fusion strategy that adaptively integrates these two types of features, 203

fully exploiting their complementary strengths in feature representation. The fused feature maps 204

significantly enhance the accuracy of 3D object detection, particularly in complex environments 205

involving small and distant targets. By incorporating both pseudo-images and intermediate-level 206
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Figure 2. Schematic representation of point cloud feature encoding. When using a given voxel size, the voxelization
of the point cloud leads to voxel features of size [C, H, W, Z]. After pillarization, the Z dimension is collapsed. If a
sample or pillar has too little data to populate the tensor, zero-padding is applied. Through this encoding process,
high-resolution pseudo-images of the point cloud can be generated, serving as the input for subsequent feature
extraction and fusion.

features, the proposed fusion strategy diversifies the feature representation and improves detection 207

robustness, outperforming other methods that rely solely on intermediate features.

Figure 3. Dynamic Weight Learning Mechanism: the intermediate point cloud features FI
1,FI

2,FI
3 of three au-

tonomous vehicles (car1, car2 and the ego-vehicle) and their pseudo-image features FP
1 ,FP

2 ,FP
3 are combined as

input features. A cascade operation generates concatenated features Fconcat, where W and H are the feature width
and height, C and C∗ are the channel numbers of different modality features, N is the number of CAVs fused, S is
the feature vector, and W is the feature fusion weight.

208

The fusion process is carried out in two stages. In the first stage, a set of fusion weights W is 209

generated by a DWLM, which dynamically adjusts and optimizes the contributions of the different 210

pseudo-images and intermediate features based on their relevance. In the second stage, Inspired by the 211

SENet module structure [42], we propose the AFSM to define feature mappings by selecting and fusing 212

channel information. By uses these fusion weights to effectively integrate and refine all pseudo-images 213

and intermediate features from all cooperating CAVs. This two-stage approach ensures optimal spatial 214

and semantic fusion of features and significantly improves the model’s ability to perform accurate 215

object detection in diverse and challenging driving scenarios. 216

3.3. Dynamic Weight Learning Mechanism 217

The DWLM is shown in Figure 3. Before fusion, we concatenate pseudo-images FP
n together with 218

intermediate-level features FI
n (where n identifies the CAV). Before concatenation, intermediate-level 219

features are upsampled to match the resolution of the pseudo-images. The final concatenated feature 220

corresponds to a tensor Fconcat ∈ RN×(C+C∗)×H×W , where N represents the total number of fused 221

CAVs, and C and C∗ denote the channel numbers of the pseudo-images and intermediate-level features, 222

respectively. Subsequently, a global average pooling is applied to Fconcat to reduce the dimensionality 223

in the last two dimensions, resulting in the feature vector S ∈ RN×(C+C∗). 224

Adaptive fusion weights are learned based on the channel-wise aggregated statistics, allowing 225

the network to emphasize more informative modalities or feature levels. This vector S is passed 226

through two fully connected layers of the same dimension to learn the importance of each channel, 227

thereby producing the fusion weight vector W ∈ R2N . Certain channels may focus more on edge 228

structures, dense regions, or local geometric features, which are differently captured by pseudo-images 229

and intermediate features. The network is thus trained to automatically determine the appropriate 230
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balance between them, depending on their semantic richness and discriminative capacity. The final 231

weight vector W is divided into two N-dimensional sub-vectors, each controlling the fusion ratio of 232

pseudo-image and intermediate-level features, respectively. To ensure training stability of the weight 233

learner, softmax normalization is applied to W, yielding 2N adaptive fusion weights. These weights 234

control the contribution ratios of the pseudo-image features and intermediate-level features in the final 235

fused representation. Finally, the input features are linearly weighted and fused based on the learned 236

fusion weights. This approach enables efficient and robust integration of features across modalities 237

and CAVs.

