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Abstract

We propose a technique for coherently co-clustering uncalibrated views of a scene

with a contour-based representation. Our work extends the previous framework,

an iterative algorithm for segmenting sequences with small variations, where the

partition solution space is too restrictive for scenarios where consecutive images

present larger variations. To deal with a more flexible scenario, we present three

main contributions. First, motion information has been considered both for

region adjacency and region similarity. Second, a two-step iterative architecture

is proposed to increase the partition solution space. Third, a feasible global

optimization that allows to jointly process all the views has been implemented.

In addition to the previous contributions, which are based on low-level features,

we have also considered introducing higher level features as semantic information

in the co-clustering algorithm. We evaluate these techniques on multiview and

temporal datasets, showing that they outperform state-of-the-art approaches.

Keywords: Image segmentation, Object segmentation, Multiview

segmentation, Co-clustering techniques

1. Introduction

The concept of co-clustering is used in several fields such as clustering doc-

uments and words simultaneously [1, 2], information-theoretic co-clustering in

contingency table analysis [3] or clustering images and features simultaneously

[4, 5]. In our work, co-clustering refers to robustly segment a (or various) ref-5

erence image(s) within a collection of closely related images, without any prior

Preprint submitted to Signal Processing: Image Communication March 13, 2018



knowledge of the actual number of clusters. Examples of such image collections

can be consecutive sections of a neuronal tissue [6], a video sequence with small

variations [7, 8] or multiple views of a given scene. In this paper we address the

multiview problem.10

The multiview concept can also be related to different scenarios, such as

object reconstruction [9, 10, 11], multiview matching [12] or multiview video

coding [13]. In this work, we refer to a set of RGB uncalibrated images rep-

resenting different views of the same scene, such as that presented in row 1 of

Figure 1. The task of multiview segmentation, which can be very accurately15

solved when the camera parameters are known (calibrated scenario) [14, 15],

becomes much more complicated when these camera parameters are not avail-

able (uncalibrated scenario). Calibration data allows defining epipolar lines

for each pixel in a view, constraining the search of related pixels in the other

views [16]. In uncalibrated scenarios, such constrains are commonly estimated20

using a structure-from-motion system [17, 18], which introduces an additional

complexity to the segmentation problem.

This way, given a set of uncalibrated views of a scene, the first objective

of this work is to produce a region-based multiresolution representation of the

complete view set. We adopt a multiresolution region-based image represen-25

tation since it provides a richer framework that improves the performance of

subsequent analysis [20, 21]. Moreover, at each resolution, the region-based

representation is formed by a coherent set of partitions in the sense that labels

are coherently propagated through the views. An example of this type of result

can be seen, for a given resolution, at row 3 of Figure 1.30

The starting point of our work is [8], which proposes an iterative algorithm

for segmenting video sequences with small variations. The partitions obtained

by [8] are constrained to the hierarchical segmentations obtained for each frame

independently. This approach is sound in the small variation scenario but, when

consecutive images present larger variations, hierarchical constraints restrict too35

much the partition solution space.

Another limitation of [8] is that no motion information is considered. In the
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Figure 1: Co-clustering results. Row 1: Original views. Row 2: Co-clustering from [8]. Row

3: Best level of the proposed multiresolution co-clustering (Section 3). Row 4: Semantic seg-

mentation of [19]. Row 5: Automatically selected level of the proposed semantic segmentation

(Section 5). Note the improvements in label coherence of the proposed co-clustering (rows 2

and 3), and in the object representation in several views of the semantic segmentation (rows

4 and 5)

context of video sequences with small variations it makes sense to compare a

pixel from one frame with the pixels at the same location (collocated pixels) in

the other frames. However, in the multiview scenario, the differences between40

a pixel in a frame with its collocated pixels is too significative to draw any

conclusion about a coherent segmentation.

Second row of Figure 1 shows the result of applying [8] to a multiview se-

quence, where we can observe that the structure of the chair in the fouth view-

point (represented in green) has not been assigned to the same cluster as the45

structure of the chair in the previous frames (represented in blue).

In our work, we extend the framework proposed in [8] to the uncalibrated

multiview context by the following main contributions:
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• Inclusion of motion information both for region adjacency graph and re-

gion similarity.50

• A two-step iterative co-clustering to increase the partition solution space

allowing partitions that are not in the initial hierarchies.

• A feasible global optimization applied on top of the two-step iterative

co-clustering algorithm that allows to jointly process all the views in the

scene.55

In addition to the previous contributions, which are based on the same low-

level features as the original framework [8], we also consider introducing higher

level features as semantic information in the co-clustering algorithm. Semantic

segmentation has drastically increased its performance since the introduction

of Convolutional Neural Networks (CNNs) [22, 23, 24, 19]. CNNs require large60

amounts of annotated visual content to train their parameters. However, such

techniques are limited because current datasets do not correctly represent the

high variability of some classes (differences among instances of a concept, i.e.

intra-class variability, or among views of a given instance, i.e. view variability).

