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Abstract—This paper discusses the use of Binary Partition Trees
(BPTs) for object detection. BPTs are hierarchical region-based
representations of images. They define a reduced set of regions that
covers the image support and that spans various levels of resolu-
tion. They are attractive for object detection as they tremendously
reduce the search space. In this paper, several issues related to the
use of BPT for object detection are studied. Concerning the tree
construction, we analyze the compromise between computational
complexity reduction and accuracy. This will lead us to define two
parts in the BPT: one providing accuracy and one representing the
search space for the object detection task. Then we analyze and
objectively compare various similarity measures for the tree con-
struction. We conclude that different similarity criteria should be
used for the part providing accuracy in the BPT and for the part
defining the search space and specific criteria are proposed for each
case. Then we discuss the object detection strategy based on BPT.
The notion of node extension is proposed and discussed. Finally,
several object detection examples illustrating the generality of the
approach and its efficiency are reported.

Index Terms—Binary partition tree, hierarchical representation,
image region analysis, image representations, image segmentation,
object detection.

I. INTRODUCTION

M OST object detection strategies rely on the comparison
of the content of an image with an object model at dif-

ferent locations, orientations and resolutions [3]. Typically, ob-
ject detection algorithms scan the image at numerous positions
and scales looking for the possible representations of the object
in the scene [2], [27], [33]. This detection process requires both
a useful object model and a suitable image representation. Ide-
ally, the object model should characterize in a simple manner all
the variability of the object to be detected. In turn, the image rep-
resentation should compact in the smallest possible number of
elements all the information in the scene, while being as generic
as possible in order to be able to reuse the representation in dif-
ferent contexts (e.g.,: searching in the same image for different
objects). Common image representations are: i) pixel-based rep-
resentations: the image is understood as a set of independent
pixels; ii) block-based representations: the image is seen as a
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set of rectangular arrays of pixels; iii) region-based representa-
tions: the image is represented as a set of homogeneous con-
nected components; and iv) compressed domain representation:
the image is seen as a set of coefficients of a particular transform
domain, such as the DCT domain.

While pixel- and block-based representations are simple to
define, they yield a large number of elements to be analyzed.
On the contrary, the definition of region-based and compressed
domain representations involves complex image processing op-
erations but largely reduces the analysis space. Given this com-
plexity, there is an interest on reusing the representation in sub-
sequent analysis. Therefore, the definition of an image repre-
sentation for object detection purposes can be seen as finding a
compromise between which analysis steps can be done in a sys-
tematic and universal way and which ones actually depend on
the specific object to be detected.

Region-based image representations (e.g., [23]) are a good
framework for solving this compromise. They provide a sim-
plification of the image in terms of a reduced number of rep-
resentative elements, which are the regions. In a region-based
image representation, objects in the scene are obtained by the
union of regions in an initial partition. Since an arbitrary par-
tition may contain about a hundred of regions, the number of
different possible unions among these regions can be large. Ac-
tually, a region-based representation implies a compromise be-
tween accuracy (related to the number of regions in the parti-
tion) and processing efficiency (related to the number of unions
of regions to be analyzed).

One approach to palliate this problem is to reduce the number
of possible region unions by proposing the most likely ones
given a specific criterion. This is performed by creating a hi-
erarchy of regions representing the image at different resolu-
tion levels. Note that in this work we are not referring to multi
resolution as a multiple representation in which, at each reso-
lution, the image is represented by a different number of pixels
(see [6] for a general reference on multi resolution analysis). In
the region-based framework, the multi resolution notion is re-
lated to the number of regions at each level. This region-based
multi resolution allows analyzing the image at multiple scales
(see [23] for a specific reference on region-based approaches).
The idea is to have not only a single partition but a universe of
partitions representing the image at various resolutions. In this
context, object detection algorithms can be driven to only ana-
lyze the image at those positions and scales that are proposed by
the regions in the hierarchy. Moreover, regions represent areas
of support which allow improving the robustness of the estima-
tion of complex features that can be used in the object detection
process.

From this set of regions at various resolution levels, an ap-
plication dependent algorithm can select the most convenient
one(s) for its concrete application. The selected region(s) may
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directly represent the object to be detected or only provide a
good approximation. This approximation could be used as an
anchor point for launching a refining process leading to the final
detected object.

There exist different approaches to hierarchical region-based
image representation, usually related to tree data structures. In
these structures, tree nodes are associated with regions in the
image whereas tree links represent the inclusion relation. In
the quad-tree image representation [20], [26] the image is re-
cursively subdivided into four equal rectangular regions (quad-
rants) and, therefore, each node has either four children or no
children (a leaf). As the subdivision strategy does not depend
on the image content, many false contours are introduced in the
image representation and it is difficult to use it for general ob-
ject detection tasks.

The min-tree and max-tree representations [24] adapt to
the image content because they describe the image flat zones
(largest connected components of the image where the image
is constant). The leaves of these trees are the regional minima
and maxima of the image, respectively, for the min-tree and the
max-tree, whereas the remaining nodes represent flat zones and
are ordered by the gray level value differences between regions.
Therefore, min-tree and max-tree representations are devoted
to dark and bright image components. As a result, the regions
associated with their nodes may not conform to real objects in
the scene. Note, however, that real objects may not coincide
with minima or maxima of the image.

The component tree [18] or tree of shapes [4] merges the
min-tree and max-tree into a single representation. It allows
representing an image in such a way that maxima and minima
can be simultaneously handled. Nevertheless, since the resulting
tree is still extremum oriented, nodes commonly do not repre-
sent objects in the scene.

On the contrary, the Binary Partition Tree (BPT) [22] reflects
the similarity between neighboring regions. It proposes a hier-
archy of regions created by a merging algorithm that can make
use of any similarity measure. Starting from a given partition
(that can be as fine as assuming that each pixel or each flat zone
is a region), the region merging algorithm proceeds iteratively
by 1) computing a similarity measure (merging criterion) for
all pair of neighbor regions, 2) selecting the most similar pair
of regions and merging them into a new region, and 3) updating
the neighborhood and the similarity measures. The algorithm it-
erates steps 2) and 3) until all regions are merged into a single
region.

The BPT stores the whole merging sequence from an initial
partition to the one-single region representation. The leaves in
the tree are the regions in the initial partition. A merging is repre-
sented by creating a parent node (the new region resulting from
the merging) and linking it to its two children nodes (the pair of
regions that are merged). An example of BPT is shown in Fig. 1.
As with the other tree representations, the nodes of the tree rep-
resent regions and the links the inclusion relationship.