Figure 4. Adaptive Feature Fusion via Channel and Spatial Weighting Mechanisms. This framework uses
global pooling to compress global information within the channel descriptors. We use global max pooling and
global average pooling to extract the two channel descriptors hmax ∈ RN×1×1×1 and havg ∈ RN×1×1×1. After a
concatenation to obtain the channel weights Fh ∈ R2N×1×1×1, we obtain the input channel descriptor weights
F∗h ∈ RN×1×1×1 through a linear layer with ReLU activation, where N is the maximum number of input CAVs (N
is taken as 3). The learned channel feature weights are multiplied element-wise along the channel dimension with
the features Fconcat produced by the DWLM module, resulting in a new feature representation F∗ ∈ RN×C×H×W .
Finally, a 2D CNN with ReLU activation is applied to obtain the fused new feature FIP ∈ R1×C×H×W .

238

3.4. Adaptive Feature Selection Module 239

During the feature fusion stage, the input is a 4D tensor FI ∈ RN×C∗×H×W . To extract the 240

importance of each channel, the AFSM module applies global average pooling and global max pooling 241

to the input feature, thereby generating channel attention weights. The structure of the AFSM module 242

is illustrated in the upper part of Figure 4. The channel weights F∗h ∈ RN×1×1×1 are applied to the 243

input tensor FI via channel-wise multiplication. The enhanced features are then linearly fused with 244

DWLM-learned weights to form the fused feature F∗ ∈ RN×C×H×W . Subsequently, a 2D convolutional 245

neural network (2D CNN) with channel compression is applied to refine the spatial dimensions and 246

generate the final fused feature map FIP ∈ R1×C×H×W . This operation preserves global information 247

while standardizing the output dimensions, thereby improving the adaptability and efficiency of the 248

network. The overall framework for multi-scale feature fusion is shown in Figure 4, and the complete 249

multimodal fusion procedure is described in Algorithm 1. Finally, the fused feature map FIP is fed into 250

an SSD detection head [41] to perform 3D object detection, including bounding box localization and 251

confidence score classification. 252

3.5. Loss Function 253

The TS-IFF network proposed in this paper employs the loss function introduced in [27]. The 254

total loss Ltotal is composed of a classification loss and a regression loss: 255

Ltotal = αLpos
cls + βLneg

cls + Lreg (1)
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Algorithm 1: Adaptive Spatial and Channel Feature Fusion

Input: Feature map FI ∈ RN×C∗×H×W , Fconcat ∈ RN×(C+C∗)×H×W

Output: Fused feature FIP ∈ R1×C×H×W

AFSM: Channel Attention Branch
1. havg ← GAP(FI);
2. hmax ← GMP(FI);
3. Fh ← Concat(havg, hmax);
4. F∗h ← σ(ReLU(Fh));
5. F∗I ∈ RN×C×H×W ← FI ⊙ F∗h ;
6.F∗I ∈ R1×C×H×W ← ReLU(Conv3D(F∗I ));

DWLM: Spatial Attention Branch
6. s← GAP(Fconcat);
7. x ← ReLU(FC1(s));
8. w← Softmax(FC2(x));
9. w← reshape(w, N, C, 1, 1);
10. F∗concat ∈ RN×C×H×W ← Fconcat ⊙ w;

Feature Fusion
11. F∗ ← F∗I ⊙ F∗concat;
12. FIP ← ReLU(Conv2D(F∗));

return FIP;

where α and β are positive constants that balance the relative importance. Lpos
cls , Lneg

cls denote the 256

classification losses for positive and negative samples. The terms Lpos
cls and Lneg

cls are defined as follows: 257

Lpos
cls =

1
Np

Np

∑
i=1

Lcls(ppos
i , 1) (2)

258

Lneg
cls =

1
Nn

Nn

∑
j=1

Lcls(pneg
j , 0) (3)

where ppos
i and pneg

j are the softmax output probabilities for positive samples and negative samples, 259

respectively. Np, Nn denote the counts of positive and negative samples. Lreg is the regression loss, 260

which we define: 261

Lreg =
1

Np

Np

∑
i=1

L1(ui − ûi) (4)

where ui and ûi represent the regression ground truth and the predicted positions respectively and L1 262

denotes the Smooth-L1 function: 263

L1(x) =

 x2

2 if |x| < 1

|x| − 1
2 if x < −1∪ x > 1

(5)