Row 4 of Figure 1 shows an example of changes in performance due to view65

variability. The view variability problem can be palliated if several views of

the scene are jointly processed. This way, we produce a semantic-based mul-

tiresolution co-clustering where available semantic information is improved and

coherently extended through the views. An example of this type of results can

be seen at row 5 of Figure 1.70

Finally, given a multiresolution representation of a set of views and some

available semantic information about the scene content, we propose an unsu-

pervised resolution selection technique. That is, an automatic way to select a

given resolution and propose a single multiview partition for representing the

scene. From this single resolution representation, we provide a multiview se-75

mantic segmentation. Results presented in rows 3 and 5 of Figure 1 have been

obtained using this unsupervised technique.
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The paper is structured as follows. In Section 2, we address the various

approaches that are followed to tackle multiview segmentation: typically, ex-

tending video segmentation techniques such as [20, 25, 26, 27, 28] or using80

co-segmentation algorithms such as [29, 30, 31] or co-clustering techniques such

as [7, 8]. In [8], it was reported that, in the context of video segmentation of

scenes with little motion, co-clustering techniques outperform other approaches.

In Section 3, we extend the segmentation approach in [8] to a two-step

iterative co-clustering for multiview sequences. For a given resolution, the first85

step allows us to reach this resolution in the representation, whereas the second

step enlarges the partition solution space. We also propose a global optimization

that process all the views jointly on top of the two-step iterative algorithm.

Next, Section 4 assesses these contributions on the multiview sequences from

[14]. For the sake of completeness, we present as well comparisons with the90

temporal sequences from [32] as in [8].

Finally, Section 5 explains how semantic information is included in the pro-

posed co-clustering algorithm. Semantic information is also used to obtain a

coherent semantic segmentation along the multiview sequence and to select a

single resolution from the multiple resolutions given by the original algorithm.95

2. Related Work

As previously commented, we are going to address the problem of uncal-

ibrated multiview segmentation from the co-clustering perspective. Previous

work done using co-clustering techniques is reviewed in Section 2.1. However,

other approaches such as video segmentation and co-segmentation techniques100

have also been considered and their performance will be discussed later in the

experiments performed. Therefore, Sections 2.2 and 2.3 review video segmen-

tation and co-segmentation techniques respectively. Finally, Section 2.4 intro-

duces some hierarchical segmentation concepts and algorithms, which are used

through subsequent sections.105
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2.1. Co-clustering techniques

In our context, co-clustering aims at grouping regions from a collection of

partitions creating clusters based on region similarities. [33] formulates the co-

clustering as a Quadratic Semi-Assignment Problem, which is further relaxed

using Linear Programming. In a medical application, [6] reduces the problem110

complexity as it imposes optimization constraints only over cliques of a region

adjacency graph (RAG), but no motion compensation is used to define such a

RAG.

A regularization parameter is introduced in [7] to generate partitions at

different resolutions, but only the reference image is segmented. In [7], motion is115

introduced but only to capture similarities between regions of the same partition.

In contrast, in our work, we avoid regularization parameters using the number

of clusters to create the multiresolution and we include motion to link regions

from different views.

In the context of segmenting video sequences with small variations, [8] ex-120

tends the work in [7] and proposes a framework that allows iterative and global

processing of frames, although the final algorithm is only iterative. Here, global

refers to an optimization process that is jointly applied to all frames, whereas it-

erative refers to a forward-online optimization process. These terms (global and

iterative) are equivalent to the concepts of full video and streaming previously125

introduced by [25]. The constraints proposed in [7] do not force final active

contours to be coherent with the segmentation; that is, open contours may ap-

pear. To solve that, [8] imposes as input independent hierarchies obtained for

each frame. Since hierarchical constraints are too restrictive for the multiview

scenario, we propose a two-step co-clustering to increase the partition solution130

space allowing partitions that are not in the initial hierarchies.

2.2. Video segmentation techniques

Video segmentation techniques aim at coherently segmenting the frames of

a video sequence by exploiting their temporal correlation. In [20], a global

video segmentation method is presented producing a hierarchical representation,135
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based on appearance and motion. A hierarchical video segmentation is also

proposed in [25] but, in this case, sequences are processed in bursts, leading

to an iterative algorithm. Our framework covers the iterative and global cases

and, to avoid large variations between consecutive resolutions such as in [20],

we control the optimization through the number of clusters.140

Video segmentation is tackled in [26] as an extension of the image approach

in [21]. An iterative algorithm is proposed to make the approach tractable. We

also take advantage of the high quality of hierarchies in [21] and, in addition,

we propose a global technique that suits better multiview scenarios.

Regarding the definition of adjacency, in [27] the authors propose the use145

of non-local graphs to allow a pixel label to be extended to all pixels in other

images. In our work, adjacency is defined using optical flow and the use of a

region-based approach and searching windows makes our solution more robust

to possible errors in its estimation. Actually, [27] proposes a two-phase architec-

ture: a phase I where initially local graphs are used (reduced adjacency) and a150

phase II with non-local graphs (enlarged adjacency). Our two-step architecture

aims at a similar goal, but constraining and relaxing the search area across the

hierarchical partitions instead of the space-time area.

Other state-of-the-art video segmentation techniques [34, 35, 36] are semi-

supervised, requiring user interaction to initialize the object segmentation in155

the first frame or a few annotated foreground proposals. While these techniques

are typically used for object tracking, we tackle the video segmentation task in

a fully unsupervised manner.