The BPT represents a set of regions at different scales of res-
olution and its nodes provide good estimates of the objects in
the scene. As previously said, classical object detection algo-
rithms scan the image at numerous positions and scales looking
for the possible representations of the object in the scene. Using

Fig. 1. Example of BPT and illustration of its ability to represent objects in
the scene: (a) Original image, (b) Initial partition where each region has been
filled with its mean color, (c) Binary Partition Tree and examples of nodes rep-
resenting objects in the scene.

the BPT representation, the image has to be analyzed only at
the positions and scales that are proposed by the BPT nodes.
Therefore, the BPT can be considered as a means of reducing
the search space in object detection tasks.

In this paper, we study the use of BPT for object detection.
We propose strategies to provide accuracy (definition of the ini-
tial partition) and efficiency (selection of the nodes to be ana-
lyzed) to the representation. To this goal, we will highlight two
set of nodes in the BPT, a set providing accuracy and another
set defining the search space. We also study various similarity
criteria that can be used for the BPT construction and objec-
tively assess their performances. Finally, we propose a strategy
relying on the notion of extended node to perform the detection
of objects and illustrate the usefulness of this approach for the
specific application of face detection.

This paper is organized as follows. The following section dis-
cusses the BPT representation and the associated accuracy and
efficiency compromise. Section III presents the methodology
that has been used to perform the experiments. Section IV fo-
cuses on the BPT construction and, in particular, on the possible
similarity criteria that can be used. The generic strategy used for
object detection is proposed and demonstrated in Section V. Fi-
nally, conclusions are reported in Section VI.

II. IMAGE REPRESENTATION BASED ON

BINARY PARTITION TREE

The image representation and its main features in the context
of object detection are illustrated in Fig. 2. The BPT is con-
structed from its leaves by successive merging steps. The leaves
of the tree form a partition of the space that is commonly named
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Fig. 2. Image representation based on the BPT.

the initial partition. As mentioned in the introduction, the ini-
tial partition can be made of individual pixels or of flat zones.
This is, however, neither very useful nor practical in most object
detection applications as the size of the resulting BPT is quite
large. In most applications, the use of a very accurate partition
with a fairly high number of regions is more appropriate. This
initial partition can be created by any segmentation algorithm.
For the experiments reported in this paper, the initial partition is
created by the same merging algorithm as the one used to create
the BPT (see Section IV). If this merging algorithm is used to de-
fine a partition, a stopping criterion is assessed at each merging
step. Since in the context of object detection this partition is used
to ensure an accurate representation of the objects in the scene,
this partition is called in the sequel the accuracy partition (see
Fig. 2).

The BPT represents the sequence of merging of neighboring
regions assuming that the most similar pair of regions is merged
first. This image representation is a hierarchical region-based
representation of the image. At lower scales, that is, at scales
close to the initial partition, one will find a very large number
of small regions. This set of nodes is important to provide infor-
mation about the image details and eventually accuracy to the
image representation. As regions are merged, higher scales are
created. They represent regions of the image that are progres-
sively larger and possibly more meaningful. Note that, as the
region size increases, it becomes possible to robustly measure
some of the region features and to analyze them.

In the context of object detection, it is useless to analyze
very small regions because they cannot represent meaningful
objects and, furthermore, measurements will not be reliable.
Moreover, the number of very small regions may be fairly high
and if the application involves severe restrictions on the compu-
tational complexity of the object detection scheme, the search
space should be as small as possible. As a result, we distinguish
two zones in the BPT: the accuracy space providing preciseness
to the description (lower scales) and the search space for the
object detection task (higher scales). A way to define these two
zones is to specify a point of the merging sequence starting from
which the regions that are created are considered as belonging
to the search space. A specific point of the merging sequence is

obtained by assessing a stopping criterion. The partition that is
obtained at this point of the merging process is called the search
partition (see Fig. 2).

Within the framework of the BPT representation, the work in
[15] adopts a different approach to tackle the trade-off between
accurate description and usefulness for object detection. In it, a
BPT is created having as initial partition the result of a water-
shed (that is, a partition containing a large number of regions,
typically around 10.000). Then, the evolution of the merging
criterion is analyzed at every branch of the BPT. Based on the
so-called reluctancy of the merging, subbranches are removed
from the representation; that is, the BPT is locally simplified.
Although this representation has been proposed as basis for se-
mantic object extraction [16], from our perspective, the simpli-
fication approaches proposed in [15] do not fulfill the require-
ments to define either an accuracy or a search partition (reported
values for the so-called conservative algorithm lead to partitions
of around 300 regions, whereas those for the so-called bold al-
gorithm lead to partitions of less than ten regions).

Section IV discusses the creation of the image representation
exemplified in Fig. 2. It focuses in particular on how to define
the accuracy and the search partitions as well as on the possible
similarity and stopping criteria for the merging steps.

III. METHODOLOGY FOR THE EXPERIMENTS

To assess the quality of the representation, we will present
in Section IV various criteria to build the tree and we will an-
alyze them in terms of partition-based metrics. Throughout the
paper, if the proposed experiment allows it, we use three dif-
ferent databases for assessment purposes. The objects in these
databases have been manually segmented and the resulting ob-
ject partitions are used as ground truth in the experiments.

• To analyze generic features, a set of 100 images from the
©Corel image database is used. The set contains ten images
of ten different complexity classes which are grouped in
the following way: tigers, horses, eagles, mountains, fields,
cars, jets, beaches, butterflies and roses. The objects in this
Corel subset (160 in total) have been manually segmented
in the context of the SCHEMA project (http://www.iti.gr/
SCHEMA/).

To analyze specific applications, two additional databases are
used.

• A set of 100 images from the MPEG-7 database [19] has
been selected. These images contain human faces in sce-
narios of different complexity that have been manually seg-
mented leading to a total of 116 objects.

• A set of 45 images from a traffic sign database [14] has
been selected. The set contains 15 images of three different
types of sign shapes (square, triangle and circle). They have
been manually segmented leading to a total of 45 objects.

There exist several proposals for comparing image partitions
[8], [31]. Most of these techniques compare two simple parti-
tions (that is, partitions with only a few regions) where each
region represents an object in the scene. This type of partition is
commonly named object partition. In our case, in addition to this
type of partition comparison, we want to asses how well the re-
gions in a dense partition (that is, a partition with a large number
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Fig. 3. Illustration of asymmetric distance: (a) Original image. (b) Example
of search partition (regions filled with their mean value). (c) Object partition.
(d) Regions from the search partition partially contained in the object region.
(e) Pixels requiring a label change.

of regions) accommodate to the shape of the objects represented
in a ground truth object partition.

We have selected the approach proposed in [7] since it pro-
vides a single framework for both cases. Initially, a symmetric
distance is proposed in [7], , which is defined in
terms of the number of pixels whose labels should be changed
between regions in to achieve a perfect matching with (
and become identical). In our work, the symmetric distance
will be used for comparing two object partitions (for in-
stance, a ground truth object partition and the object represen-
tation obtained by selecting a node in the BPT, as in Section V).