4. Experimental Results 264

To evaluate the proposed model, we conducted targeted experiments separately on both simulated 265

and real-world datasets: OPV2V [38] and V2V4Real [43] were utilized to assess cooperative perception 266

capabilities, while CODD [44] was specifically used to evaluate performance in detecting small objects 267

such as pedestrians. Additionally, extensive ablation studies and benchmark comparisons were carried 268

out to demonstrate the superiority and effectiveness of the proposed cooperative perception model 269

compared to existing state-of-the-art methods. 270
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4.1. Datasets 271

OPV2V dataset [38] is a simulation dataset that contains two subsets: Default Towns (DT) and 272

Culver City (CC). The DT subset consists of data from 8 default towns provided by CARLA [45] and 273

contains on average about 3 CAVs per frame, with a minimum of 2 and a maximum of 7 vehicles. 274

The data in this subset was formally divided into a training set (6.7K frames), a validation set (2K 275

frames) and a test set (2.7K frames). The CC subset includes an independent test set of 550 frames 276

to evaluate the model’s ability to generalize to new scenarios. All scenes last approximately 16.4 277

seconds and were captured using 64-channel LiDAR, which generates approximately 1.3 million point 278

clouds per second. This dataset simulates diverse urban driving conditions including dynamic traffic 279

flow, occlusions, and varying vehicle densities, providing a comprehensive benchmark for evaluating 280

cooperative perception algorithms. 281

CODD dataset [44] was also created with the help of the CARLA simulation platform. It contains 282

108 scene clips from 8 different CARLA towns. To compare with other methods, we use the same 283

methodology as for [39]. Each scene consists of 125 frames, of which the first 100 frames are used for 284

model training and the remaining 25 frames are used for testing. A notable feature of this dataset is 285

that it includes a varying number of vehicles and pedestrians, with the number of vehicles ranging 286

from 4 to 15 and the number of pedestrians ranging from 2 to 8. CODD is the only collaborative sensing 287

dataset that currently includes a pedestrian population. This diversity in participant types introduces 288

additional complexity to the perception task, making it well-suited for evaluating models’ ability to 289

detect and distinguish between heterogeneous traffic agents. Moreover, CODD provides detailed 290

annotations for both vehicles and pedestrians, enabling fine-grained performance analysis across 291

object categories and contributing to more realistic assessments of cooperative perception systems. 292

V2V4Real [43] is the first large-scale publicly available real-world dataset for V2V cooperative 293

perception, collected in Columbus, Ohio, across highways and urban streets. It includes 19 hours of 294

driving data with 310K frames, from which 67 representative scenarios (10-20s each) were selected. 295

LiDAR and RGB frames were sampled at 10Hz, yielding 20K LiDAR point clouds and 40K images. The 296

dataset features high-density LiDAR point clouds and 240K precisely annotated 3D bounding boxes for 297

5 classes. Sensor asynchronization between vehicles was kept below 50ms. This dataset presents real- 298

world challenges such as sensor noise, occlusion, and asynchronous multi-vehicle coordination, making 299

it a valuable benchmark for validating the robustness and adaptability of cooperative perception 300

models. Its diverse driving environments and dense traffic scenarios further enhance its utility for 301

evaluating performance under complex real-world conditions. 302

4.2. Implementation Details 303

Our model is implemented with PyTorch v1.7.1 framework [46] and trained and tested on a 304

GeForce RTX 3090 GPU. The GPU has 24 GB RAM and runs in a CUDA v11.1 environment combined 305

with cuDNN v8.0 for acceleration, ensuring efficient computation during inference. During the training 306

process, the model uses a learning rate scheduler and an early stopping mechanism, and the optimizer 307

was chosen to be Adam with parameters set toε = 0.1 and a weight decay factor of 10−4. We trained 308

the model for 30 epochs and the model parameters were updated by a batch size of 2, a learning rate of 309

2× 10−3. The momentum was set to a value between 0.85 and 0.95. During the inference process, we 310

filtered low-confidence bounding boxes with a threshold of 0.3 and used a non-maximum suppression 311

strategy to remove overlapping candidates by setting the IoU threshold to 0.2. 312

