
Noname manuscript No.
(will be inserted by the editor)

Improving retrieval accuracy of Hierarchical Cellular
Trees for generic metric spaces

Carles Ventura · Verónica Vilaplana ·
Xavier Giró-i-Nieto · Ferran
Marqués

Received: date / Accepted: date

Abstract Metric Access Methods (MAMs) are indexing techniques which al-
low working in generic metric spaces. Therefore, MAMs are specially useful
for Content-Based Image Retrieval systems based on features which use non
Lp norms as similarity measures. MAMs naturally allow the design of image
browsers due to their inherent hierarchical structure. The Hierarchical Cellular
Tree (HCT), a MAM-based indexing technique, provides the starting point of
our work. In this paper, we describe some limitations detected in the original
formulation of the HCT and propose some modifications to both the index
building and the search algorithm. First, the covering radius, which is defined
as the distance from the representative to the furthest element in a node, may
not cover all the elements belonging to the node’s subtree. Therefore, we pro-
pose to redefine the covering radius as the distance from the representative
to the furthest element in the node’s subtree. This new definition is essen-
tial to guarantee a correct construction of the HCT. Second, the proposed
Progressive Query retrieval scheme can be redesigned to perform the nearest
neighbor operation in a more efficient way. We propose a new retrieval scheme
which takes advantage of the benefits of the search algorithm used in the index
building. Furthermore, while the evaluation of the HCT in the original work
was only subjective, we propose an objective evaluation based on two aspects
which are crucial in any approximate search algorithm: the retrieval time and
the retrieval accuracy. Finally, we illustrate the usefulness of the proposal by
presenting some actual applications.

F. Author
first address
Tel.: +123-45-678910
Fax: +123-45-678910
E-mail: fauthor@example.com

S. Author
second address

2 Carles Ventura et al.

Keywords Multimedia Retrieval · Content-Based Image Retrieval · Indexing
techniques · Metric Access Methods · Hierarchical Cellular Tree

1 Motivation

Content-Based Image Retrieval (CBIR) systems rely on the automatic extrac-
tion of visual descriptors based on features such as color, texture and shape.
These descriptors are compared using some similarity measures in order to
infer how similar two images are. A classic application of CBIR systems is the
retrieval of images similar to a provided exemplar. This approach is known
as Query by Example (QbE) [NBE+93], and basically generates a ranked list
of images in the database according to their similarity to a query image pro-
vided by the user. Another way to retrieve elements from an image database
is browsing, which is specially useful when the user does not have any example
query image or any particular target content in mind.

As a consequence of recent technology developments, large amounts of images
are generated and stored. For instance, audiovisual media companies store
their broadcasted content in large private systems, which need to be easily
accessible. However, an exhaustive search would not be feasible in such large
databases due to its linear computation time behavior. In this context, well
organized databases and efficient storing and retrieval are absolutely necessary.
Therefore, CBIR systems need to incorporate indexing techniques in order to
scale up well when working over large databases. Furthermore, these indexing
techniques should rely on a dynamic approach which allows insertions and
deletions of the indexed elements. Multimedia databases are not static and,
therefore, a dynamic approach is essential in order not to reindex the whole
database every time an element is to be either inserted or removed.

Many CBIR systems use an Lp norm on an Euclidean space to compare vi-
sual features. Such features are usually indexed using some popular indexing
techniques such as Locality Sensitive Hashing (LSH) [IM98] and Spatial Ac-
cess Methods (SAMs) [BM72]. However, there also exist scenarios where the
features may require a specific metric. This may happen when the feature
contains attributes which should be treated independently or when a non-Lp

norm behaves perceptually better than an Lp norm. In such cases, it is prefer-
able to use an indexing technique which allows the features to be indexed in
a generic metric space.

One of such cases is the set of visual descriptors defined in the MPEG-7 stan-
dard [BSMS02], where suggested similarity measures are often non-Lp norms
and some descriptors, such as the Dominant Color Descriptor and the Contour-
Shape Descriptor, do not lead to a fixed-size representation. Another case is
SIFT [Low99], an algorithm which transforms an image into a large collection
of local feature vectors. Although it is a common practice to use the L2 norm
to compare SIFT descriptors, works such as [PW08] and [LO07] identified an

Improving retrieval accuracy of HCT for generic metric spaces 3

alignment problem and proposed the Earth Mover’s Distance (EMD) [RTG00],
which is a non-Lp norm, to address this problem.

In the context of image retrieval solutions for a national broadcasting com-
pany (BuscaMedia project [Bus]), a CBIR system based on the MPEG-7 visual
descriptors supporting searches given a query image needs to be built. The
goal is to design a retrieval system capable of approximate search techniques
[PC09] under the assumption that the user may still prefer to quickly obtain
an approximate result rather than to wait longer for the exact answer. Thus,
this retrieval system requires an indexing technique which allows working in a
generic metric space and speed up the retrieval operation with respect to the
time required by an exhaustive search. Furthermore, the retrieval system is
also required to provide an image browser for those scenarios where the user
does not have any query image available. The Hierarchical Cellular Technique
(HCT) [KG07] is an indexing technique which satisfies both requirements and
provides the starting point of our work. However, some limitations have been
detected in both HCT construction and retrieval scheme. With regard to the
HCT construction, the original definition of a parameter named covering ra-
dius may lead to a HCT where elements may be wrongly inserted in a cell.
Regarding the retrieval scheme, the original approach is based on a search
strategy which assumes that the closest nucleus item yields the best subtree
during the descend. Besides these two limitations, the evaluation of the origi-
nal HCT was only subjective. In this paper, we propose some modifications to
the original formulation of the HCT and to the retrieval system. In order to
objectively evaluate them, the results obtained by the HCT search algorithms
for a set of queries are compared with those obtained by an exhaustive search,
using some contrasted measures extracted from the literature.

This paper is structured as follows. First, in Section 2 we analyze different
indexing techniques to describe their qualities and limitations and choose the
one that best fits the requirements. Next, in Section 3, we give an overview of
the Hierarchical Cellular Tree (HCT). Section 4 introduces some limitations
detected in the original formulation of the HCT and proposes some modifica-
tions to both the HCT building and the retrieval system. In Section 5, a set of
experiments are presented to show the improvements achieved thanks to the
proposed modifications. The retrieval accuracy of the new retrieval scheme
over the HCT is objectively evaluated by using different measures in the ex-
periments. Then, some actual applications which use the HCT are presented
in Section 6. Finally, in Section 7 we draw the conclusions.

2 Related work

As previously discussed, indexing techniques are required by CBIR systems
to scale up well over large databases. The most popular multimedia indexing

4 Carles Ventura et al.

techniques can be mainly grouped in two categories: (i) Locality Sensitive
Hashing (LSH), and (ii) hierarchical tree structures.

LSH [IM98] is an efficient indexing method to search on large-scale and high-
dimensional databases. The LSH algorithm relies on the existence of locality-
sensitive hash functions. The principle of LSH is that nearby data points are
mapped into the same bucket with a high probability while points faraway are
hashed into the same bucket with a low probability.

Despite the popularity and the usefulness of the LSH algorithms, their appli-
cability is limited by the fact that they have to be designed according to some
specific metrics. Originally, LSH was designed assuming that the Euclidean
distance was used to measure how similar two items are [IM98]. Although this
original method was extended to a variety of similarity measures including
Lp for p ∈ (0, 2], Hammming, Mahalanobis, Jaccard, and Arccos distances
[AI08], LSH algorithms cannot be designed in a generic metric space. Some
efforts have been made to solve this problem, but the proposed approaches
are hybrid strategies which do not use real hash functions as in [NKZ10]. An-
other limitation on the applicability of the LSH algorithms is that elements
have to be represented by feature vectors of the same size. Therefore, LSH
algorithms cannot be used over feature vectors of variable length, like, for
example, MPEG-7 Dominant Color and Contour Shape descriptors.