The definition is extended in [7] to an asymmetric distance,
, in a way such that the distance between a partition

and any partition , finer than , is zero. A partition is
said to be finer than a partition if and only if the intersection
of and is equal to . Therefore, the asymmetric partition
distance is defined as the minimum number of pixels whose la-
bels should be changed so that partition becomes finer than
partition . In our work, the asymmetric distance will be used
for assessing how well an object partition can be matched
by the result of merging regions from a denser partition (for
instance, a ground truth object partition and a search partition,
as in Section IV).

In [7], the number of label changes for both distances is nor-
malized by the image size to obtain the final distance values. In
our work, given that we are always using a ground truth object
partition, we can normalize the distance values using the object
size. An example of how the asymmetric distance is computed
is presented in Fig. 3. Partitions shown in Fig. 3(b) and (c) are
compared in terms of the number of pixels whose labels should
be changed so that partition (b) is finer than (c). Fig. 3(e) shows
the pixels that require a label change.

IV. CREATION OF THE BPT

A. Merging Criteria and Region Model

The creation of a BPT relies on two major notions: the
merging criterion and the region model [22]. The merging
criterion defines the similarity of neighboring regions and,
therefore, the order in which regions are going to be merged.
The region model specifies how regions are represented and
how to compute the model of the union of two regions.

In this work, the region model is assumed to be constant
within the region , and is the vector formed by the average
values of all pixels , in the YCbCr color space

(1)

where is the number of pixels of region .
The similarity measure or merging criterion is computed

for each pair of neighboring regions, and , according
to a selected homogeneity criterion. The basic criterion used
in most still image segmentation approaches is color homo-
geneity. Some of the measures are size independent, like the
mean squared error (MSE) between the merged region and its
model [12]

(2)

or the Euclidean distance (ED) between the region models [34].
In general, size independent color-based measures tend to

produce partitions with few large regions and a large number
of extremely small regions. Trying to avoid this problem, other
measures have been proposed taking into account the region
sizes, as the squared error (SE) [12]

(3)

or the weighted Euclidean distance (WED) [1]. When using
these size dependent criteria, the cost of merging for small re-
gions decreases, forcing small regions to merge together first
and encouraging the creation of large regions.

As a compromise between the two types of measures, two
other measures are analyzed here. They compare the models
of the original regions with the model of the region obtained
after the merging [12]. The weighted squared distance between
region models (WSDM) is defined as

(4)

and the weighed Euclidean distance between region models
(WEDM) as

(5)

Finally, and based on experimental evidences, we observed
that while luminance information is crucial to define visually
relevant contours, chrominance information is paramount in the
definition of objects. Since our final goal is to have regions in the
search area being as close as possible to objects in the scene, we
introduce another distance modifying the WEDM by increasing
the relevance of chrominance information. We also introduce a
second change based on the use of contour information. Since
most ‘real’ objects are regular and compact (that is, tend to have
simple contours), the analysis of shape complexity can provide
additional information for the mergings. Therefore, we include
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Fig. 4. Relevance of the image components and evolution of region sizes during
the merging process using the WEDM. Original image (a) and partitions with
(b) 500 and (c) 100 regions.

in the similarity measure a term related to the contour com-
plexity of neighboring regions.

As a consequence, the proposed merging criterion (which
implies a normalized weighted Euclidean distance between
models with contour complexity and, for simplicity, is referred
to as NWMC in the sequel) has two terms. One term is based
on color similarity. The color difference in each component
is normalized by the dynamic range of the component in the
image. This way, it adapts to the chrominance variability of the
image. For each image component, we compute the weighted
Euclidean distance between models normalized by the compo-
nent dynamic range

(6)

where w is a vector being the inverse of the dynamic range
of the image component (that is, the difference
between the Max value and the Min value of the image compo-
nent).

The second term is related to the contour complexity of
the merged regions. After analyzing several approaches, the
adopted measure computes the increase in perimeter of the new
region with respect to the largest of the two merged regions:

, where and are the
and perimeters, respectively, and is the common

perimeter between the regions. The term that measures contour
complexity is

(7)

Fig. 5. Difference between the asymmetric distance values computed for dif-
ferent merging criteria on the COREL subset. (a) MSE-WEDM. (b) SE-WEDM.
(c) WSDM-WEDM. (d) NWMC-WEDM.

which sets to 0 negative increments that occur when a region
is partially or totally included in the other. Color and contour
similarity measures are linearly combined to form the NWMC

(8)

In the sequel, these distances will be investigated in the con-
text of BPT construction for object detection. Note that in the
NWMC, there is a parameter that has to be set. The sensitivity
of this parameter will be analyzed at the end of this section. As
it will be shown (see Fig. 14), the sensitivity of the segmenta-
tion process is very low with respect to variations of the alpha
parameter around and, therefore, this value is used
throughout the sequel.

B. Definition of the Merging Criterion for the Accuracy Area

In Sections IV-B and IV-C, we analyze the merging and
stopping criteria, respectively, to create the accuracy area and
the search partition. In this analysis, the starting point for the
merging algorithm is the pixel level. Almost all merging criteria
that are proposed could be applied to define a useful accuracy
partition using a simple stopping criterion (such as reaching a
fair number of regions; typically, 500 regions). For simplicity,
we will discuss the creation of the accuracy area and search
partition (Experiment 1–3) and, once the merging criterion will
be selected, we will assess the quality of the resulting accuracy
partition (Experiment 4).

Experiment 1: To quantify the performance of the similarity
measures, different merging criteria are compared on the 100
images subset of the Corel database (see Table I). In this exper-
iment, to decouple the effects of the merging and stopping cri-
teria (that is, of the creation of the accuracy area and the search
partition), a simple stopping criterion is used: merge up to 50
regions. The comparison is performed in terms of mean values
of the final PSNR (between the image created by filling each re-
gion with its model and the original image) and of the variance
of the region sizes.

In terms of PSNR, the WEDM criterion improves all criteria
except the WSDM which is only slightly better. However, these
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Fig. 6. Comparison of the different stopping criteria. First row: original images. Second row: SC1: � � ��. Third row: SC2: ���� � �	 dB. Fourth row:
SC3: � � ��
�. Fifth row: AMC(m).

TABLE I
MERGING CRITERIA COMPARISON ON THE COREL SUBSET. PSNR VALUES ARE

GIVEN IN DECIBELS. � VALUES ARE DIVIDED BY 
�

results for the WEDM are obtained while largely outperforming
the other criteria in terms of variance of the region sizes. As pre-
viously commented, this is a relevant feature since it ensures that
regions obtained with the WEDM will be adequate for a subse-
quent robust feature estimation: large enough and homogenous
in size while presenting similar PSNR values than previous mea-
sures and leading to visually good representation. This behavior
is illustrated in the second row of Fig. 6 with five images of dif-
ferent complexities. Regarding the NWMC criterion, note that it
yields the worst results in terms of PSNR. This is due to the fact
that this criterion tends, as commented previously, to create re-
gions with smooth contours which are not common in the lower
scales of the image representation.