The driving scenario is selected at any time during the following training process, and the number 313

of CAVs is selected in the interval [2, 7], where the center vehicle is included in the interval as the 314

EGO car (the car that receives all collaborative features). The number of CAVs is fixed for all scenes 315

to ensure the fairness of the experiment. For data generation, we use the same parameters from [38] 316

[43] and set the range of LiDAR point clouds to [−3, 1] × [−140.8, 140.8] × [−40, 40] meters as the 317

range of z, x, y values for both OPV2V and V2V4Real. Similarly, for the CODD dataset, the range is set 318

to [−6, 4]× [−140.8, 140.8]× [−40, 40] meters. All datasets use the same body-column resolution of 319
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0.4 meters, which corresponds to a tensor size [H × X] = [704× 200] meters. For the SSD detection 320

module, we use a vehicle anchor length, width and height of [3.9, 1.6, 1.56] meters, a pedestrian anchor 321

length, width and height of [0.6, 0.6, 1.7] meters, and anchor box rotation angle range of [0, 90] degrees. 322

In autonomous driving 3D point cloud feature fusion experiments, we utilize AP metrics to 323

provide a comprehensive evaluation of detection performance. AP captures the balance between 324

precision and recall across varying confidence thresholds. Specifically, AP0.5 and AP0.7 correspond to 325

average precision computed at IoU Union thresholds of 0.5 and 0.7, respectively, which are commonly 326

used to assess the detection accuracy of larger objects such as vehicles. For smaller or more variable 327

targets like pedestrians, we adopt a lower IoU threshold, AP0.1, to more appropriately evaluate the 328

model’s detection capabilities. By incorporating AP metrics at different IoU thresholds, we achieve a 329

more thorough and nuanced assessment of the model’s effectiveness across diverse object categories 330

and scales, thereby offering deeper insights into its strengths and limitations. 331

Table 1. Quantitative comparison of the TS-IFF model with state-of-the-art methods across two datasets. Bold
highlights denote best performance, with blue values in parentheses indicating AP improvement over the second
best method and red values indicating parameter increase compared to this method. Underlined values indicate
second best results. ↑: Larger values are better. ↓: Smaller values are better.

Method
OPV2V CODD Para (M)DT CC Vehicle Pedestrian

AP@0.5 AP@0.7 AP@0.5 AP@0.7 (↑) AP@0.5 AP@0.7 AP@0.1 (↑) Total (↓)

Baseline 69.2 62.4 55.3 47.6 60.3 54.4 24.3 6.58

F-Cooper
[33] 88.7 79.0 84.6 72.8 77.6 74.3 32.8 7.27

V2VNet
[47] 89.7 82.2 86.0 73.4 80.3 75.8 32.0 14.61

AttFuse
[38] 90.8 81.5 85.4 73.5 81.4 77.7 38.1 6.58

DiscoNet
[48] 74.1 59.0 – – – – – 9.66

CoBEVT
[36] 82.8 63.7 – – – – – 8.35

V2X-ViT
[35] 89.1 82.6 87.3 73.7 82.3 78.9 33.8 13.45

HM-ViT
[49] 85.3 76.3 – – – – – 17.64

AdaFusion
[39] 91.6 85.6 88.1 79.0 86.2 83.9 45.2 7.27

Ours 94.1 (+2.7%) 89.3 (+4.1%) 90.3 (+2.4%) 82.1 (+3.8%) 88.6 (+2.7%) 85.8 (+2.2%) 63.8 (+29.2%) 8.16 (+10.9%)

4.3. Experimental Results 332

Table 1 shows the quantitative experimental results of our proposed model on the simulated 333

datasets OPV2V and CODD. Using the detection of individual vehicles without collaborative sensing 334

as a baseline, we benchmark our model against the SOTA methods. Of the state-of-the-art methods 335

listed in the table, DiscoNet, CoBEVT, and HM-ViT, are specifically designed for the features and 336

scenarios of the DT sub-dataset and the V2X-Sim dataset. In contrast, the CC sub-dataset and CODD 337

datasets contain more diverse transformations, complex scenarios, and small targets, which fall outside 338

the optimal application conditions for these methods. In summary, the comparison methods selected 339

in this work are representative and closely related to our task. They are evaluated on similar datasets 340

and metrics to ensure a fair comparison. Their implementations and results are publicly available, 341

supporting reproducibility and meaningful benchmarking. 342

The experimental results show that our model achieves an improvement in AP of up to 65% 343

over the baseline. In particular, for object detection of surrounding vehicles, our model shows an AP 344

improvement of about 2% to 4% over the SOTA for both the OPV2V and CODD datasets. In particular, 345
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for the DT and CC subsets of the OPV2V dataset, our model achieves a detection accuracy of over 346