2.3. Co-segmentation techniques

Co-segmentation techniques aim at simultaneously segmenting a given ob-160

ject or similar objects (foreground) that appear in an image collection. Classi-

cally, they were designed to be applied over images with different backgrounds.

However, in our multiview scenario, background does not change significantly.

Therefore, we only review co-segmentation techniques that do not assume dif-

ferent backgrounds in the image collection.165
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In [30], a technique is presented in the multiple foreground segmentation

case. In it, the user is required to introduce the number of foreground objects

in the set of images. Multiple local hierarchies are used to make the problem

tractable and a single segmentation is obtained. In our work, in addition to a

multiresolution representation, we propose an unsupervised approach to select170

a single resolution coherent segmentation.

The problem of multiclass co-segmentation is also addressed in [29]. It is

a global, non-hierachical approach were tractability of the problem is tackled

with a convex quadratic approximation. Another co-segmentation approach is

presented in [37] that also proposes an optimization process on the hierarchy.175

Other state-of-the-art co-segmentation techniques [38, 39, 40, 31] aim at

segmenting foreground objects from a collection of videos. These techniques

assume at some stage that the object to be segmented is present at different

videos and take advantage of having the same object with different backgrounds.

Such approaches do not reflect the problem that we are addressing, where the180

object should be segmented from a single collection of multiview images and the

background hardly changes along them.

2.4. Hierarchical segmentation algorithms

Hierarchical segmentation algorithms provide segmentation of images into

regions at multiple resolutions. Given an initial oversegmentation P 0 of an im-185

age, hierarchical segmentation algorithms provide an order of mergings of these

regions resulting into increasingly coarser partitions P 1, P 2, ..., P i, ..., PN−1,

where N is the number of regions in P 0. The increasingly coarser partitions

{P i}N−1i=0 resulting from binary mergings can be represented as a tree which is

referred to as Binary Partition Tree (BPT) [41]. This tree consists of a set of190

nodes such that each node represents one region in the hierarchy. There are two

kinds of nodes: internal or parent nodes and leaf nodes. Leaf nodes represent the

regions from the initial partition P 0 (leaf partition), whereas an internal node

represents a region that results from the merging of the two regions represented

by its two sibling nodes.195
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The gPb-owt-ucm [21] is one of the state-of-art hierarchical segmentation

algorithms and has been selected for our co-clustering framework. Furthermore,

it gives the contour strength at eight different orientations, which will be used

to compare regions from different partitions.

3. Multiresolution co-clustering200

Given a collection of images representing the same scene, their associated

region hierarchies share a set of common boundaries but present a large number

of random boundaries. These concepts are illustrated in Figure 2, where row 1

presents the set of region hierarchies and row 2 the common and random bound-

aries. We present a framework for obtaining an optimal collection of partitions205

by clustering nodes from these region hierarchies. Since hierarchies constrain

the clustering process, the result of the optimization can be illustrated in row

1 of Figure 2 as cuts in the different hierarchies. This collection of partitions

aims at keeping only the common boundaries and at producing coherent regions

through the collection; that is, the various instances of the same object (or part)210

receive the same label in all the partitions of the collection (see Fig. 2).

Figure 2: Co-clustering of hierarchies from a collection of images. Row 1: Nodes selected from

the tree to create the image partitions. Lines represent the cut in the tree obtained through

the optimization procedure and leading to the optimal partition. Row 2: Clusters created

with unions of leaves describing tree nodes.

The optimal partition (that is, the co-clustering result at a given resolution)
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is achieved through an optimization problem that combines a boundary matrix

D and a similarity matrix Q. D encodes the whole set of possible boundaries

between adjacent regions in the collection. This matrix contains information215

about both the intra boundaries (between adjacent regions in the same image)

and the inter boundaries (between adjacent regions in different images). In

turn, Q encodes the similarity between pairs of regions, whether they belong

to the same image partition or to different image partitions. Section 3.1 is

divided into four subsections that describe the optimization problem. First,220

intra and inter region adjacency graphs are defined. Second, intra- and inter-

image interactions to compute the similarity between pairs of adjacent regions

are also given. Third, hierarchical constraints are added to the optimization

problem to impose the structure of the hierarchies associated to each partition.

Fourth, an additional constraint is also imposed to set the resolution of the225

resulting co-clustered partitions. Varying the value of the resolution parameter,

co-clustering solutions at multiple resolutions are obtained.

Although the optimization problem is stated as a 3D volume processing

technique, this implies high complexity algorithms and memory requirements.

Therefore, we adopt an iterative approach, based on the previous optimiza-230

tion process, that propagates clusters along image views at various resolutions,

taking into account the information in previous processed frames. Section 3.2

addresses the high computational requirements of this approach and presents

three different architectures: two of them completely iterative and a third one

that is a hybrid of the iterative and the global approaches.235

3.1. Co-clustering optimization problem

In this section, we describe the co-clustering optimization problem that is

proposed. In order to help the reader through the description, we provide with

a notation table summarizing all variables being used (see Table 1).