Fig. 4 illustrates the behavior of the WEDM as well as the im-
portance of each image component in (5). In this example, the
plots show the evolution of the similarity values for the merging

process starting from an accuracy partition containing 500 re-
gions [see Fig. 4(b)] up to achieving 100 regions [see Fig. 4(c)].

The plot on the top shows the value of the global merging
order; that is, combining the three image components as de-
scribed by (5). The next three plots show the percentage of
each component in the global measure given by (5). Note that
most of the mergings are performed based on luminance simi-
larity (the luminance percentage is high) and the contribution of
the chrominance components remains quite stable through the
merging sequence.

Experiment 2: In this experiment, the quality of the parti-
tions obtained under the conditions of Experiment 1 is assessed
in terms of their accuracy representing objects. We use the 160
objects manually segmented from the Corel database subset.
The asymmetric distances between the partitions obtained with
each of the five merging criteria (using as stopping criterion

regions) and the object partition (ground truth) are
computed for each object. Fig. 5 shows the difference between
the asymmetric distance values obtained using the four previous
merging criteria and the WEDM merging criterion for each one
of the 160 objects of the Corel database subset. Statistics of
each merging criterion are presented in Table II. Note that, in
this case, the global behaviors of the SE and WEDM criteria are
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TABLE II
MERGING CRITERIA COMPARISON ON THE COREL SUBSET. ASYMMETRIC

DISTANCE MEAN AND VARIANCE VALUES ARE MULTIPLIED BY ��

very similar, outperforming those of MSE, WSDM and NWMC
criteria.

Summarizing the results of the previous experiments, it can
be observed that the WEDM merging criterion largely outper-
forms the MSE, WSDM and NWMC criteria, while improving
the SE one. Therefore, we propose the WEDM as merging cri-
terion for the definition of the accuracy area of the BPT.

C. Definition of the Search Partition: Stopping Criterion

As explained in Section II, we distinguish two zones in the
BPT: the accuracy space providing preciseness to the descrip-
tion and the search space for the object detection task. These
zones are specified by a stopping criterion that defines a point
of the merging sequence or equivalently a search partition that
is obtained at this point of the merging process.

Typical stopping criteria deal with reaching an a priori value
of a parameter such as the final number of regions in the par-
tition or the PSNR between the image created by filling each
region with its model and the original image. However, as we
are defining the search space above the search partition, the ob-
jective is to create regions corresponding to parts of the objects
in the scene whilst avoiding the creation of regions spanning
more than one object. Thus, the stopping criterion has to take
into account the complexity of the scene.

We propose a procedure to estimate this complexity based on
the accumulated merging cost; that is, on the measure adopted
from the set of similarity measures defined in Section IV-A.
Let be the cost of the merging at iteration ; that is, the
similarity measure between the regions merged at iteration .
The accumulated merging cost (AMC) is defined as

(9)

The stopping criterion is defined as a fraction
of the total AMC (which is , where N is the
number of regions in the initial partition). This criterion stops
the merging process at iteration , where

(10)

Note that if the similarity measure used in the merging
process is the weighted square difference of region models
(WSDM) [12] and the initial partition defines each pixel as a
different region, then the accumulated cost equals the squared
error and the stopping criteria becomes a threshold relative to
the maximum PSNR.

A stopping criterion based on the analysis of the accumu-
lated cost was also proposed in [1]. However, this approach is
not useful in our case since the method in [1] aims at achieving
final partitions with a very reduced number of regions. In turn,

Fig. 7. Analysis of the� impact in terms of mean values of the asymmetric
distance, PSNR and number of regions of the partitions obtained with the Corel
database subset.

as commented in Section II, the work in [15] proposed to ana-
lyze the evolution of the similarity measure in the context of the
BPT representation. As previously, the final number of regions
reported in [15] makes this technique not useful for our purposes
(the conservative policy leading to around 300 regions, whereas
the nonconservative one leading to less than ten regions).

Fig. 6 compares, for a set of images with different complexity,
the results obtained by the most common stopping criteria: final
number of regions , final PSNR and the proposed AMC
criterion. In all cases, the merging criterion is the WEDM mea-
sure. The second row presents the partitions obtained using as
stopping criterion a fixed number of regions, . In the
third row, the final PSNR is fixed to 26 dB whereas the fourth
row shows the results for the new criterion, with .
As it can be seen, the proposed criterion adapts to the image
complexity; that is, it avoids oversegmentation as well as un-
dersegmentation effects, obtaining partitions in which the main
objects in the scene are correctly represented.

The last row of Fig. 6 shows the accumulated costs plotted for
each iteration of the merging process, starting with an accuracy
partition composed of 500 regions. Note that images with dif-
ferent complexity lead to ACM(m) plots of different behavior.
Plots also show the thresholds obtained for . This
value has been selected after analyzing the robustness of the
system using the Corel database subset (in terms of final PSNR,
average number of regions and average distance to object parti-
tions) with respect to variations of , as presented in Fig. 7.
As it can be seen, the selected value represents a good compro-
mise among the assessed features since it leads to a low asym-
metric distance and a high enough PSNR values while yielding
a reasonably small number of regions (less than 100).

Experiment 3: The proposed stopping criterion is quantita-
tively assessed, as in Section IV-B, by using the Corel subset
and the asymmetric distance (see Section III). In this case, the
similarity measure is the WEDM and we compare as stopping
criteria a fixed , a fixed PSNR and the proposed AMC. The
used and PSNR values are the mean values obtained by
the AMC criteria over the Corel database subset (
and dB).

Fig. 8 shows the difference between the asymmetric distance
values obtained using the two previous stopping criteria with re-
spect to the AMC stopping criterion for each one of the Corel
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Fig. 8. Difference between the asymmetric distance values. (a)� ����.
(b) PSNR-AMC.

TABLE III
STOPPING CRITERIA COMPARISON ON THE COREL SUBSET. ASYMMETRIC

DISTANCE MEAN AND VARIANCE VALUES ARE MULTIPLIED BY ��

Fig. 9. Analysis of the impact of the number of regions in the accuracy parti-
tion.

160 objects. Notice that, for complex images, the WEDM cri-
terion outperforms the criterion. This is the case of the
classes tigers and horses where the amount of regions is too
low producing undersegmented results that lead to higher asym-
metric distances [see examples in Fig. 6(a) and (d)]. In turn, for
simple images, the WEDM criterion outperforms the PSNR cri-
terion. This is the case of the classes eagles and jets where the
selected PSNR is too low producing undersegmented results that
lead to higher asymmetric distances [see examples in Fig. 6(c)
and (e)].