The indexing techniques based on trees have a hierarchical structure which is
formed by one or more levels, each of them holding one or more nodes. Each
element belonging to a node from level l represents the elements hosted by one
node from the lower level l− 1. Therefore, the tree structure gives the user an
overview of what lies under the current level. This kind of indexing techniques
provides at the same time an efficient browsing scheme given their inherent
hierarchical structure. The indexing techniques based on trees can be mainly
grouped in two categories: (i) Spatial Access Methods (SAMs) and (ii) Metric
Access Methods (MAMs).

Search structures for vector spaces are called Spatial Access Methods (SAMs)
[CNBYM01]. These techniques make extensive use of coordinate information
to group and classify points in the space. They assume that the given data are
embedded in an N-dimensional vector space, which is referred to as universe
or original space. SAMs are responsible for the partitioning of the space, i.e.
the process of dividing the space into non-overlapping regions which contain
at least one data item.

The applicability of SAMs is limited by the fact that items have to be rep-
resented by the points in an N-dimensional feature space and the similarity
measure between two points has to be based on a distance function in an
Lp metric, such as the Euclidean distance. Furthermore, SAMs suffer from the
“curse of dimensionality” problem and do not scale up well to high dimensional
spaces, becoming less efficient than sequential indexing for dimensions higher
than 10 [WSB98]. Even though approximate searching algorithms [ML09] have

Improving retrieval accuracy of HCT for generic metric spaces 5

been proposed to overcome this problem, the limitation on the choice of the
dissimilarity measure remains. As an example, the k-d tree [Ben75], which is
one of the most popular SAMs, assumes that the similarity measure between
two points must be defined in terms of one-dimensional distance functions
along each coordinate. Therefore, the k-d tree cannot be used to index fea-
tures based on distances which require matching algorithms such as EMD or
some MPEG-7 similarity measures.

On the other hand, Metric Access Methods (MAMs) [CNBYM01] carry out the
indexing process assuming only the availability of a distance function between
elements and do not need the elements to be represented as points in an N-
dimensional feature space. Therefore, MAM-based indexing techniques work
in a generic metric space, where similarity is modeled with a distance that
satisfies the triangle inequality.

M-tree [CPRZ97], one of the most popular MAMs, partitions elements on
the basis of their relative distances and stores them into fixed-size nodes.
Leaf nodes of any M-tree store all indexed database elements whereas internal
nodes store the so-called routing element. M-tree insertion operation is based
on Most Similar Nucleus cell search, which assumes that the closest routing
element yields the best subtree during the descend. The starting point of our
contribution is the Hierarchical Cellular Tree (HCT) [KG07], a MAM-based
indexing technique similar to M-tree. One of the main differences is that HCT
is a tree designed to achieve highly focused cells [KG07]. The reason is that the
content variation of multimedia databases is seldom balanced. Consequently,
HCT does not depend on a maximum (fixed size) capacity M as the M-tree
does, and cells may exhibit variations on size and density. HCT has no limit
for the cell size as long as cells are compact enough. Furthermore, the inser-
tion processes differ significantly in terms of cell-search operations. Instead
of the Most Similar Nucleus cell search used by M-tree, HCT performs the
Preemptive Cell Search, a search algorithm which guarantees that the target
cell to which the incoming item should belong is always found. In addition,
HCT has a totally dynamic approach whereas M-tree has a conservative struc-
ture which may cause degradations in due time. These differentiating factors
captured our attention and motivated this work. The reader is addressed to
[KG07] for more differences in their design philosophies and objectives. Some
CBIR systems based on HCT for efficient retrieval are presented in [KIP+11],
[AG11], [YLhF+11] and [YD13].

3 The original Hierarchical Cellular Tree (HCT)

In this section we briefly describe the main features of the original HCT in
order to introduce the improvements that are proposed in Section 4.

Hierarchical Cellular Tree (HCT) is an indexing technique designed by Ki-
ranyaz and Gabbouj in [KG07]. The elements are partitioned depending on

6 Carles Ventura et al.

their relative distances and stored within cells on the basis of their similarity
(like in clustering). Each group of elements (cell) has a representative, which
is called nucleus. The distance from the nucleus to the furthest element in
the cell is defined as covering radius. HCT has a hierarchical structure where
the representatives of the cells at a given level l are in turn clustered to build
the cells at level l + 1. The ground level (l = 0) cells contain all items in the
database (see Figure 1).

The HCT construction over an entire database is the result of dynamically
adding each of its elements, one after the other, to the ground level. The
insertion of a new item requires finding the most suitable cell from the ground
level using an algorithm called Preemptive Cell Search. This insertion cell is
defined as the cell represented by the closest nucleus element on the ground
level.

In order to find this cell, the algorithm first compares the insertion element
O with the elements Oi from the top level cell. The distance values d(O,Oi)
are jointly used with their respective covering radius r(Oi) to discard the
branches that cannot hold the insertion cell. Preemptive Cell Search algorithm
descends through all non-discarded branches and iteratively performs the same
operations at each level. The algorithm ends when the level l = 1 is reached.
The closest element from this level to the insertion element is the nucleus of
the insertion cell at the ground level. Formally, at a given level l, if dmin is the
distance to the closest element on that level, then all elements Oi from level l
that satisfy

d(O,Oi)− r(Oi) < dmin (1)

are fetched for tracking, where O is the element to be inserted and r(Oi) is
the covering radius of the cell at level l − 1 represented by Oi.

Figure 1 shows a possible hierarchical organization of a set of elements into
a three-level HCT. These elements are spatially distributed as shown in Fig-
ure 2. In the process of finding the target cell from the ground level where
the new element O should be inserted, the Preemptive Cell Search algo-
rithm would discard C3 since this subtree cannot yield to the target cell
(d(O,O3

N) − r(O3
N) > dmin, where dmin = d(O,O1

N)). Therefore, the algo-
rithm only considers cells C1 and C2 when descends to the next level l = 1.
Since this is the level above the ground level, the iterative process of descending
through all non-discarded branches ends. All the elements belonging to cells
C1 and C2 are compared with the insertion element O and the cell from the
ground level represented by the closest element, i.e. element C, is found. This
is the insertion cell where element O is appended to. In contrast with HCT,
M-tree uses the Most Similar Nucleus (MS-Nucleus) search algorithm, which
consists on descending only through the HCT branch which gives the most
similar element at each level. In this example, using the MS-Nucleus instead
of the Preemptive Cell Search algorithm would have yield the ground level cell

Improving retrieval accuracy of HCT for generic metric spaces 7

l = 0

C2

A B O2
N C

C1

D E O1
N F G

C3

H I O3
N J l = 1

O2
N O1

N O3
N

l = 2

Fig. 1: HCT representation

A

B

O2
N

C

C2

r(O2
N)

O

d(O,O2
N)

O1
ND

E

F

G

r(O1
N)

C1

dmin

O3
N

H

I

J
r(O3

N)

C3

d(O,O3
N)

Fig. 2: Insertion stage of element O in a level with cells C1, C2 and C3

represented by nucleus D since this algorithm would have descended through
C1, discarding C2 and C3, at first step. Therefore, in Figure 2, MS-Nucleus
fails in finding the most suitable cell.

Once the element is added to the insertion cell, this cell passes a generic post-
processing check to decide whether the cell must be split (the cell may not be
compact enough) or the nucleus has changed due to the insertion. The reader
is addressed to [KG07] for more details.