For a specific resolution, given a set of M closely-related images {Ii}Mi=1 and240

their associated partitions {Pi}Mi=1, a coherent segmentation {π∗i }Mi=1 along the

set of images is obtained. Each partition Pi is formed by a set of ni regions
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{Rji}
ni
j=1 = {R1

i , ..., R
ni
i }, where Pi =

⋃ni

j=1R
j
i . To simplify the problem nota-

tion, let us give a unique identifier to every region in the set of images so that

{Rk}
∑

i ni

k=1 =
⋃M
i=1{R

j
i}
ni
j=1. The goal is to define an unknown number of clus-245

ters along the partitions so that every region Rk is assigned to a single cluster.

This problem is formulated as follows [7]:

min
D

∑
k,l

Qk,lDk,l

s.t. Dk,l ∈ {0, 1}

Dk,k = 0 ∀k, Dk,l = Dl,k ∀k, l

Dk,l ≤ Dk,m +Dm,l ∀ek,l, ek,m, em,l ∈ G,

(1)

where Dk,l are the boundary variables being optimized that define whether two

adjacent regions Rk and Rl belong to the same cluster (Dk,l = 0, inactive bound-

ary) or not (Dk,l = 1, active boundary), Qk,l encodes the similarity between250

regions Rk and Rl, and ek,l represents the edge from a graph G that connects

two adjacent regions. Three-cliques of adjacent regions from G are considered

to impose the triangular inequalities. Triangular inequalities ensure intra and

inter spatial coherence. Note that the boundary variables Dk,l from Equation 1

are only defined for pairs of adjacent regions and, thus, the concept of adjacency255

has to be defined.

3.1.1. Region adjacency graph

Given a set of partitions, two kinds of adjacency are considered: the in-

tra adjacency, which refers to regions from the same partition, and the inter

adjacency, which refers to regions from different partitions. Intra adjacency is260

defined as in previous works [7, 8]; that is, two regions Rk and Rl from the same

partition are adjacent if any pixel pi from Rk has at least one pixel pj from Rl

among the 4-connected pixels of pi.

However, given the differences between consecutive views, inter adjacency

relies on motion compensation. In order to robustly link objects through dif-265

ferent views, we compute the optical flow between consecutive views using [42].
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This way, regions Rk and Rl from partitions Pi and Pj respectively are consid-

ered adjacent if at least one pixel from the motion compensated version of Rk

overlaps with a pixel of Rl.

3.1.2. Intra- and inter-image interactions270

Two types of similarities are computed: intra similarities (between regions

from the same partition) and inter similarities (between regions from different

partitions). Intra similarities are estimated taking into account that, if two

regions share a (close to) common color distribution and a long boundary, they

are likely to be merged by the optimization process. This way, intra similarities275

are computed as:

Qk,l = αk,l(1− e1−dB(k,l))

where αk,l is the length of the common boundary between regions Rk and Rl

and dB(k, l) is the Bhattacharyya distance [43] between the 8-bin separated

channel RGB color histograms of regions Rk and Rl.

Inter similarities try to distinguish common boundaries present in various280

views and representing real objects in the scene from random boundaries due to

the segmentation variability. Therefore, we adopt an inter similarity definition

based on a contour element representation [7]. Contour elements are defined

as elements that connect two adjacent pixels belonging to two different regions

from the same partition. Thus, boundaries consist of a set of contour elements.285

A contour element from a boundary is considered to belong to both regions

that define such a boundary. Furthermore, each contour element is assigned an

orientation, which represents the normal direction to the region boundary at

its position. Based on a contour element representation, the similarity between

regions Rk from Pi and Rl from Pj is computed as:290

Qk,l =
∑
u,v

e−ιθuWu,ve
ιθv

where ι represents the imaginary unit, u all contour elements belonging to Rk
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from Pi, v all contour elements belonging to Rl from Pj , θu and θv are their

respective orientations, and Wu,v encodes the similarity between such contours.

Contour orientations are obtained as the orientation that maximizes the

contour strength in the gPb-owt-ucm [21] among its eight possible orientation295

values. Wu,v is computed as Wu,v = exp((fui − fvj )T
∑

(fui − fvj )), where fui

is the feature vector of contour element u formed as the concatenation of the

three types of descriptors (color, texture and position), and
∑

is a diagonal

matrix with the variance of the feature vectors. For color and texture, color

histogram and HOG descriptors are computed in a window centered on the300

contour element. Regarding position, contour element coordinates are used.

As done with the inter region adjacency graph, we also consider motion

information in the computation of inter similarities for multiview sequences.

Therefore, a given contour element u at position (x, y) from partition Pi is

compared with all contour elements close to (x+ofx, y+ofy) from partition Pj ,305

where of(x, y) = (ofx, ofy) is the optical flow. Note that the matrix W is sparse

since only contour elements v from Pj belonging to a spatial neighborhood of

(x+ ofx, y + ofy) are considered.

3.1.3. Hierarchical constraints

Region-based hierarchical representations present a very high potential ac-310

curacy [20, 21]. Given that, we constrain the optimization problem to the solu-

tion space proposed by the hierarchical representations of the various views

{Hi}Mi=1 = {H1, H2, ...,HM}. These hierarchies, as illustrated in row 1 of

Figure 2, are computed independently for each view. More specifically, they

are computed using the gPb-owt-ucm segmentation technique [21]. Figure 3315

presents an example of a hierarchy of regions and how it defines the order in

which regions are to be merged. In the gPb-owt-ucm case, the order aims at

defining regions that match the semantic contents of the image.