The statistics of each stopping criterion are presented in
Table III. It can be concluded that the AMC stopping criterion
(computed over the WEDM merging criterion) outperforms the
PSNR criterion, while slightly improving the results obtained
with the criterion.

As it has been shown, the behavior of the AMC criterion can
be, in several cases, approximated by the criterion. This
is the reason why we have proposed to define the accuracy par-
tition by a fixed (and rather large) number of regions. In turn,
the ACM criterion is computed starting from this accuracy par-
tition. The accuracy partition represents the highest resolution
in the hierarchy and, therefore, should ensure a sufficient defi-
nition in the scene representation. We analyze this point in the
next experiment.

Experiment 4: The accuracy partition is assessed by seg-
menting the Corel database subset, using the WEDM merging
criterion and the stopping criterion. Fig. 9 presents, for dif-
ferent values of the final number of regions, the mean values of
the PSNR corresponding to the accuracy partitions and of their
asymmetric distance with respect to the Corel database subset.
As it can be seen, the evolution of both parameters is smooth and
steady. For the selected number of regions (500), the obtained
values are 31 dB and 0.057, respectively, which, as it is shown

Fig. 10. Example of priority values used at each step during the merging
process to build a BPT from a search partition with 100 regions.

Fig. 11. Search space of the BPT created with NWMC.

Fig. 12. Search space of the BPT created with WEDM.

through the various experiments in this paper, represent a good
compromise.

D. Definition of the Search Space of the BPT

Here, we analyze the construction of the hierarchical struc-
ture from the regions defined by the search partition. The
discussion is centered on the similarity measure. Ideally, nodes
in the tree defining the search space should be objects or
parts of objects with a semantic meaning. Therefore, the simi-
larity measure should be related to a notion of object. Several
approaches to segmentation try to create ‘meaningful’ parti-
tions incorporating geometric features into the segmentation
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Fig. 13. Face nodes obtained with a criterion based on equally weighted components: row (a) Original images, row (b) WEDM, row (c) a criterion based on
normalized components, and row (d) a combination of color and contour complexity: NWMC.

process, like measures of proximity, compactness, inclusion or
symmetry (see [1] and [11]). However, the integration of this
information is difficult to analyze and evaluate, since there is
a strong overlap between various geometrical features (e.g.,
adjacency, contour complexity and quasi-inclusion). Moreover,
in some cases the homogeneity assumptions implied by these
features are too strong to lead to generic segmentations; that
is, the resulting partitions are already biased to a specific type
of object. This analysis led us to the proposal of the NWMC
criterion defined in Section IV-A

Fig. 10 shows the priority values for the sequence of mergins
performed to create the upper part of BPT for the image and
the search partition presented in Fig. 4(a) and (c), respectively,
using the NWMC criterion. The plots represent the combined
measure, the percentage of the normalized color measures for
each component and the percentage of the contour complexity
term. The use of the term related to contour complexity favors
the merging of regions with partial or total inclusions, unless
they are very different in color. The first merging steps are per-
formed mainly based on luminance differences. Note that near
iteration number 30, 40, and 50, the merging steps are performed
between regions that produce a large increase in perimeter but
are very similar in color and that were not merged before due to
the high value of the contour term.

Figs. 11 and 12 present an example of BPT above the search
partition created with the NWMC and the WEDM criteria, re-
spectively. These images exemplify the case of objects in the
scene being correctly gathered in single nodes if the NWMC
is used. Using the WEDM criterion, the object information is
split among various nodes. To clearly illustrate this point, nodes
related to parts of the human faces and their associated sub-
trees are shown. Note that each face is correctly represented
with a single node in the NWMC case (see Fig. 11) whereas
in the WEDM case, neither of the two faces is represented with
a single node and face regions are split among various nodes
(see Fig. 12).

Fig. 14. Mean value of the asymmetric distance computed on the Corel data-
base subset for different � values.

More examples of the improvement achieved with the
NWMC are presented in Fig. 13. In this case, we do not present
the complete BPT but only those nodes related to the object
under study. Row (a) in Fig. 13 shows the original images. In
turn, row (b) presents the nodes that represent object regions
for the original WEDM criterion [(5)], row (c) those nodes
obtained by the criterion based on normalized color but without
the contour complexity term (6), and row (d) those nodes
obtained by the proposed NWMC criterion (8), respectively.
As it can be seen, for this type of semantic objects, the rational
behind the definition of the new criterion works perfectly: the
use of a normalized color term already improves the quality of
the created nodes [row (c)] which is further improved by the
inclusion of the contour complexity term [row (d)].

Experiment 5: The behavior illustrated in the previous figures
is further analyzed in this experiment by using the Corel data-
base subset. For the whole subset, the node in the BPT leading to
the smallest symmetric distance with respect to each manually
segmented object has been selected. Statistics of the symmetric
distances achieved with the nodes selected from BPTs created
using the WSDM, WEDM and NWMC merging criteria are pre-
sented in Table IV. Note that, in the case of more generic objects
as those represented in the Corel subset (not all of them homoge-
neous in color), the NWMC also outperforms both the WSDM
and the WEDM criteria.

Experiment 6: The next experiment compares the use of the
WSDM, WEDM and NWMC for the creation of the search
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TABLE IV
SYMMETRIC DISTANCE OVER THE BPT ON THE COREL SUBSET. MEAN AND

VARIANCE VALUES ARE MULTIPLIED BY ��

TABLE V
SYMMETRIC DISTANCE OVER THE BPT ON THE MPEG-7 SUBSET. MEAN AND

VARIANCE VALUES ARE MULTIPLIED BY ��

space of the BPT with the MPEG-7 face database subset (see
Section III). As previously, for the whole subset, the node in
the BPT leading to the smallest symmetric distance with re-
spect to each manually segmented human face has been se-
lected. Statistics of the symmetric distances achieved with the
nodes selected from BPTs created using the WSDM, WEDM
and NWMC merging criteria are presented in Table V. As it
can be seen, results confirm the improvements introduced by
the NWMC criterion. Nevertheless, it has to be noticed that the
symmetric distances achieved with the MPEG-7 database are
larger (almost the double) than those obtained with the Corel
database. This is due to the further difficulty of the MPEG-7
database scenarios, in which all images are complex and sev-
eral ones presenting illumination problems.

In order to complete the study of the image representation
creation, here we analyze the impact of the value of the param-
eter in the performance of the NWMC merging criterion.

Experiment 7: In this experiment, the sensitivity of NWMC
with respect to the value of the parameter is analyzed. We
use the 160 objects manually segmented from the Corel data-
base subset. The asymmetric distances between the partitions
obtained with each of the different values (using as stopping
criterion regions) and the object partition (ground
truth) are computed for each object. Fig. 14 shows the mean
value of the asymmetric distance computed over the object data-
base. As it was previously commented, the sensitivity of the seg-
mentation process is very low with respect to variations of the
alpha parameter around and, therefore, this value is
used.