8 Carles Ventura et al.

The authors of the original paper also proposed a retrieval scheme, called Pro-
gressive Query (PQ) [KG05], to be used over the HCT. PQ performs periodical
sub-queries over subsets of database items and allows the user to interact with
the ongoing query process. The order in which database items are processed is
called Query Path (QP). In [KG07] the QP is created using the Most Similar
Nucleus algorithm over the HCT. First of all, the algorithm descends through
the sub-tree represented by the closest element at each level until reaches a
ground level cell. This cell is the first cell in the QP. Then, the algorithm
applies a backtracking strategy by going back to its parent cell at level l = 1
and finding the second closest element of that cell. The ground level cell rep-
resented by this element is appended to the QP, i.e. it is the second cell of the
QP. The algorithm goes back again to its parent cell and looks for the follow-
ing closest element. Once all the elements from this cell have been considered
(and their child cells have been appended to the QP), the algorithm goes back
to its parent cell at level l = 2 and descends through the branch represented
by the second closest element (the closest element from that cell was already
tracked through the first descent). The algorithm is iteratively applied until it
reaches the top level cell and finds that all its elements have been considered,
i.e. there are no new branches to descend through. In other words, all ground
level cells have been already appended to the QP.

Following the same example of Figure 2, if O is now a query element, the
algorithm first descends through O1

N since it is the closest element of the top
level cell (l = 2 in this example). Then, the elements belonging to cell C1

at level l = 1 are sorted according to their similarity to the query element.
Among these elements, D is the closest one. Therefore, the ground level cell
represented by D is the first QP cell. Then, the algorithm visits the second
closest element, i.e. O1

N , and appends the ground level cell represented by
this element. The following cells being appended are the ground level cells
represented by F , E, and G respectively. Once all elements from C1 have been
considered, the algorithm goes back to its parent cell, i.e. the top level cell for
the example being considered, and finds the second closest element, i.e. O2

N .
Therefore, the algorithm reaches cell C2 by descending though this routing
element. As before, its elements are also sorted and the ground level cells are
appended to the QP according to the similarity order of their representative
elements. Thus, ground level cells represented by elements C, A, O2

N , and B
respectively are pushed back. Finally, the algorithm goes back to the top level
cell (all elements of C2 at level l = 1 have been already considered) and visits
the last (and furthest) element, i.e. O3

N . Therefore, cell C3 is visited and its
elements are also sorted according to their similarity to the query element.
The ground level cells represented by H, I, O3

N , and J respectively form the
tail of the QP. This means that their elements are compared with the query
element in the last sub-queries performed by the Progressive Query. The reader
is addressed to [KG07] for more details.

Improving retrieval accuracy of HCT for generic metric spaces 9

4 Contributions to HCT

In this section, based on the previous description, we present some weaknesses
that we have detected in the original formulation of the HCT and propose
strategies to overcome these limitations. First, we show that the use of the
original definition of the covering radius may deteriorate the tree structure.
Therefore, we propose a new definition which guarantees the right construction
of the HCT. Due to the high computational cost of the new covering radius, we
use a recursive algorithm which gives an overestimated value and a method for
updating it to its actual value. Then, we propose a retrieval scheme based on
the Preemptive Cell Search algorithm in order to improve the original retrieval
system based on the MS-Nucleus technique.

4.1 A broader covering radius

The covering radius r of a cell C was defined in [KG07] as the distance from
the nucleus to the furthest element in the cell:

r = max
i

(d(Oi, ON)) (2)

where ON refers to the nucleus, Oi to the other cell elements, and d(x, y) to the
dissimilarity measure between two elements x and y. However, we consider that
the covering radius should include all the elements of the database belonging
to the subtree which has cell C as root, and not only the elements of that
cell. According to this interpretation, the use of the covering radius defined in
[KG07] in the Preemptive Cell Search algorithm for the HCT building can lead
to wrongly discarded HCT branches. Consequently, the most suitable cell may
not be found when a new element is inserted, resulting in a possible corruption
of the HCT.

Figure 3 illustrates how the Preemptive Cell Search algorithm can fail in the
process of finding the most suitable cell when the original definition of the
covering radius is used. It represents a four-level tree in which the size of the
points representing the elements is directly proportional to the level which
belongs to and the non-nucleus ground level elements are not represented.
The big dots labeled as O1

N , O2
N , and O3

N represent the elements belonging
to the top level cell (l = 3), the medium dots (A, B, C, etc.) represents the
elements from level l = 2 and the small dots the ones from level l = 1. Note
that any element belonging to a level l also belongs to the lower levels (l − 1,
l − 2,..., 1, 0). For the new element O being inserted, the ground level cell
represented at level l = 1 by the element labeled as t is the most suitable
cell, since t is the closest element among all elements belonging to that level
(l = 1). However, cell C3 is discarded because d(O,O3

N) − r(O3
N) > dmin,

10 Carles Ventura et al.

A

B

O2
N

C

C2

r(O2
N)

O

d(O,O2
N)

O1
N

D

E

F

G

r(O1
N)

C1

dmin

O3
N

H

t

I

J
r(O3

N)

C3

d(O,O3
N)

Fig. 3: Preemptive Cell Search fails with the original covering radius

where dmin = d(O,O1
N), and the algorithm does not descend for that HCT

branch. As a result, this solution does not find the most suitable cell, i.e. the
ground level cell which has t, H and O3

N as routing elements at the different
levels. The decision of discarding C3 is wrongly made as its covering radius
r(O3

N) is computed only taking into account the distance from O3
N to H, I,

and J , i.e. the elements belonging to cell C3 at level l = 2.

As it will be shown in Section 5, HCT construction is the keystone to guarantee
the retrieval accuracy of future query requests, so we propose the definition of
a broader covering radius, which considers all the elements belonging to the
subtree, not only the ones belonging to the cell:

r = max
i

(d(Ôi, ON)) (3)

where ON refers to the nucleus, and Ôi refers now to all the elements from the
ground level which have ON as a routing element at the level which the cell
belongs to. The same example used before in Figure 3 is now illustrated with
the broader covering radius in Figure 4. Now, the routing element O3

N satisfies
d(O,O3

N) − r(O3
N) < dmin and, therefore, cell C3 is not discarded. Thus, the

algorithm descends through all the branches to the lower level l = 2. Now,
O is compared with all elements from that level where O1

N is still the closest
element. The routing element H is not discarded either since it also satisfies
d(O,H)−r(H) < d(O,O1

N). Notice that Figure 4 has been simplified by hiding
the ground level elements that are not nucleus. As a consequence, the branches

Improving retrieval accuracy of HCT for generic metric spaces 11

A

B

O2
N

C

C2

r(O2
N)

O3
N

H

t

I

J

r(O3
N)

C3

O1
N

D

E

F

G

r(O1
N)

C1

O

d(O,O2
N) dmin

d(O,O3
N)

Fig. 4: Preemptive Cell Search with the new covering radius

which would be discarded at level l = 2 cannot be specified since the broader
covering radius depends on the ground level elements. For instance, the routing
element C has a high probability of being discarded since it is highly likely
that element C does not satisfy d(O,C)− r(C) < d(O,O1

N). The Preemptive
Cell Search algorithm descends through all non-discarded branches to the level
l = 1. All the elements from this level belonging to the non-discarded branches
are compared with the insertion element O again. Now, the ground level cell
represented by the closest element, i.e. the element t, is chosen as the insertion
cell. Thus, Preemptive Cell Search algorithm reaches the most suitable cell,
i.e. the cell which has the closest nucleus to the insertion element. According
to this new definition (see Equation 3), the covering radius values obtained
by Equation 2 may be underestimated as Oi in this case refers only to the
elements within the cell at the same level.