90% for both AP@0.5 and AP@0.7 thresholds. For small-object pedestrian detection within the CODD 347

dataset, our model achieves an accuracy of over 60%, which is a significant increase of 29.2% AP 348

compared to the state-of-the-art best method. Moreover, to better adapt to the complexity of the real 349

world and enhance perception consistency and decision reliability, we conducted model testing on 350

the real-world dataset V2V4Real. As shown in Table 2, Our method achieved an AP of 68.2% and 351

40.1% at thresholds of 0.5 and 0.7, respectively, for vehicle detection, outperforming other methods. 352

Compared to the second-best approach, our model demonstrated a performance improvement of 2.5% 353

to 8% across different thresholds, it further demonstrates the model’s outstanding performance and 354

clear advantages in detecting surrounding vehicles in cooperative perception tasks. 355

Table 2. Comparison of the TS-IFF model with SOTA methods on vehicle detection in V2V4Real. Bold highlights
indicate the best performance, with blue values in parentheses representing the accuracy improvement over the
second-best method. Underlined values indicate the second-best results.

Method V2V4Real
AP@0.5 AP@0.7

Baseline 39.8 22.0
F-Cooper 60.7 31.8
V2Vnet 64.5 34.3
AttFuse 64.7 33.6
V2X-ViT 64.9 36.9
CoBEVT 66.5 36.0

Ours 68.2 (+2.5%) 40.1 (+8.0%)

The results presented in Figure 5 show the evident trend in collaborative perception: as the 356

number of CAVs in the collaborative perception network increases (up to 7 CAVs in the OPV2V dataset 357

and 5 CAVs in the CODD dataset), there is a significant improvement in detection performance. The 358

vehicle detection accuracy (AP@0.5) improved by 26.5% and 31.9% in the two datasets, respectively, 359

while the pedestrian detection accuracy (AP@0.1) increased by 61.9% in the CODD dataset. Meanwhile, 360

we also conducted extensive experiments on the CODD dataset, which contains more pedestrians. The 361

qualitative results are shown in Figure 6, demonstrating that in driving scenarios with blind spots, 362

we can successfully detect pedestrians through collaborative perception. These results show that the 363

detection of small objects benefits significantly from collaborative perception and that our proposed 364

method significantly improves the detection of these small objects. 365
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Figure 5. Effect of CAV numbers on the accuracy of cooperative perception: curves at different thresholds in the
DT and CODD datasets (Viewing in color is recommended for clarity).

Figure 7– 8 present the qualitative visualization results on the DT and CODD simulated datasets 366

as well as the V2V4Real dataset, showcasing multi-vehicle collaborative perception in simulated 367

driving scenarios. As observed in Figure 7, when relying solely on a single central vehicle (without 368

fusion), certain objects in the scene may be misidentified as vehicles, while some distant targets may 369

be entirely missed due to occlusion. As more collaborative autonomous vehicles (CAVs) participate 370

in cooperative perception, the central vehicle gains an expanded field of view and richer sensor data, 371

enabling more accurate and reliable detection of distant objects while reducing false positives and 372

missed detections. Consequently, our model demonstrates outstanding robustness in both simulated 373

and real-world scenarios. 374

Additionally, in the OPV2V simulated dataset, Figure 7(a) illustrates typical qualitative examples 375

where sparse LiDAR inputs lead to occasional false positives and a slight degradation in detection 376

performance. While the model generally performs well in identifying vehicle targets, in scenarios with 377

extreme sparsity or missing information, some non-vehicle objects may be mistakenly classified as ve- 378