V. OBJECT DETECTION ON BINARY PARTITION TREES

Nodes in the search space of the BPT represent good markers
(anchor points) for object detection algorithms but the accu-
rate analysis of complex images requires going from the object
marker to a precise object definition. The accuracy partition en-
sures that the image representation is precise enough, giving the
possibility of refining the object representation. Note that, given
the tree structure, the accuracy partition is finer than the search
partition (see Sections II and III); that is, all the contours present
in the search partition are represented in the accuracy partition
as well. This characteristic facilitates the combination of the in-
formation from both partitions.

A. Node Extension

The proposed way to combine the information from both par-
titions for object detection is by making use of the concept of
extended node. A node in the BPT can be a good estimate of an
object, giving information about the position and scale at which
the object can be found. However, as the BPT has been built with
a generic purpose, nodes in the BPT will very likely not repre-
sent complete common objects (e.g., nonhomogenous color ob-
jects).

A specific object detection algorithm can make use of the
a priori information available about the object and improve the
object representation yielded by the BPT node.

One possible approach is to use shape information to modify
the area of support associated with the position and size pointed
by a node. In our work, this is done by fitting a shape model of
the object to the node (that is, to the region associated with the
node), and then using this shape to modify the area of support of
the node, by adding or removing regions from the set of regions
that are initially associated with the node.

The shape fitting is performed with a shape matching tech-
nique based on distance transforms. Let be a binary image
where zero-valued pixels represent the contour points of a node.
A distance transform on is an image where each pixel
value denotes the distance to the nearest contour point in [21],
[9]. The matching is performed by transforming the reference
shape model by a set of allowed geometrical transformations
(typically translation, rotation and scaling) and correlating the
transformed template against the image. The similarity
measure between the transformed shape and the node is

(11)

where is the contour of the transformed template and is
the number of contour points in . The goal is to search for the
best matching; that is, the parameters of the transformation that
minimize the similarity measure .

The advantage of matching with distance transforms is their
ability to handle noisy or imperfect data [25]. In our case, it
allows filling gaps in the contour definition due to low gradient
values in the image or errors in the segmentation. This ability is
illustrated in the examples of Sections V-B and V-C.

Two distance transforms have been used in this work:
Chamfer distances [5] and binary distances. Binary distances
assign a distance value equal to 1 to a crown (in our work,
typically, of 5 pixels width) around the contours, whereas the
remaining points in the space receive a distance value equal to
0. In our experiments, achieve better results when the reference
shape is a good model of the objects being searched, allowing
partial matchings when the node is an incomplete represen-
tation of the object. Chamfer distances perform better than
binary distances when there is more variability between the
shape model and the objects in the image. However, Chamfer
distances may lead to local minima when the node is not a cor-
rect estimate of the complete object. In our work, the allowed
transformations for the reference shape are translation, rotation
and scaling. For each node, the set of possible parameter values
is bounded and quantized taking into account the node width,
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Fig. 15. Node extension: (a) Original image, (b) best representation of the face in the BPT, (c) search partition, (d) shape matching with an elliptical shape model,
(e) set of initial included regions from the search partition, (f) set of analyzed regions from the search partition, (g) set of included regions from the accuracy
partition, and (e) final extended node.

height and position in the image and an exhaustive search in
the parameter space is performed.

The shape matching process is illustrated in Fig. 15 with an
example of node extension for face detection. The reference
contour which is used as model for the human face shape is an
ellipse. The best representation of the face in the BPT is the node
shown in Fig. 15(b). Note that there is a region in the node [see
the initial partition in Fig. 15(c)] that spans part of the face and
the hair, and there is a missing region (the right eye) in the face
representation. In spite of that, the reference contour is correctly
located around the face. Fig. 15(d) shows the result of the shape
matching using a binary distance transform.

The next step in the node extension process is the redefinition
of the support area of the node, which can be performed in sev-
eral ways. Here we propose a simple, generic solution that uses
only geometric information. It consists in analyzing the degree
of overlap between the regions from the search partition and the
fitted shape model . Regions in the search partition that are
completely included or partially included but that do not extend
too far from the shape (typically, if they extend less than 10%
of the minor axis of the ellipse) are included in the extended
node. Regions that do not overlap are not included. Fig. 15(e)
presents the set of regions from the search partition associated
with the node in the previous example that are totally included
in the shape .

For the remaining regions (that is, regions partially included
but extending far from the shape ), the analysis is performed in
terms of the accuracy partition, to improve the precision of the
representation. Fine partition regions that (do not) overlap with
the shape are (removed from) included in the extended node.
Fig. 15(f) presents the regions in the previous example that are
analyzed using the accuracy partition information. In turn, Fig.
15(g) shows the set of regions from the accuracy partition that
are included in the extended node and Fig. 15(h) shows the final
area of support of the extended node.

B. Examples

In this subsection, we further illustrate the usefulness of the
proposed representation for the detection of objects with dif-

ferent characteristics; namely, human faces, traffic signals, but-
terflies and cars. Here, complete object detection algorithms are
not developed and only simple approaches to exploit the pro-
posed representation are presented. Specifically, we only use
shape descriptors of the objects being searched for performing
node extension. Note that a real application should use more in-
formation about the object to simplify the search and to make
the final decision. An example of a complete object detector will
be briefly presented in Section V-C.

Two sets of examples are presented in Figs. 16 and in 17.
Fig. 16 has five examples dealing with objects whose shapes
can be characterized by simple geometric figures: the first two
sets of images are related to the detection of human faces and
the following three sets of images to the traffic sign case. In
turn, Fig. 16 has six examples dealing with objects whose shapes
require more complex models: the first four cases analyze the
detection of butterflies and the following two cases that of cars.

In all the examples presented in both figures the search parti-
tions were created using the WEDM merging criterion and the
AMC stopping criterion with , starting from an
accuracy partition with 500 regions. Nodes in the search space
of the BPTs were created with the NWMC merging criterion
proposed in Section IV-A which encourages the cre-
ation of compact and color-homogeneous nodes. Therefore, in
many cases, the objects are correctly represented by a single
node in the tree. We only show examples where this does not
happen and the extension step is required. Given the type of
shapes of the objects to be detected, in the examples of Fig. 16
the shape matching process uses a binary distance whereas in
those in Fig. 17, a Chamfer 3–4 distance transform [5] is ap-
plied.