However, the computation of the exact broader covering radius (Equation 3)
has, in general, a high computational cost because whenever a new element is
inserted, the similarity measure may have to be computed many times. The
worst-case scenario happens when the insertion produces such alterations in
the tree structure that it is necessary to recompute all the distances from each
cell nucleus to every database element belonging to its subtree for each cell
and for each level. Therefore, we use an approximation of the broader covering
radius, given by the following expression:

12 Carles Ventura et al.

A

B

O1
N

C

C1
D

O2
N

E

C2

FO3
N

G

C3

Fig. 5: Original covering radius (inner dotted line), exact broader covering
radius (middle dashed line) and overestimated broader covering radius (outer
dash dotted line) of the cell of the upper level which hosts the cells C1, C2

and C3 from the lower level.

r = max(r(SN),max
i

(d(Oi, ON) + r(Si))) (4)

where r(SN) refers to the covering radius of the child cell represented by
the nucleus element ON of cell C, Oi refers to the other elements of cell C,
d(Oi, ON) is the distance between each cell element Oi and the cell nucleus
ON , and r(Si) refers to the covering radius of the child cell represented by
Oi. Equation 4 gives an overestimation of the broader covering radius value
and was already used in [CPRZ97] for M-trees. It allows keeping the covering
radius updated after new insertions with a low computational cost thanks to
its recursivity. Each covering radius only depends on the cell elements and
on the covering radius of the cells associated with each element. For the cells
belonging to the ground level, the covering radius is exactly computed, instead
of using the approximation given by Equation 4. Figure 5 illustrates these three
posible values (the original, the exact broader and the overestimated broader)
of the covering radius in a simple case. It is a two-level HCT in which elements
O1

N , O2
N and O3

N belong to level l = 1 whereas the other ones are the non-
nucleus ground level elements.

With the proposed approximation of the covering radius we can guarantee that
no HCT branch will be wrongly discarded since we are using an overestimation

Improving retrieval accuracy of HCT for generic metric spaces 13

of the broader covering radius. Therefore, the most suitable cell will always
be found whenever a new element is inserted. As we will see in Section 5, a
more precise construction of the HCT results in a better performance of the
image retrieval system over the HCT. On the other hand, the cost of using
this overestimation is that, in general, the number of cells analyzed is larger
than the number of cells analyzed when the exact covering radius is used. This
implies an increase in the time required by the cell search algorithm used in
the insertion operations. This trade-off will be analyzed in Section 5.1.

4.2 Update of the covering radius

As pointed before, as a result of using the proposed overestimation of the
covering radius (Equation 4), the number of cells visited through the HCT
is larger than the number of cells visited when the exact covering radius is
used. In order to reduce the time required by the Preemptive Cell Search
algorithm, we propose an updating step that computes the exact value of
the covering radius for all the cells of the HCT according to Equation 3.
Therefore, the covering radius of each cell Ci is updated by computing the
distance between its nucleus ON to all the elements from the ground level
belonging to the sub-tree having Ci as root, and then taking the maximum
value. This updating step can be performed either once the HCT construction
is completed or periodically during the construction. However, note that too
many update operations may imply an increase in the HCT building time.
There exists a trade-off between the time required by the updating step and
the gain in time for the search operations in the following insertions. This
trade-off will be analyzed in Section 5.2.

The objective of the proposed updating step is not only to reduce the insertion
time of the elements to be indexed in the future, but also the retrieval times
required by the new retrieval scheme proposed in Section 4.3. After the update,
the number of visited cells for insertion and retrieval operations is granted to
be less or equal to the number of visited cells when the overestimation is used.
As a consequence, the number of comparisons between the inserting element
and an element from the database is reduced, and the retrieval time is also
reduced. Once all covering radius values have been updated, the computation
of their values for each new insertion is performed again according to the over-
estimation (see Equation 4). The impact of the updating step on the retrieval
accuracy and on the retrieval time will be also analyzed in Section 5.1.

4.3 Adaptation of Preemptive Cell Search algorithm for Retrieval

One of the objectives of the HCT is to perform the K Nearest Neighbor (KNN)
operation efficiently. KNN consists in retrieving the K most similar elements

14 Carles Ventura et al.

from the database to the given image query. This section focuses on approxi-
mate nearest neighbors algorithms, which aim at retrieving the best candidates
in the minimum possible time. There exists a trade-off between the retrieval
accuracy and the retrieval time in any approximate searching technique. Ki-
ranyaz and Gabbouj [KG07] proposed to build the Query Path (QP), which is
used by the Progressive Query scheme, based on the MS-Nucleus technique as
explained in Section 3. However, as it will be shown in Section 5.1, the trade-
off between the retrieval accuracy and the retrieval time of this scheme can
be improved using a new approach. The limitation of the MS-Nucleus-based
Progressive Query is that most of the K most similar elements do not belong
to the initial part of the QP. As a consequence, achieving a high retrieval ac-
curacy requires many sub-query operations which result in a high searching
time. On the other hand, if considering a low retrieval time, the sub-query op-
erations only consider the initial part of the QP, which result in a low retrieval
accuracy.

We propose to perform the retrieval operation with the Preemptive Cell Search,
i.e. the algorithm used for the insertion of new elements in the HCT. The rea-
son is that this algorithm guarantees that the most suitable cell is always
found. However, this is satisfied only if the covering radius (Equation 3) is not
underestimated. Therefore, the proposed overestimation of the covering radius
(Equation 4) guarantees the correct construction of the HCT, which becomes
essential for improving the retrieval accuracy. Furthermore, the proposed up-
date method of the covering radius is also useful to reduce the retrieval time
with respect to the overestimated values.

In fact, we consider two kinds of retrieval operation: cell-based and non-cell-
based. The former consists in returning only one cell of the tree structure.
Thus, the proposed searching technique based on the Preemptive Cell solves
this problem since the ground cell whose nucleus is the nearest one to the
query image is always found. Futhermore, the cell-based retrieval operation
allows the user to navigate through the tree structure from the returned cell
to examine the neighbour cells (see Section 6.2).

The second type of retrieval operation, the non-cell based, is more focused on
the KNN operation and does not keep the cellular structure. The most basic
option for the KNN scenario would be returning the elements which belong to
the retrieved cell sorted in ascending order according to the similarity measure.
However, this option has two basic drawbacks: (i) the retrieved cell may not
provide the user with K elements, and (ii) the retrieval of the cell with the
nearest nucleus does not ensure that this cell will contain the nearest elements
in the database. The former is solved by modifying the searching technique to
retrieve a set of cells with enough elements instead of only one cell. Moreover,
the probability of retrieving the most similar elements can also be increased
by considering multiple cells. We propose that the number of cells NC to be
considered should depend on (i) the number of results (K) expected by the
user, and (ii) a minimum threshold minC :

Improving retrieval accuracy of HCT for generic metric spaces 15

NC = max(minC , C2K) (5)

where C2K is the number of cells that host at least twice the number of ex-
pected elements (K).

The adaptation of the Preemptive Cell Search algorithm to retrieve a set
of cells arises naturally. The original algorithm descends through the non-
discarded branches until level l = 1 is reached. Then, the remaining (non-
discarded) elements from that level are sorted according to their similarity to
the query element and the ground level cell represented by the closest element
is selected. Therefore, we select the ground level cells represented by the NC

most similar elements among the non-discarded ones from level l = 1. Note
that the Preemptive Cell Search algorithm only guarantees that the closest
element from level l = 1 is found, but the other NC − 1 elements considered
may not be the following closest ones. In order to guarantee that the NC closest
elements from level l = 1 are found, Equation 1 should be replaced by:

d(O,Oi)− r(Oi) < dNC
(6)

where dNC
is the distance to the NC-th closest element instead of the closest

one. However, Equation 6 has not been used in the experiments since much
more branches should be analyzed, which would result in a high computational
cost for retrieval.

The elements hosted by the retrieved NC cells are sorted according to the
distance from each element to the query element. The results given to the
user, therefore, no longer keep the cellular structure. The motivation is that
we consider the clustering as a method for speeding up the searching process.
The most important thing from the user point of view in the KNN scenario
is how good the retrieval system is, and not how well the elements have been
clustered. The experimental results obtained by this proposed Preemptive Cell
as a searching technique for the KNN operation will be presented in Section 5.1,
where it will be also compared with the MS-Nucleus-based Progressive Query
proposed in the original paper [KG07].