Each hierarchy Hi can be imposed through only two constraints that are

applied to each parent node of Hi. As previously said, the idea is to reduce320

the solution space by forcing the optimization to build the final co-clustering
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Figure 3: Partitions generated by mergings of regions from the leaf partition P 0
i . The evolution

of the hierarchy at each step is shown below the correspondent partition.

solution using only regions present in the hierarchies.

Before introducing such constraints, let us define intra-sibling boundary and

inter-sibling boundary. Given a parent node p, which has two sibling nodes son−

left and son−right, intra-sibling boundaries BpINTRA are defined as boundaries325

connecting adjacent regions from the leaf partition that are descendant of the

same sibling. Therefore, a boundary Dk,l ∈ BpINTRA if both Rk and Rl belong

to the same subtree (subtree(son− left) or subtree(son− right)), and Rk and

Rl are adjacent in the same partition. In turn, inter-sibling boundaries BpINTER

as those connecting adjacent regions from the leaf partition that are descendant330

of different siblings. Therefore, a boundary Dk,l ∈ BpINTER if Rk belongs to

subtree(son− left), Rl belongs to subtree(son− right) (or viceversa), and Rk

and Rl are adjacent in the same partition. Let us use the example in Figure 3

to illustrate the intra-sibling and inter-sibling boundary concepts.

Given a parent node, e.g. node 7, intra-sibling boundaries are those connect-335

ing adjacent regions either from {1, 2} (R1 and R2 belong to subtree(son−left))

or {3, 4} (R3 and R4 belong to subtree(son − right)). From the left sibling,

we have the intra-sibling boundary D1,2. Analogously, from the right sibling,

we have intra-sibling boundary D3,4. As a result, Bp7INTRA ={D1,2, D3,4} are

the intra-sibling boundaries for the parent node 7. On the other hand, inter-340

sibling boundaries are those connecting adjacent regions from different siblings.
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Therefore, Bp7INTER ={D1,3, D2,3, D2,4} are the inter-sibling boundaries for the

parent node 7.

The first constraint forces that, given two siblings, all their common bound-

aries (inter-sibling boundaries) are either jointly active or inactive. For a given345

parent node p, if we arbitrarily select one of its inter-sibling boundaries and we

denote it as Dm,n, the first constraint is:

∑
Dk,l∈Bp

INTER

Dk,l = |BpINTER|Dm,n (2)

where Dm,n ∈ BpINTER. Following the example in Figure 3, for parent node

7, if we arbitrarily select D1,3 among its inter-sibling boundaries, the previous

constraint becomes D1,3 +D2,3 +D2,4 = 3D1,3. Such a constraint forces that all350

three inter-sibling boundaries are either jointly active or inactive. If that was

not the case, there would be a contradiction in the merging of nodes 5 and 6.

Note that an analogous constraint has to be imposed for each parent node in

the hierarchy.

The second constraint imposes that two siblings can only be merged as long355

as the regions that form their respective subtrees (encoded with the intra-sibling

boundaries) have also been merged. For a given parent node p, and given an

arbitrarily selected inter-sibling boundary (Dm,n), the second constraint is:

∑
Dk,l∈Bp

INTRA

Dk,l ≤ |BpINTRA|Dm,n (3)

where Dm,n ∈ BpINTER. Following the example from Figure 3, for parent node

7, the previous constraint becomes D1,2 + D3,4 ≤ 2D1,3. This constraint can360

be interpreted as follows. If boundary D1,3 is inactive, i.e. nodes 5 and 6 are

merged, all intra-sibling boundaries must be also inactive; that is, all nodes

from their subtrees should also be merged, otherwise the hierarchy would be

violated. On the contrary, if D1,3 is active, there are no constraints imposed

over the intra-sibling boundary variables. Note that this second constraint has365

to be also imposed for each parent node in the hierarchy.
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rq+1 rq+1

rq+1

rq rq

rq
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Figure 4: Multiresolution co-clustering of an image collection. Row 1: Different cuts at each

tree associated with different resolutions. Rows 2 and 3: Optimal partitions generated by the

previous hierarchy cuts. Row 4: Leaf partitions

3.1.4. Resolution parameterization

The optimization process defined by Equations 1, 2 and 3 obtains an

optimal co-clustering at a given resolution (rq). To obtain different resolutions

(for instance, rq and rq+1 in Fig. 4), different parameterizations have been370

proposed (e.g.: a similarity multiplier [7] or the number of active boundaries

[8]). However, determining the values of these parameters is a highly sensitive

and unstable process whose result may range from almost equal to very different

consecutive resolutions. As an alternative, we have analyzed how to set the

resolution in the optimization process through a parameter as intuitive as the375

number of clusters.