In the examples of face detection [Fig. 16(a) and (b)], the
shape of a human face is modeled with an ellipse. In the first
case, note that the shape model is correctly matched in spite of
having a node whose area of support spans the face and the neck.
This allows for including a missing region (the right eye) and re-
moving of a very common leakage in human face segmentation
(the neck area). In the second case, note that the shape model
helps to correctly complete the region of support of the human
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Fig. 16. Improvement in the representation of objects achieved by the extension of the nodes, for the human face and traffic sign detection applications. First row:
original images. Second row: object nodes. Third row: shape fitting. Fourth row: extended nodes.

face in spite of not being a perfect frontal view (and, therefore,
the ellipse model not perfectly fitting the object).

Examples in Fig. 16(c)–(e), show pictures from a traffic sign
image database [14]. For the bike sign (c), the model is a circle;
for the pedestrian crossing sign (d), a square; whereas for the
junction sign (e), a triangle. In these cases, observe that the
image representation is capable to correctly represent, as nodes
in the tree, regions being very good markers of small objects
(the traffic signs) even in cluttered backgrounds. Moreover, the
node extension is able to remove the leakages, that are due to
the presence of other objects of similar color close to the traffic
signs to be detected.

Six examples of images are presented in Fig. 17 illustrating
the use of more complex shape descriptions. The first four ex-
amples belong to the butterfly class and the last two to the car
class of the Corel subset. As previously, the image representa-
tion has been created following the procedure proposed in this
paper. The butterfly and car masks have been manually created
using as example, in every case, a different Corel database image
of the same class.

Fig. 17(a) presents the example of a wrong representation of
the object in the search space (two different objects are merged
in the best node, leading to a very different shape from that
of the original object) and the successful extension of such a
node. Note that, in this case, the shape is correctly matched to
a part of the region represented by the node and that the correct
matching has required the re-orientation of the model shape. In
turn, Fig. 17(b) presents the correct extension of a node in an
image in which the background and the object present very sim-
ilar colors and where shadows are present.

Fig. 17(c) shows an example of the unsuccessful extension of
the selected node. This is due to the fact that the model shape
being used does not actually correspond to the type of object
being sought. The type of butterfly present in the image is better
represented by the shape model used in Fig. 17(d) and, in this
case, the node is correctly extended leading to a perfect detec-
tion of the object.

For the last two sets of images, Fig. 17(e) and (f), a given car
shape is used to detect the objects in the scene. Note that the
node extension correctly fits the shapes, and mainly acts adding
the missing regions to the complete representation, even if they
are very different in color as it is the case of the wheels.

In order to assess the usefulness of the proposed region-based
representation model, even when using simple object models as
those above presented for human faces and traffic signs, two
different experiments have been conducted.

Experiment 8: Table VI presents the statistics of the asym-
metric (for the accuracy and search partitions) or symmetric (for
the BPT and extended BPT nodes) distances between the 116
human faces manually segmented from the MPEG-7 database
subset and the selected i) union of regions in the acuracy parti-
tion, ii) union of regions in the search partition, iii) node in the
search space of the BPT, and iv) extended node in the BPT. As
it can be observed, in this database containing mainly images of
high complexity, the set of nodes proposed in the search space
of the BPT present lower quality than the best union of regions
that can be selected from the search partition. The reason for this
effect is mainly twofold: First, as previously commented, im-
ages in this database present illumination problems and, second,
human faces are complex objects (non homogeneous in color).
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Fig. 17. Improvement in the representation of objects achieved by the extension of the nodes, for the butterfly and car detection applications. First row: original
images. Second row: object nodes. Third row: shape fitting. Fourth row: extended nodes.

TABLE VI
ASYMMETRIC DISTANCE FOR THE SELECTED UNION OF REGIONS FROM THE

ACCURACY PARTITION AND FROM THE SEARCH PARTITION, AS WELL AS

SYMMETRIC DISTANCE FOR THE SELECTED BPT NODE AND FOR THE SELECTED

EXTENDED NODE WITH RESPECT TO THE MPEG-7 SUBSET. MEAN AND

VARIANCE VALUES ARE MULTIPLIED BY ��

Therefore, nodes in the BPT cannot in some cases represent a
perfect marker of the object in the scene. This problem is further
discussed in Section V-C.

Experiment 9: Table VII presents the statistics of the asym-
metric (for the accuracy and search partitions) or symmetric
(for the BPT and extended BPT nodes) distances between the
45 traffic signals manually segmented from the related data-
base [14] and the selected i) union of regions in the accuracy
partition, ii) union of regions in the search partition, iii) node
in the search space of the BPT, and iv) extended node in the
BPT. As it can be observed, in this database which contains im-
ages of medium/high complexity [see columns (c), (d), and (e)
in Fig. 16], the nodes proposed by the BPT are very close in
performance to the complete set of possible unions of regions
proposed by the search partition. Moreover, the use of the ex-
tended node leads to a decrease on the symmetric distance; that
is, it allows improving the object representation. Finally, it has
to be commented that the statistical behavior is very similar for
the three types of signals in the database (slightly better for the
triangular signal).

C. Object Detection Strategy. Example: Face Detection

In this subsection, we illustrate the usefulness of the proposed
representation for the detection of a specific class of objects:

TABLE VII
ASYMMETRIC DISTANCE FOR THE SELECTED UNION OF REGIONS FROM THE

ACCURACY PARTITION AND FROM THE SEARCH PARTITION, AS WELL AS

SYMMETRIC DISTANCE FOR THE SELECTED BPT NODE AND FOR THE SELECTED

EXTENDED NODE WITH RESPECT TO THE MPEG-7 SUBSET. MEAN AND

VARIANCE VALUES ARE MULTIPLIED BY ��

TABLE VIII
BPT FILTERING RESULTS: PERCENTAGE OF NODES THAT ARE FILTERED OUT

BY EACH CRITERION

TABLE IX
DETECTION AND SEGMENTATION RESULTS

human faces. Although proposing complete object detection al-
gorithms is out of the scope of this paper, for the sake of com-
pleteness we briefly present here the type of methodology that
can be used relying on the BPT representation and the concept
of node extension. For a complete description, the reader is re-
ferred to [30].

As it has been stated in Section I, object detection requires
both an image representation suitable for this task and a useful
object model. The object model is, in pattern recognition terms,
the training or design cycle of a classifier [10]. It comprises
the selection of a set of representative features, the proposal
of a classifier model and the training and testing of the clas-
sifier. Concerning the face model, it is built as a combination
of one-class classifiers [29] based on visual attributes which are
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Fig. 18. Examples of the (a) XM2VTS [17], (b) to (f) MPEG-7 databases and associated results. Second row: joint detection and segmentation using our technique
[30]. Third row: detection using Viola and Jones [33] (OpenCV implementation). Forth row: detection using Schneiderman [27], [28] (online face detector demo).

measured on the regions by a set of descriptors. Each descriptor
is therefore associated with a simple one-class classifier which
is typically trained using sample data.