5 Experimental results

In this section, we evaluate the proposed contributions in order to show their
usefulness. Results have been obtained using our own implementation of [KG07].

The use of an image database with an available ground truth (where elements
to be retrieved are specified for a query set) would evaluate not only the pro-
posed search algorithm used by the retrieval scheme, but also the performance
of the visual descriptors and their visual similarity measures. The reason is

16 Carles Ventura et al.

that the ground truth may have been built from a semantic point of view
or using visual criteria which may not be captured by the visual descriptors.
Since the scope of this paper is not to evaluate the performance of the vi-
sual descriptors nor their similarity measures, we have decided to compare the
performance of the searching techniques on the HCT index with respect to
an exhaustive search. The basic exhaustive search consists in computing the
dissimilarity measure between the element query and all the database items
and sorting them in ascending order. This approach gives the optimal retrieval
accuracy but the worst retrieval time. While in [KG07] the evaluation is only
subjective (a group of people evaluates subjectively the query results), we
propose an objective evaluation based on two aspects: (i) the retrieval time,
which is simply the time required by the query retrieval, and (ii) the retrieval
accuracy, which results from the comparison between the rankings obtained
by each one of the searching techniques.

In order to compare the rankings obtained with the different HCT configura-
tions (henceforth to be referred to as approximate rankings) with the ranking
provided by the exhaustive search (henceforth to be referred to as exact rank-
ing), we use three differents measures that compare two top k lists:

– Mean Competitive Recall (CR) [CPR+07][SMR04][Ger07]. Let k be the
number of images we want to retrieve and A(k, q) the set of k images
retrieved by the searching technique A for an image query q on our in-
dexed image database. Let GT (k, q) be the set of the k nearest neigh-
bours to the image query q which has been obtained through an ex-
haustive search. Then, the competitive recall CR(A, q, k) is defined as
the number of elements belonging to the instersection of both sets, i.e.
CR(A, q, k) = |A(k, q)∩GT (k, q)|. Note that competitive recall is an inte-
ger number in the range [0, ..., k] and a higher value indicates higher quality.
Then, CR is the average of the competitive recall over a set of queries (Q):

CR(A,Q) =
1

|Q|
∑
q∈Q

CR(A, q, k) =
1

|Q|
∑
q∈Q

|A(k, q) ∩GT (k, q)| (7)

This measure is the most intuitive one but it only analyzes the number
of elements retrieved belonging to the exact top k list. Therefore, it does
not take into account either the position in the exact ranking or the score
(distance) of the retrieved elements.

– Mean Normalized Aggregate Goodness (NAG) [SMR04][Ger07]. Let W (k, q)
be the sum of distances of the k farthest elements in the image database
from the image query q. Then, NAG is defined as:

NAG(k, q, A) =
W (k, q)−

∑
p∈A(k,q) d(p, q)

W (k, q)−
∑

p∈GT (k,q) d(p, q)
(8)

Improving retrieval accuracy of HCT for generic metric spaces 17

where, as in the Mean Competitive Recall, A(k, q) is the set of k images
retrieved by the searching technique A for an image query q and GT (k, q)
is the set of the k nearest neighbours to the image query q obtained after
an exhaustive search. The term d(p, q) refers to the distance between the
image query q and each element p from either the set A(k, q) or the set
GT (k, q). Note that the NAG is a real number in the range [0,1] and
a higher value indicates higher quality. The NAG is only 1 when the k
nearest elements are retrieved and is only 0 when the k farthest elements
are retrieved. Thus, the Aggregate Goodness is normalized with respect to
the worst possible result. Then, the Mean Normalized Aggregate Goodness
results from the average of the NAG over a set of queries.

Intuitively, NAG is a measure that evaluates how good the retrieved el-
ements are with respect to the k most similar ones. Thus, this measure
models a user who does not mind if the results of the retrieval system are
exactly the best ones as long as they are almost as good as the best ones
in terms of similarity values.

– Kendall distance [FKS03]. This distance is a variation of the standard
Kendall’s tau metric between permutations [Ken70]. Kendall’s tau turns
out to be equal to the number of exchanges needed in a bubble sort to
convert one permutation to another given one. This distance is modified in
[FKS03] to compare top k lists instead of permutations. The main difference
to be considered is that the top k lists of two different procedures over the
same database can have different elements, i.e. one element may appear in
only one of the two lists.

In constrast with the two previous measures, Kendall distance takes into
account the position of the retrieved elements in the exact top k list. How-
ever, it does not consider the score obtained by the approximate ranking.
Therefore, in a scenario where the retrieved elements rank from (k + 1)th
to 2kth position in the exact ranking, the penalization will be the same as
when the farthest elements are retrieved, i.e. the penalization is maximum.
The optimal value for kendall distance is 0, which is the result of comparing
two identical top k lists.

In addition to the retrieval time and the measures used for the retrieval accu-
racy, we have also computed the percentage of success in retrieving the query
image, i.e. how often the query image itself can be found among the results of
the search.

The HCT has been built over a dataset of 216,317 images. These images are
keyframes extracted from professional broadcasted video provided by the Cor-
poració Catalana de Mitjans Audiovisuals (CCMA) and Televisió de Catalunya
(TVC). The content of these videos is generic since we can find news programs,
sport events such as soccer matches or Formula 1 races, cultural programs, po-
litical debates, etc. Figure 6 shows some images from the database.

18 Carles Ventura et al.

In order to evaluate the retrieval system, we use a query set of 1082 images.
They have been chosen by selecting an image out of every 200 images of the
dataset. Then, for each query image, an exhaustive search was carried out to
generate the ground truth. Next, we built two HCTs: (i) one according to the
original definition of the covering radius (see Equation 2), henceforth to be
referred to as OriginalHCT, and (ii) one using the approximation given by
Equation 4 and applying the updating method once the HCT has been built
(henceforth to be referred to as NewHCT). The approximate rankings were
obtained applying the MS-Nucleus-based Progressive Query over the Original-
HCT and the proposed Preemptive Cell Search over the NewHCT.

5.1 Impact of the covering radius and the retrieval scheme on the search
performance

In this section we present the results obtained by the proposed retrieval scheme,
i.e. the Preemptive Cell Search, over the HCT built with the new definition
of the covering radius and the updating method. This NewHCT is compared
with the Progressive Query over the OriginalHCT, i.e. the original approach
[KG07]. Table 1 shows the results in a 40-NN (Nearest Neighbor) scenario.
The top part of the table evaluates the retrieval accuracy of the HCT using
4 differents measures. The first measure, named Retrieved queries, shows the
percentage of success in retrieving the element query in the approximate rank-
ing. The other 3 measures have been previously introduced in this section. At
the bottom of the table, the mean and the variance of the retrieval time are
given.

In order to compare the new retrieval scheme over the NewHCT with the Pro-
gressive Query over the OriginalHCT, we have performed many progressive
sub-queries until either the retrieval time or the retrieval accuracy obtained
is comparable to the respective value achieved by the NewHCT. Thus, the
retrieval accuracy is compared when both approaches give the same retrieval
time and viceversa, i.e. the retrieval time is compared when both approaches

Fig. 6: Sample images from CCMA database

Improving retrieval accuracy of HCT for generic metric spaces 19

give the same retrieval accuracy. The first column in Table 1 shows the re-
sults when the Preemptive Cell Search is used over the NewHCT. The search
algorithm is applied as explained in Section 4.3, i.e. the number of ground
level cells includes at least 80 elements (2k, where k = 40). These elements
are sorted and the top 40 form the approximate ranking. The second column
is the result of applying the Progressive Query over a Query Path which has
been build using the MS-Nucleus technique until 15000 elements have been
appended to it. For this Query Path length, the retrieval time is the same
for both approaches. The third, fourth and fifth columns show the results ob-
tained when each of the three different measures of the retrieval accuracy is
the same for both approaches. As expected, the retrieval accuracy improves
when the number of subqueries performed by the Progressive Query is in-
creased. On the other hand, the greater the number of elements considered,
the higher the retrieval time. This is because the number of comparisons is
directly proportional to the number of elements considered.