hicles, and the detection accuracy for distant or occluded targets is somewhat reduced. This highlights 379

the importance of multi-sensor fusion and collaborative perception in enhancing the comprehensive- 380

ness of scene understanding. In the analysis of the V2V4Real real-world dataset, visualization results 381

reveal that factors such as occlusion, sparse object distribution, and sensor noise in real environments 382

can still affect detection outcomes. Occlusion causes partial loss of point cloud information in certain 383

areas, increasing the difficulty of accurate recognition, while sensor noise may lead to occasional false 384

detections or uncertainties. 385

4.4. Ablation Study 386

To evaluate the impact of the proposed AFSM and DWLM modules on 3D object detection 387

performance, we conducted a series of ablation experiments with 7 CAVs for the OPV2V dataset and 3 388

CAVs for the CODD dataset. In the baseline setup, we excluded the AFSM and DWLM modules and 389

directly fused the intermediate-level features via simple concatenation without generating pseudo- 390

images. We then incrementally activated each module (DWLM and AFSM) to evaluate their individual 391

contribution. All experiments were performed using an SSD detection head. The results, summarized 392

in Table 3, indicate significant performance improvements when the DWLM and AFSM modules are 393

integrated. In particular, for the OPV2V dataset, vehicle detection accuracy increased by 9% at AP@0.5, 394

while pedestrian detection accuracy improved by 18.5% at AP@0.1 for the CODD dataset. We further 395
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Figure 6. Visualization of the results of the TS-IFF model on the CODD dataset. The figure shows a driving scene
with a blind spot where the CARego is able to accurately detect pedestrians and other objects outside its field of
view through collaborative perception with CAR1.

provide statistics on the model’s inference time compared to baseline methods, demonstrating that the 396

proposed approach achieves notable performance gains while keeping computational overhead within 397

a practical and acceptable range, thus supporting its feasibility for real-world deployment. 398

Figure 7. TS-IFF Visualization of the effects of collaborative perception as the number of CAVs increases. The
figure shows the prediction results for the DT sub-dataset in subfigures a) to e) and for the CODD dataset
in subfigure f). Ground truth (GT) is denoted by green rectangles, while predictions are shown in red. The
correspondence between GT and predictions is highlighted by yellow rectangles. These images are best seen in
color.

In a subsequent ablation study, we investigated the impact of fusing pseudo-images with different 399

resolutions on 3D object detection in the environment. Consistent with previous experiments, we used 400

7 CAVs for the OPV2V dataset as the upper bound for the ablation study, and 3 CAVs for the CODD 401

dataset. The results presented in Table 4, show that in the OPV2V dataset, the fusion of intermediate 402

features with pseudo-images achieves an average precision of 94.1% for vehicle detection at AP@0.5, 403

representing an improvement of 17.4%. For the CODD dataset, which focuses specifically on pedestrian 404

detection, the fusion of intermediate features with pseudo-images achieves an average precision of 405
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Figure 8. TS-IFF visualization results in two real-world scenarios. Ground truth (GT) is represented by green
rectangles, while predictions are indicated by red rectangles. The correspondence between GT and predictions is
highlighted with yellow rectangles. These images are best viewed in color.

69.1% for small object detection (e.g., pedestrians) at AP@0.1, nearly a 40% improvement compared to 406

the baseline experiment. 407

Table 3. Ablation study to investigate the impact of the proposed modules, AFSM and DWLM, on network
performance without the fusion of pseudo-images. Baseline represents collaborative results without these modules.
Best results are highlighted in bold, ↑: Larger values are better. ↓: Smaller values are better.

Model AFSM DWLM OPV2V
(AP@0.5↑)

CODD
(AP@0.1↑) Para. (M)

Ave Infer.
Time

(ms/frame)

Baseline × × 69.8 24.7 6.58 15.63

× ✓ 70.2 26.6 7.03 26.18
TS-IFF ✓ × 72.1 27.8 7.27 27.33

✓ ✓ 76.7 30.3 8.16 29.60

Overall, the results presented in Table 4 indicate that increasing the resolution of pseudo-images 408

consistently improves detection accuracy, especially for small objects such as pedestrians. However, 409

the performance gains tend to plateau after reaching a certain resolution, with diminishing returns 410

and limited impact on overall perception performance from further increases. Therefore, in practical 411

applications, selecting an appropriate resolution is crucial to achieve optimal system performance. 412
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Table 4. Ablation study exploring the impact of intermediate feature resolution. Baseline represents collaborative
results without fusing pseudo-images. The PI column represents the use of pseudo-images and their resolution
with respect to intermediate features. The highest-performing results in each setting are clearly emphasized in
bold for comparison.