As seen in Equation 2, the merging of two sibling nodes is equivalent to set as

inactive all the inter-sibling boundaries that form the common boundary. More-

over, the number of regions is reduced by one with each merging. Therefore, a

constraint relating the number of active boundaries and the number of clusters380

Nr can be formulated. Given a hierarchy H, let us define BhINTER as a set that
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includes only one boundary from BpINTER arbitrarily selected for each parent

node p from H. Thus, BHINTER can be defined as BHINTER = ∪p∈H{Dk,l},

where Dk,l ∈ BpINTER. The resolution constraint can be formulated as follows:

∑
Dk,l∈BH

INTER

Dk,l = Nr − 1 (4)

where Nr is the final number of clusters to be obtained at this resolution.385

Whereas the previous hierarchical constraints (Eqs. 2 and 3) are imposed to

each parent node in the hierarchy H, the resolution constraint given by Equa-

tion 4 is globally imposed to the hierarchy. Following the example from Figure 3,

a single inter-sibling boundary for each parent node from the hierarchy is first

selected. For parent node 7, we arbitrarily select D1,3 among its inter-sibling390

boundaries (Bp7INTER = {D1,3, D2,3, D2,4}). Analogously, we select D1,2 for

parent node 5 (Bp5INTER = {D1,2}), and D3,4 for parent node 6 (Bp6INTER =

{D3,4}). Therefore, Equation 4 becomes D1,3 +D1,2 +D3,4 = Nr − 1.

When Equation 4 is jointly considered with the two hierarchical constraints

(Eqs. 2 and 3), it can be interpreted as the possible cuts that could be performed395

to the hierarchy resulting in Nr leaf nodes, where leaf nodes are the nodes

with no children. For instance, if Nr = 3, the constraint becomes D1,3 +

D1,2 + D3,4 = 2, which combined with the previous hierarchical constraints

(D1,3 + D2,3 + D2,4 = 3D1,3, D1,2 + D3,4 ≤ 2D1,3) results in two possible

solutions: (i)D1,2 = 0, D1,3 = D3,4 = 1 (represented by the second partition400

from Fig. 3), and (ii)D3,4 = 0, D1,3 = D1,2 = 1, which would result from

merging regions 3 and 4 into region 6 but not merging regions 1 and 2. The

selection of the optimal cut depends on the optimization process and, therefore,

on the intra- and inter-image interactions.

3.2. Architecture405

Three different architectures are proposed to implement the previous mul-

tiresolution co-clustering. The idea is to improve the final co-clustering by

increasing the complexity and the partition solution space in the successive
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architectures. These increments are feasible since more complex optimization

processes involved in a given architecture rely on simpler procedures and accu-410

rate results obtained in previous optimization stages.

This way, we present first a one-step iterative architecture [8], where images

are forward processed considering the two previous co-clustered partitions and

imposing the previous hierarchical constraints. Second, a two-step iterative

architecture that enlarges the set of possible partition solutions by, in a second415

step, allowing region mergings that were not present in the initial hierarchies.

Third, a global optimization that is applied over the co-clustered partitions

resulting from the two-step iterative architecture.

3.2.1. One-step iterative architecture

Although the previous multiresolution co-clustering could be processed glob-420

ally as in [20], such an approach would require high memory resources. Thus,

we propose an iterative approach as in [44] following the scheme illustrated in

Figure 5. More specifically, we propose a forward-online approach, where the

co-clustering result of views already processed do not suffer any changes when

the subsequent views are processed.425

Let us denote the partitions resulting from the co-clustering at a given res-

olution level as {π∗i } (top row of Fig. 5). The first block in Figure 5 (1. Initial

co-clustering) initializes the system, whereas the iterative process is illustrated

by the second block (2. Iterative co-clustering). To obtain π∗i , we rely on the

information of this view Ii and of the previous one Ii−1; that is, their leaf par-430

titions {Pi, Pi−1} and hierarchies {Hi, Hi−1} (middle row and bottom row in

Fig. 5, respectively). Partitions π∗i−2 and π∗i−1 are included in the optimization

to ensure that π∗i keeps coherence with the previous co-clustering results (green

and blue arrows in Fig. 5, respectively). This coherence requires imposing two

additional constraints. The whole procedure is summarized in Algorithm 1.435

Let us now discuss the definition of the two iterative constraints. Figure 6

shows an example to illustrate how these constraints are obtained. To impose

the co-clustering results of the previous views, some boundaries must be forced
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Figure 5: Co-clustering flowchart for the one-step iterative approach [8]. {Pi} and {Hi}

refer to the leaf partitions and their associated hierarchies respectively, and {π∗
i } refers to

the resulting co-clustered partitions. Colored arrows are used only for disambiguating arrow

crosses. Block indices denote their processing order.

to be active and some other inactive. Active boundaries should ensure that

through the optimization process regions in π∗i−2 must not be merged both440

considering intra-image boundaries (DA,B , DA,C and DB,C in Fig. 6) and inter-

image boundaries with respect to Pi−1, where the region is assigned to a different

cluster in π∗i−1 (DA,3, DA,4 and DC,3 in Fig. 6). Furthermore, active boundaries

should also preserve the partition π∗i−1, thus intra-image boundaries connecting

adjacent regions from Pi−1 that belong to different clusters in π∗i−1 must not be445

merged (D1,4, D2,3, D2,4 and D3,4 in Fig. 6). Let us define BiACTIV E as the set

of boundaries that must be active when view i is being processed. Therefore,

the first iterative constraint is:

∑
Dk,l∈Bi

ACTIV E

Dk,l = |BiACTIV E | (5)

In the previous example, this constraint becomes DA,B + DA,C + DB,C +

D1,4 +D2,3 +D2,4 +D3,4 +DA,3 +DA,4 +DC,3 = 10.450

In turn, inactive boundaries must allow to merge regions in Pi−1 to form

π∗i−1 (D1,2 in Fig. 6) and to keep correspondences between clusters from π∗i−2
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Algorithm 1 One-step iterative co-clustering

1: function One-step-iterative(I, P,H,Nr) . Where I - images, P - leaf

partitions, H - hierarchies, Nr - resolution

2: Take partitions P1, P2 and hierarchies H1, H2.