NewHCT OriginalHCT

Num. elements 80 15000 109000 127500 140000

Retrieved
99.26 22.64 72.92 78.14 82.62

queries(%)

CR 27.51 8.04 27.51 29.84 32.22

NAG 0.997 0.973 0.994 0.995 0.997

Kendall 313.87 1198.55 389.84 313.56 228.41

Mean retrieval
0.83 0.83 5.91 7.30 7.87

time(s)

Variance retrieval
0.1466 0.0043 0.0868 0.2965 0.1629

time(s)

Table 1: Comparison between NewHCT and OriginalHCT for kNN operation
with k = 40 results

From Table 1, when the retrieval time is identical for both approaches (1st
and 2nd columns), the results given by the retrieval accuracy measures are
significantly better for the NewHCT (Preemptive Cell Search over the HCT
with the new definition of the covering radius and the updating method) than
for the OriginalHCT (Progressive Query over the HCT with the original defi-
nition of the covering radius). Whereas the NewHCT approach retrieves 27.51
out of the 40 closest elements on average (CR), the OriginalHCT only achieves
to retrieve 8.04 out of them. We come to the same conclusion for Kendall dis-
tance (313.87 for NewHCT and 1198.55 for OriginalHCT) and for NAG (0.997
for NewHCT and 0.973 for OriginalHCT). Regarding NAG, note that small
variations in their values may mean great differences between the ranks due
to the normalization with respect to the worst possible results. In addition,
99.26% of the query elements are retrieved by the NewHCT in contrast with

20 Carles Ventura et al.

the 22.64% achieved by the OriginalHCT. This means that the query element
is among the first 15000 elements of the Query Path only in 22.64% of the
1082 query retrievals.

When the CR is the same for both approaches, i.e. 27.51 out of 40 closest
elements are retrieved on average (see 1st and 3rd columns from Table 1), the
retrieval time required by the NewHCT is significantly better (0.83 seconds)
than the OriginalHCT retrieval time (5.91 seconds). Therefore, the Progressive
Query based on the Most Similar Nucleus technique over the OriginalHCT
requires more than 7 times the time required by the Preemptive Cell Search
over the NewHCT to achieve the same retrieval accuracy (according to CR).
This CR is not achieved until 109000 elements are appended to the Query
Path, which is approximately half the size of the database. The experiments
have been carried out with single threading on a Intel Xeon X5450 @3GHz
and 2GB RAM.

5.2 Periodical update of the covering radius during HCT construction

As presented in Section 4.2, the updating step computes the exact value of
the covering radius for all the cells of the HCT according to Equation 3.
In the previous section, the experiments have been carried out applying the
updating method only when the HCT is built for the first time. This section
analyzes the impact of using the updating method periodically during the
HCT construction.

The periodical update of the covering radius does not have any influence in
the retrieval time nor accuracy. This is because the elements are inserted in
the same cell whether the covering radius presents an overestimated value or
an exact one. Thus, the elements are hierarchically clustered in the same way.
However, the periodical use of the updating method has an impact on the
time required for the HCT construction. As pointed out in Section 4.2, using
the exact value of the covering radius from Equation 3 can reduce the time
required by the search algorithm during the insertion process. On the other
hand, the computation of the exact covering radius results in an overcharge in
comparison with the approximation proposed in Equation 4.

Figure 7 shows the relative gain for the HCT construction time for different
updating periods in comparison to the non-update case. The improvement
in the HCT construction time is also represented for different sizes of the
database. The positive value of the gain indicates that the periodical update
does indeed reduce the construction time. This means that the gain in time for
the search operations of the following insertions compensates for the extra-time
required by the updating method. In particular, there is a range for the period
(approximately from 500 to 2500 elements) in which the gain is maximum.
Using a value beyond the upper bound also improves the construction time,
but the benefits on the searching time decreases as more elements are inserted.

Improving retrieval accuracy of HCT for generic metric spaces 21

102 103 104 105
5

10

15

20

25

30

35

40

period (#elements) of update method

G
a
in

(%
)

in
th

e
H

C
T

b
u

il
d

in
g

ti
m

e

DB of 50K elements

DB of 100K elements

DB of 150K elements

DB of 200K elements

Fig. 7: HCT construction time comparison for update method of the covering
radius

The decrease is due to the inefficient insertion of elements caused by the non-
optimized covering radius. Analagously, using a period smaller than the lower
bound also results in a decrease of the gain. The reason is that the overcost of
updating the covering radius is not exploited enough by the search operations
of the following insertions.

5.3 Analysis of the pre-fixed parameters

Two of the parameters used in the construction of the HCT are the Maturity
Size and Top Maturity Size [KG07]. The Maturity Size M is the minimum
number of elements that a non-top level cell must hold to be split. In the top
level cell, the maturity size is referred to as Top Maturity Size. In [KG07],
the Top Maturity Size value (24) is greater than the Maturity Size value (6)
since the top level cell is understood as a “Table of Contents” of the database
whilst giving a summary of the overall HCT body. These values have been
adopted in the previous experiments, but they may not be the most appropiate
ones if we use the HCT as a browsing tool. The reason is that cells split
very frequently and the HCT results in a complex hierarchical structure. The
next experiment evaluates the retrieval accuracy and the retrieval times when
the Maturity Size is increased. Increasing the value of the Maturity Size, we

22 Carles Ventura et al.

expect to have a shallower hierarchical structure, i.e. a HCT with fewer levels,
and to exploit better the whole available area of the GUI (see the browser
application in Section 6.2). We set the same value for the Top Maturity Size
since the Maturity Size value is not so small as before and, therefore, can also
be considered appropriate for the size of a table of contents. Results are shown
in Table 2.

Maturity Size 6 20 30 50

Top Maturity Size 24 20 30 50

CR 27.51 23.24 21.18 19.32

NAG 0.9967 0.9943 0.9924 0.9907

Kendall 313.87 472.89 559.34 635.27

Mean retrieval
0.8319 0.5609 0.5304 0.4967

time(s)

Table 2: HCT pre-fixed parameters evaluation with Preemptive Cell Search,
proposed overestimation of covering radius, update method of covering radius
and 40 results

The retrieval accuracy worsens when the Maturity Size value increases whereas
the retrieval time decreases. Thus, an increase in the Maturity Size value
results in a lower complexity of the tree structure and a lower number of cells
visited by the searching algorithm. As a result, the retrieval process becomes
faster. In addition, as the Maturity Size is increased, the cells become less
compact and the covering radius increases. This situation generates larger and
more heterogeneous cells, which reduce the accuracy of the NC retrieved cells.
We can conclude that low maturity size values are more suitable for Query by
Example operations (see Section 6.1) whereas higher values may be better for
browsing applications (see Section 6.2 and Section 6.3).

5.4 Preliminary visual inspection

So far we have performed an objective evaluation of the HCT through a sta-
tistical analysis of some retrieval accuracy measures. Next, we illustrate the
performance of our retrieval system through one query request example per-
formed using a user interface, the GOS [GVPT+10]. Figure 8 shows a com-
parison between the results obtained by using the Preemptive Cell Search
technique over the HCT with respect to an exhaustive search over the image
dataset. The query image is shown on the top-left. The whole set of images
forms the exact ranking, i.e. the ranking obtained when an exhaustive search
is performed. The images marked with a green rectangle have been retrieved
by the Preemptive Cell Search algorithm, whereas the ones marked with a red

Improving retrieval accuracy of HCT for generic metric spaces 23

Fig. 8: Comparison between the results obtained by using the Preemptive Cell
Search technique over the HCT with respect to an exhaustive search over the
image dataset. The images marked with a red rectancle are the missing ones
in the approximate ranking

rectangle are the missing ones in the approximate ranking. In particular, these
results have been obtained using the HCT with Maturity Size = 6 and Top
Maturity Size = 24, with the updated method and 40 results asked by the
user.