Taking into account the way we use the descriptors for the se-
lection of candidates and for the final classification, we organize
them into three groups: i) generic descriptors for the simplifica-
tion of the search space (BPT filtering), ii) shape descriptors for
the accurate selection of candidates (node extension), and iii)
specific descriptors for the final object detection (classification).

BPT filtering aims to discard as many nodes as possible from
the search space of the BPT by a fast analysis of the regions as-
sociated with these nodes. The goal is to analyze the patterns
using a set of generic descriptors computed for each node, re-
moving those nodes that significantly differ from the charac-
terization proposed by the face model. Generic descriptors are
descriptors associated with low-level (basic) visual attributes.
They are simple and relatively easy to measure; that is, with a
low computational cost. We work with the following generic de-
scriptors: Color mean, Aspect ratio, Oriented aspect ratio, Size,
Orientation and Position.

Node extension, as explained in Section V-A, is used to ac-
curately redefine the area of support of the remaining nodes, if
necessary. For the case of face detection, a simple shape descrip-
tion based on modeling the face as an ellipse is sufficient. We
work with an elliptical model that describes the general shape of
a face, and allows adapting the area of support of the remaining
BPT nodes to the shape of the object being searched.

Classification evaluates the set of specific descriptors on each
extended node candidate and assigns them a face or no-face
label. Each specific descriptor is associated with a simple classi-
fier that outputs, for each candidate, its likelihood of being a face
instance. The outputs are combined into a global probability or
face likelihood. Finally, the most likely candidates are selected
as face instances. Specific descriptors are descriptors related to
attributes that are specific to faces. Generally, the selection of

these attributes implies further knowledge about faces. They are
usually more complex and costly to compute than generic de-
scriptors but they are evaluated on a very reduced set of regions.
We work with the following set of specific descriptors: Domi-
nant color, Symmetry, Hausdorff distance, PCA distance in the
feature space and PCA distance from the feature space. For the
experiments presented in this work, descriptors are combined,
for simplicity, by a product combination of estimated likeli-
hoods.

In Table VIII, the results of the filtering step on the MPEG-7
subset database are presented, showing the percentages of ac-
tive (Act) and nonactive (No Act) nodes after the filtering step.
As it can be seen, the use of generic descriptors largely reduces
the amount of nodes to be further analyzed. Moreover, the per-
centage of nodes that are filtered by the different criteria are
presented. Note that a node can be filtered by more than one cri-
terion, as it is typically the case for the color, size and aspect
ratio criteria. Finally, the filtering effect of some of the above
proposed generic descriptors is not reported in this table since,
for this specific application, they are not relevant (e.g.,: Orien-
tation or Position).

Table IX presents the final detection and segmentation results
on the MPEG-7 subset database. Faces are said to be correctly
detected (Det) if, (i) in the case of underestimating the region,
the extended node contains at least one eye and the mouth of
the person and (ii) in the case of overestimating the region, the
center of mass of the extended node is inside the face area. The
correctly detected faces are, afterwards, classified into correctly
segmented (Seg) or producing segmentation errors (SE). Again,
these errors can be due to an underestimation (lack of parts of the
face) or an overestimation (inclusion of parts of the background)
in the extended node. Finally, figures of the segmentation accu-
racy are reported; that is, the symmetric distance between the
extended node and the related ground truth object partitions are
computed for all the detected faces (AccD), for the correctly
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segmented (AccS) and for those that produce segmentation er-
rors (AccSE).

Examples and results of three different databases are pre-
sented in Fig. 18. The various examples have been selected to
cover various aspects of the system behavior: people wearing
glasses, bad illumination scenarios, cluttered background, devi-
ations from the frontal face pose, etc.

Fig. 18 also shows detection results for two state-of-the-art
face detection techniques; namely, Viola and Jones [33] and
Schneiderman [27] systems. These are two very robust and fast
cascade methods which use simple and fast evaluation features
in early stages of the cascade and more complex and discrim-
inative features at later stages. The output of these systems is
a rectangle around the main facial features, which may contain
part of the background or may lack some skin areas. As it can
be seen in Fig. 18, regarding the final detected faces the three
algorithms yield high quality results, being the proposed one
much more accurate in terms of face segmentation, given its re-
gion-based nature.

Systems such as [33] and [27] imply a costly training phase
but perform extremely fast. In the training phase, they require
a large amount of face and no-face samples since later stages
of the cascade are trained with false positives output by simpler
classifiers at early stages. Nevertheless, in the execution phase,
they present real time performance (under the conditions estab-
lished in [33], an image of size 384 288 is processed in 67 ms
on a Pentium III 700 MHz; whereas in [27], using a 32 24
input window, the detector evaluates a 300 200 image in under
180 ms on an Athalon 1.8 GHz processor). Although there is a
large number of rectangles to evaluate, strategies such as the use
of the integral image representation [33] and the feature cen-
tric evaluation [27] combined with the use of the cascade make
these algorithms very fast. Regarding the proposed region-based
approach, its training phase is much simpler since it implies a
relatively reduced set of face images for the texture classifiers
(around 1000 face images suffices), and only positive samples
are needed (the system is composed of one-class classifiers). In
the execution phase, the proposed technique does not reach real
time performance, since the BPT construction is costly (on av-
erage, for an image of size 176 144, this step takes 1.03 sec-
onds on a Pentium-M 1.87 GHz).

Nevertheless, it has to be highlighted that, as demonstrated in
this paper, the building of the image representation is a generic
step in object detection. Therefore, the image representation can
be adopted for subsequent detection of different object classes.
This concept of reusability cannot be applied to systems such
as [33] and [27], since they would require a complex training
process for each new object to be detected.

VI. CONCLUSION

This paper has discussed the use of Binary Partition Trees
(BPT) for object detection. BPT are hierarchical region-based
representations of images. They define a reduced set of regions
that covers the image support and that spans various levels of
resolution. In this paper, several issues related to the use of BPT
for object detection have been studied: Concerning the tree con-
struction, we have analyzed the compromise between computa-
tional complexity reduction and accuracy. This led us to define

two parts in the BPT: one providing accuracy (the BPT accuracy
space) and one representing the search space for the object de-
tection task (the BPT search space). Then we have objectively
compared various similarity measures for the tree construction.
We concluded that different similarity criteria should be used for
the two parts of the BPT: The Weighted Euclidean Distance be-
tween regions Model (WEDM) may be used for the definition of
the BPT accuracy area and the Normalized Weighted Euclidean
distance between Models with Contour complexity (NWMC)
for the BPT search space. The transition between the accuracy
and the search spaces in the BPT is defined by the so-called Ac-
cumulative Merging Cost (AMC). Finally, we have discussed a
generic object detection strategy based on BPT. The notion of
node extension was proposed and discussed. Several object de-
tection examples illustrating the generality of the approach and
its efficiency were reported.
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