3: Apply optimization problem defined in Eq. 7.

4: Let π∗1 and π∗2 be the output co-clustered partitions

5: for i = 3 to M do

6: Take partitions Pi−1, Pi and hierarchies Hi−1, Hi

7: Take co-clustered partitions π∗i−1 and π∗i−2.

8: Apply optimization problem defined in Eq. 8.

9: Let π∗i be the output co-clustered partition.

10: end for

11: end function

and π∗i−1, thus clusters from π∗i−2 with adjacent regions from Pi−1, where the

region is assigned to the same cluster in π∗i−1 are preserved (DA,1, DA,2, DB,3

and DC,4 in Fig. 6). Let us define BiINACTIV E as the set of boundaries that455

must be inactive when view i is being processed. Therefore, the second iterative

constraint is:

∑
Dk,l∈Bi

INACTIV E

Dk,l = 0 (6)

Following the same example, this constraint becomes D1,2 +DA,1 +DA,2 +

DB,3+DC,4 = 0. Note that π∗i−1 is used to relate regions from Pi−1 with clusters

from π∗i−2 in both constraints.460

To sum up, the inital co-clustering step to obtain π∗1 and π∗2 consists in solv-

ing the following optimization problem that results from adding the hierarchical

constraints (Eqs. 2 and 3) and the resolution constraint (Eq. 4) to the initial
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Figure 6: Illustrative example for one-step iterative co-clustering. Regions are indexed by

numbers while clusters are indexed by letters.

formulation (Eq. 1) for partitions P1, P2 and hierarchies H1, H2:

min
D

∑
k,l

Qk,lDk,l

s.t. Dk,l ∈ {0, 1}

Dk,k = 0 ∀k, Dk,l = Dl,k ∀k, l

Dk,l ≤ Dk,m +Dm,l ∀ek,l, ek,m, em,l ∈ G∑
Dk,l∈Bp

INTER

Dk,l = |BpINTER|Dm,n∀p ∈ H1, H2, whereDm,n ∈ |BpINTER|

∑
Dk,l∈Bp

INTRA

Dk,l ≤ |BpINTRA|Dm,n∀p ∈ H1, H2, whereDm,n ∈ |BpINTER|

∑
Dk,l∈B

H1
INTER

Dk,l = Nr − 1

∑
Dk,l∈B

H2
INTER

Dk,l = Nr − 1,

(7)

where Rk and Rl belong to {P1, P2}.465

Once obtained π∗1 and π∗2 , the rest of co-clustering partitions {π∗i }i=Mi=3 are

computed by applying the iterative approach. More specifically, partition π∗i is
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the result of solving the following optimization problem:

min
D

∑
k,l

Qk,lDk,l

s.t. Dk,l ∈ {0, 1}

Dk,k = 0 ∀k, Dk,l = Dl,k ∀k, l

Dk,l ≤ Dk,m +Dm,l ∀ek,l, ek,m, em,l ∈ G∑
Dk,l∈Bp

INTER

Dk,l = |BpINTER|Dm,n∀p ∈ Hi, whereDm,n ∈ |BpINTER|

∑
Dk,l∈Bp

INTRA

Dk,l ≤ |BpINTRA|Dm,n∀p ∈ Hi, whereDm,n ∈ |BpINTER|

∑
Dk,l∈B

Hi
INTER

Dk,l = Nr − 1

∑
Dk,l∈Bi

ACTIV E

Dk,l = |BiACTIV E |

∑
Dk,l∈Bi

INACTIV E

Dk,l = 0,

(8)

where Rk and Rl belong to {Pi−1, Pi}.

Therefore, leave partitions Pi−1 and Pi are used to allow computing fine470

boundary similarities, whereas boundaries from π∗i−2 and π∗i−1 are included to

enforce previous extracted boundaries. With this iterative process, clusters are

robustly propagated through the different views in the scene.

3.2.2. Two-step iterative architecture

The goal of imposing hierarchies is to force the optimization process towards475

hierarchy nodes [8]. However, the use of hierarchies may excessively constrain

the partition solution space [45]. For instance, in Figure 6, suppose that merging

clusters A and C leads to a better configuration, but such a cluster would vio-

late the hierarchical constraints imposed for each view. To solve this problem,

we propose a two-step iterative co-clustering that enlarges the set of possible480

partition solutions. Whereas the first step allows the process to reach a given
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Figure 7: Two-step iterative co-clustering flowchart. Block indices denote their processing

order

resolution using hierarchy nodes, the second step improves the final result al-

lowing region mergings that were not present in the hierarchy.