6 Applications

As commented in Section 1, there are basically two ways of retrieving images
from a dataset: (i) searching images similar to a given one (the Query by
Example paradigm), and (ii) navigating through the dataset by using an image
browser. In this section, we present three applications based on the HCT
indexing scheme to solve these tasks: Query by Example, image browser and
video browser.

6.1 Query by Example

The previous retrieval system, based on the MPEG-7 descriptors and the HCT
indexing technique, has been used to develop the Query by Example (QbE)
application required by the broadcaster company (Buscamedia project [Bus]).
This system was integrated in a GUI (see Figure 8). Moreover, the QbE appli-
cation has been adapted to a server/client architecture by using a messenger
system. The HCT is loaded on a server waiting for the query requests which
are launched for the several clients of the retrieval system.

24 Carles Ventura et al.

6.2 Navigation through an image database

In addition to the efficient search capabilities, the hierarchical structure of the
HCT has also been exploited to design an image browser, which has been inte-
grated in a graphical user interface. An image browser is specially useful when
the user does not have any example query image or when the user does not
have any particular target content in mind and he/she may be just looking for
interesting images. The top level cell can be thought as a “Table of Contents”
which summarizes the content of the image database. The size of this summary
only depends on the Top Maturity Size parameter, whereas the size of the cells
belonging to the other levels depends not only on the Maturity Size parameter
but also on the compactness of their elements. As commented in Section 5.3,
the larger the Maturity Size parameter, the simpler the hierarchical structure
of the HCT. On the other hand, the use of large values for the Maturity Size
parameter results in heterogeneous cells, which may be unexpected for the
user.

By means of a graphical user interface such as GOS [GVPT+10], browsing
through HCT is really user-friendly. First, the user visualizes the images be-
longing to the top level cell (l = L). Then, he/she can descend through any
element to a cell of the lower level (l = L− 1) represented by the selected im-
age. Note that the representative element for a cell corresponds to the element
with the maximum number of connections in the cell’s Minimum Spanning
Tree (MST), as in the original formulation of the HCT [KG07]. The user can
go on navigating through the tree structure by selecting new elements and
visiting lower levels. At any moment, the user can go back towards the top
of the tree and descend through a different HCT branch. The hierarchical im-
age organization depends on the configuration used during the HCT creation.
Therefore, the elements are hierarchically clustered in function of the visual
descriptor used to compare the dataset images. Note that the cells belonging
to the ground level (l = 0) are more compact than the cells from the upper
levels. Thus, the upper cells tend to be less homogeneous than the cells near
the ground level. Figure 9 shows an example of navigation through an image
database. The images shown at the top form the top level cell. Double clicking
on the thumbnails, the system displays its child nodes. When the user reaches
the ground level of the HCT, the black frames around the thumbnails indicate
to the user that it is a leaf. The arrow icon located in the first position of the
thumbnail grid allows the user to go back to the parent cell.

Furthermore, the image browser can also be exploited after a cell-based query
operation. As commented in Section 4.3, this retrieval operation allows the
user to navigate through the tree structure from the returned cell in order to
examine the neighbour cells.

Improving retrieval accuracy of HCT for generic metric spaces 25

Fig. 9: Example of navigation through an image database

6.3 Video Browsing Tool

The third application based on HCT is a browser [VMG+12] that supports
two strategies for video browsing through keyframes: the navigation through
visual hierarchies and the search for similar images. In particular, we have
developed a video browsing tool which efficiently solves the following “Known
Item Search” (KIS) task: finding a preselected segment of interest in a video file
by interactive search, i.e. without any text-query. Note that, in this application,
the preselected segment of interest, i.e. the query clip, is not available for the
retrieval system, so the query clip cannot be processed. Therefore, the user has
to find it by navigating through the video file to which the query clip belongs
to.

With this purpose, the input video is firstly processed by a keyframe extrac-
tor in order to work with a lower number of frames by removing the high
temporal redundancy of the video frames. Due to the hierarchical structure
of the HCT, this redundancy removal step is not strictly necessary. Highly
temporally redundant frames are expected to be clustered in the same cell.
Therefore, the HCT computed over the images obtained by the keyframe ex-

26 Carles Ventura et al.

tractor is expected to have a similar structure to the upper part of the HCT
computed over all the video frames. However, the use of the keyframe extrac-
tor reduces the complexity of the HCT structure and the time required for its
construction.

Once the keyframe extractor has been applied, the following MPEG-7 visual
descriptors are extracted for each keyframe: (i) Color Structure, (ii) Dominant
Color, (iii) Color Layout, and (iv) Texture Edge Histogram. Then, an HCT
is built over each of the visual descriptors, considering as a similarity metric
the visual distances recommended in MPEG-7.

Depending on the query clip, the user decides on which visual descriptor the
navigation will start. The GUI shows to the user the thumbnails belonging
to the root node of the HCT for each visual descriptor in a different tab.
Since the output of the HCT indexing algorithm is a hierarchical clustering
of the keyframes in the video, each tab can be understood as a summary
of the video according to each visual descriptor. Furthermore, we can take
advantage of the tree structure and go down the tree by double-clicking on an
element to visualize which elements it represents in the same way as detailed
in Section 6.2. In addition to this, the user can also take advantage of the
indexed database to quickly perform a query-by-example operation when a
keyframe globally similar to any of the frames in the segment of interest is
found during the navigation.

This application was designed in order to participate in the Video Browser
Showdown at the 18th International Conference on MultiMedia Modeling
(MMM 2012), where we were awarded with the “Best Video Browser” cer-
tificate in the novice-run round, in which volunteers from the audience acted
as searchers after a short training phase. This allowed us to test the usability
of this video browsing tool. More details about this application can be found
in [VMG+12].

7 Conclusions

In this article, we have highlighted the flexibility provided by an indexing tech-
nique that works in a generic metric space. Some popular indexing solutions,
such as the Locality Sensitive Hashing and the k-d tree, impose some restric-
tions in the use of certain similarity measures. That is the reason why we have
chosen the Hierarchical Cellular Tree, a Metric Access Method (MAM) which
allows indexing any data according to any similarity measure.

This paper has proposed some modifications to the original HCT [KG07]: (i) a
new definition of the covering radius and an approximation that overestimates
its value, (ii) the implementation of a method to update the covering radius
to its actual value, and (iii) a new retrieval scheme based on the Preemptive
Cell Search algorithm. These modifications have resulted in an improvement

Improving retrieval accuracy of HCT for generic metric spaces 27

of the trade-off between the retrieval accuracy and the retrieval time. Some
evaluation measures from the literature have been used to assess the retrieval
schemes by comparing the rankings obtained by the searching techniques over
the HCT (MS-Nucleus-based Progressive Query and Preemptive Cell Search)
with respect to the ranking which results from an exhaustive search. On the one
hand, for a same retrieval time (0.83 seconds), the retrieval accuracy achieved
by the NewHCT is significantly better than for the OriginalHCT. Whereas the
NewHCT approach retrieves 27.51 out of the 40 closest elements on average,
the OriginalHCT only achieves to retrieve 8.04 out of them. On the other
hand, for a same retrieval accuracy (CR = 27.51) , the retrieval time required
by the NewHCT approach is also significantly better (0.83 seconds) than the
OriginalHCT retrieval time (5.91 seconds).

Finally, we have presented three applications based on the HCT. The use of
the HCT shortens the retrieval times of our image retrieval system based on
the MPEG-7 visual descriptors. Moreover, this CBIR system has also been
integrated in a GUI, named GOS, over a client/server architecture. The HCT
is loaded in memory in a server which runs the query requested by any remote
client through the GOS. Furthermore, GOS can also exploit the HCT structure
to explore the visual contents in the database. In addition, we have designed
a video browsing tool which allows the user to find a preselected segment
of interest in a video file by interactive search, i.e. without the need of any
text-query.