Model PI (C×H×W) OPV2V (AP@0.5↑) CODD (AP@0.1↑)

Baseline – 76.7 30.3

TS-IFF

C× (H/2)× (W/2) 85.2 62.9
(C/2)× (H/2)× (W/2) 73.2 50.3

C× H ×W 94.1 65.9
(C/2)× H ×W 86.3 55.7

C× (2H)× (2W) 90.7 69.1

In V2V collaborative perception networks, communication bandwidth serves as a vital factor 413

that directly influences both the speed and efficiency of information transmission between connected 414

autonomous vehicles. To thoroughly assess the performance of our proposed method in terms 415

of network communication bandwidth consumption, we conducted a series of detailed ablation 416

experiments using two representative simulated datasets. These experiments aimed to explore and 417

analyze the relationship between detection performance and bandwidth requirements.The results 418

are presented in Figure 9 a. It is evident that our method achieves the highest target recognition 419

accuracy, though this comes with relatively high bandwidth use. However, as the feature resolution 420

decreases, an inevitable but acceptable decline in AP is observed. We speculate that more aggressive 421

downsampling leads to greater loss of key point information, reducing recognition accuracy. From the 422

perspective of collaborative perception, the trade-off between performance and bandwidth, as shown 423

in Figure 9 b, is reasonable. 424

Moreover, in the small target pedestrian recognition experiment, when we reduced the number of 425

feature channels and resolution to half of the original, the resulting detection accuracy and bandwidth 426

overhead reached an optimal balance. This also suggests that even with simple downsampling 427

for feature compression, our model can still maintain optimal recognition accuracy for small target 428

detection. 429

Figure 9. Ablation results showing the relationship between performance and bandwidth of the latest models
on two datasets. a) Results on OPV2V. b) Results on CODD. Red and blue points represent TS-IFF performance
under different resolutions. Best viewed in color.

5. Conclusions 430

In this paper, we introduce a novel perception architecture, TS-IFF, which integrates multiple 431

feature types to improve collaborative perception effectiveness. Specifically, we propose a two- 432

stage intermediate feature fusion strategy that optimizes and integrates intermediate features across 433
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different levels to enhance perception performance. Additionally, we design a feature weight learning 434

mechanism to adaptively fuse high-resolution pseudo-images with intermediate features. Pseudo- 435

images preserve the spatial structure and geometry of point clouds, while intermediate features 436

capture multi-scale contextual semantics at multiple levels. Experimental results demonstrate that the 437

TS-IFF model excels in detecting small 3D objects, such as pedestrians, while maintaining lightweight 438

bandwidth requirements. This effectively addresses the limitations of traditional non-fusion methods 439

under occlusions and bandwidth constraints. 440

While our method achieves a good balance between perception accuracy and communication 441

efficiency, its performance in extremely complex urban scenarios still faces robustness challenges. In 442

future work, we plan to further reduce bandwidth consumption and improve system robustness by 443

developing a more efficient autoencoder-based encoding and decoding mechanism, enabling optimal 444

compression of features while preserving critical perception performance. 445
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The following abbreviations are used in this manuscript: 463

464

V2V vehicle-to-vehicle
AVs autonomous vehicles
CAVs connected autonomous vehicles
TS-IFF two-stage intermediate-level feature fusion
DWLM dynamic weight learning mechanism
AFSM adaptive feature selection module
SSD single shot detector
FPN feature pyramid network
VFE voxel feature encoding
BEV bird’s-eye-view
3D CNN 3D convolutional neural network
2D CNN 2D convolutional neural network
DT default towns
CC culver city
GT ground truth
PI pseudo-images
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