Acknowledgment

This work was partially founded by the Catalan Broadcasting Corporation
through the Spanish project CENIT-2009-1026 BuscaMedia, by TEC2010-
18094 MuViPro project of the Spanish Government, and by FPU-2010 Re-
search Fellowship Program of the Spanish Ministry of Education.

References

[AG11] Iftikhar Ahmad and Moncef Gabbouj, A generic content-based image retrieval
framework for mobile devices, vol. 55, Multimedia Tools and Applications,
2011, pp. 423–442.

[AI08] Alexandr Andoni and Piotr Indyk, Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions, vol. 51, Communications of
the ACM, 2008, p. 117.

[Ben75] Jon Louis Bentley, Multidimensional binary search trees used for associative
searching, vol. 18, Communications of the ACM, September 1975, pp. 509–517.

[BM72] R. Bayer and E.M. McCreight, Organization and maintenance of large ordered
indexes, Acta informatica 1 (1972), no. 3, 173–189.

[BSMS02] P. Salembier B. S. Manjunath and T. Sikora, Introduction to mpeg-7, multi-
media content description interface, John Wiley and Sons, Ltd., Jun 2002.

[Bus] CENIT Buscamedia Project, www.cenitbuscamedia.es.

28 Carles Ventura et al.

[CNBYM01] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Mar-
roqúın, Searching in metric spaces, vol. 33, ACM Computing Surveys (CSUR),
September 2001, pp. 273–321.

[CPR+07] Flavio Chierichetti, Alessandro Panconesi, Prabhakar Raghavan, Mauro Sozio,
Alessandro Tiberi, and Eli Upfal, Finding near neighbors through cluster prun-
ing, Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems (New York, NY, USA), PODS ’07,
ACM, 2007, pp. 103–112.

[CPRZ97] P. Ciaccia, M. Patella, F. Rabitti, and P. Zezula, Indexing metric spaces with
mtree, Proc. Quinto convegno Nazionale SEBD, 1997, pp. 67–86.

[FKS03] Ronald Fagin, Ravi Kumar, and D. Sivakumar, Comparing top k lists, Proceed-
ings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms
(Philadelphia, PA, USA), SODA ’03, Society for Industrial and Applied Math-
ematics, 2003, pp. 28–36.

[Ger07] Filippo Geraci, Fast clustering for web information retrieval, Ph.D. thesis,
Universita degli Studio di Siena, Facoltá di Ingegnieria, Dipartaminto di In-
gegnieria dell’Informazione, 2007.

[GVPT+10] X. Giró, C. Ventura, J. Pont-Tuset, S. Cortés, and F. Marqués, System archi-
tecture of a web service for content-based image retrieval, ACM International
Conference On Image And Video Retrieval 2010, 2010, p. 358–365.

[IM98] Piotr Indyk and Rajeev Motwani, Approximate nearest neighbors: towards re-
moving the curse of dimensionality, Proceedings of the thirtieth annual ACM
symposium on Theory of computing (New York, NY, USA), STOC ’98, ACM,
1998, pp. 604–613.

[Ken70] Maurice G. Kendall, Rank correlation methods [by] maurice g. kendall, 4th ed.
ed., Griffin, London,, 1970 (English).

[KG05] S. Kiranyaz and M. Gabbouj, Novel multimedia retrieval technique: progres-
sive query (why wait?), vol. 152, Vision, Image and Signal Processing, IEEE
Proceedings -, June 2005, pp. 356 – 366.

[KG07] , Hierarchical cellular tree: An efficient indexing scheme for content-
based retrieval on multimedia databases, vol. 9, Multimedia, IEEE Transactions
on, Jan. 2007, pp. 102 –119.

[KIP+11] Serkan Kiranyaz, Turker Ince, Jenni Pulkkinen, Moncef Gabbouj, Johanna
Ärje, Salme Kärkkäinen, Ville Tirronen, Martti Juhola, Tuomas Turpeinen,
and Kristian Meissner, Classification and retrieval on macroinvertebrate im-
age databases, vol. 41, Computers in biology and medicine, 2011, pp. 463–472.

[LO07] Haibin Ling and Kazunori Okada, An efficient earth mover’s distance algo-
rithm for robust histogram comparison, vol. 29, Pattern Analysis and Machine
Intelligence, IEEE Transactions on, May 2007, pp. 840–853.

[Low99] D.G. Lowe, Object recognition from local scale-invariant features, Computer
Vision, 1999. The Proceedings of the Seventh IEEE International Conference
on, vol. 2, 1999, pp. 1150 –1157 vol.2.

[ML09] Marius Muja and David G. Lowe, Fast approximate nearest neighbors with au-
tomatic algorithm configuration, International Conference on Computer Vision
Theory and Application VISSAPP’09), INSTICC Press, 2009, pp. 331–340.

[NBE+93] Wayne Niblack, Ron Barber, William Equitz, Myron Flickner, Eduardo H.
Glasman, Dragutin Petkovic, Peter Yanker, Christos Faloutsos, and Gabriel
Taubin, The qbic project: Querying images by content, using color, texture, and
shape, Storage and Retrieval for Image and Video Databases, 1993, pp. 173–
187.

[NKZ10] David Novak, Martin Kyselak, and Pavel Zezula, On locality-sensitive indexing
in generic metric spaces, Proceedings of the Third International Conference on
SImilarity Search and APplications (New York, NY, USA), SISAP ’10, ACM,
2010, pp. 59–66.

[PC09] Marco Patella and Paolo Ciaccia, Approximate similarity search: A multi-
faceted problem, vol. 7, Journal of Discrete Algorithms, March 2009, pp. 36–48.

[PW08] Ofir Pele and Michael Werman, A linear time histogram metric for improved
sift matching, Proceedings of the 10th European Conference on Computer Vi-

Improving retrieval accuracy of HCT for generic metric spaces 29

sion: Part III (Berlin, Heidelberg), ECCV ’08, Springer-Verlag, 2008, pp. 495–
508.

[RTG00] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas, The earth mover’s dis-
tance as a metric for image retrieval, vol. 40, International Journal of Com-
puter Vision, November 2000, pp. 99–121.

[SMR04] Pavan Kumar C. Singitham, Mahathi S. Mahabhashyam, and Prabhakar
Raghavan, Efficiency-quality tradeoffs for vector score aggregation, Proceed-
ings of the Thirtieth international conference on Very large data bases - Volume
30, VLDB ’04, VLDB Endowment, 2004, pp. 624–635.

[VMG+12] Carles Ventura, Manel Martos, Xavier Giró, Verónica Vilaplana, and Fer-
ran Marqués, Hierarchical navigation and visual search for video keyframe
retrieval, Proceedings of the 18th international conference on Advances in
Multimedia Modeling (Berlin, Heidelberg), MMM’12, Springer-Verlag, 2012,
pp. 652–654.

[WSB98] Roger Weber, Hans-Jörg Schek, and Stephen Blott, A quantitative analysis and
performance study for similarity-search methods in high-dimensional spaces,
Proceedings of the 24rd International Conference on Very Large Data Bases
(San Francisco, CA, USA), VLDB ’98, Morgan Kaufmann Publishers Inc.,
1998, pp. 194–205.

[YD13] Ji Cheng Yang and Xiang Rong Ding, Movie Audio Retrieval Based on HCT,
vol. 321, Applied Mechanics and Materials, 2013, pp. 1129–1132.

[YLhF+11] Ji-Chen Yang, Yan-Xiong Li, Xiao hui Feng, Qian hua He, and Jun He, Speaker
retrieval based on minimum distance in HCT, Wireless Mobile and Comput-
ing (CCWMC 2011), IET International Communication Conference on, 2011,
pp. 274–277.