For each resolution, two optimization steps are coupled as represented by the

block diagram in Figure 7. Let us denote the optimal partitions resulting from485

the first and second step as {π∗i } and {π∗∗i }, respectively (row 2 and row 1 in

Figure 7). The first and second blocks in Fig. 7 (1. Initial 1S co-clustering and

2. Initial 2S co-clustering) initialize the system, whereas the iterative process

is illustrated by the third and fourth blocks (3. Iterative 1S co-clustering and

4. Iterative 2S co-clustering).490

The first step of the initialization obtains π∗1 and π∗2 as a result of applying

the optimization problem formulated in Equation 7. The second step of the
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Figure 8: Toy example illustrating the usefulness of the two-step iterative co-clustering (1st

step). Regions are indexed by numbers while clusters are indexed by letters. Dashed bound-

aries in π∗∗
i−2 and π∗∗

i−1 represent π∗
i−2 and π∗

i−1 respectively, further used in Figure 9.

initialization takes partitions π∗1 and π∗2 as inputs and obtains partitions π∗∗1 and

π∗∗2 solving the optimization problem formulated in Equation 1, i.e. without the

hierarchical and resolution constraints considered in the first step.495

In the first step of the iterative process (third block), the previous one-step

iterative approach is applied to obtain π∗i . Nevertheless, coherence with previous

co-clustering results is here ensured by including in the optimization the optimal

partitions from the second step π∗∗i−2 and π∗∗i−1 (green and blue arrows in Fig. 7,

respectively).500

In the second step of the iterative process (fourth block), hierarchical con-

straints are not included in the optimization in order to enlarge the partition

solution space. To keep coherence through the iteration, iterative constraints

are analogous to those applied in the first step, but now considering π∗i−1 and

π∗i instead of Pi−1 and Pi (black arrow in the fourth block of Fig. 7).505

Note that, as shown in Figure 7, first and second steps have to be alternated

since the computation of π∗i requires π∗∗i−1 and the computation of π∗∗i requires

π∗i . The whole procedure is summarized in Algorithm 2.

Let us illustrate the usefulness of this two-step approach with two examples:

a toy example and a real one. In Figure 8, we present a simple configuration510

where, for instance, regions 5, 6 and 8 from Pi cannot be assigned to the same

cluster without also including region 7, due to the hierarchical constraints. Fig-
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Figure 9: Toy example illustrating the usefulness of the two-step iterative co-clustering (2nd

step).

Figure 10: Motivation of two-step co-clustering. Column 1: Original views. Column 2: Co-

clustered partitions from first step {π∗
i } . Column 3: Co-clustered partitions from second step

{π∗∗
i }. Note that head and body regions have been assigned to the same cluster in the second

step.

ure 9 shows the second step of the co-clustering. As hierarchical constraints are

not further applied, regions 4 and 6 from π∗i can now be assigned to the same

cluster.515

Figure 10 shows a two-view example (column 1) where a teddy bear is not

coherently segmented in the partitions resulting from the first step (column 2).

Note that, whereas the head and the body belong to the same cluster in the

first view (row 1), they have assigned different cluster in the second view (row

2) since the hierarchy in that view has not allowed this merging. Nevertheless,520

the result of the second step (column 3) is coherent since its optimization does

not include hierarchical constraints.
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Algorithm 2 Two-step iterative co-clustering

1: function Two-step-iterative(I, P,H,Nr) . Where I - images, P - leaf

partitions, H - hierarchies, Nr - resolution

2: Take partitions P1, P2 and hierarchies H1, H2.

3: First step: Apply the optimization problem defined in Eq. 7.

4: Let π∗1 and π∗2 be the output co-clustered partitions

5: Take partitions π∗1 , π∗2 .

6: Second step: Apply the optimization problem defined in Eq. 1.

7: Let π∗∗1 and π∗∗2 be the output co-clustered partitions

8: for i = 3 to M do

9: Take partitions Pi−1, Pi and hierarchies Hi−1, Hi

10: Take co-clustered partitions π∗∗i−1, π∗∗i−2.

11: First step: Apply the optimization problem defined in Eq. 8.

12: Let π∗i be the output co-clustered partitions

13: Take partitions π∗i−1 and π∗i

14: Take partitions π∗∗i−2 and π∗∗i−1

15: Second step: Apply optimization problem defined in Eq. 1, adding

the iterative constraints (Eqs. 5 and 6).

16: Let π∗∗i be the output co-clustered partition.

17: end for

18: end function
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3.2.3. Global optimization

In contrast to the iterative approach, high memory resources are required

in a global optimization [25]. As a result, partitions with an arbitrarily large525

number of regions cannot be used and, typically, partitions from higher levels

of hierarchies are considered [37]. However, as these partitions are created

independently, they may not coherently represent objects in the scene.

To overcome this situation, we propose to consider partitions resulting from

the two-step iterative co-clustering as inputs for the global optimization. For530

each resolution, the optimization process from Equation 1 is jointly applied to all

partitions {π∗∗i }. Hierarchical and resolution constraints are not imposed since

they have already been considered in the first step of the iterative co-clustering.

Although all views are jointly processed, inter adjacency is defined over the

two previous and the two subsequent views in order to restrict the number of535

boundary variables in the optimization process. This restriction is specially

tailored to multiview scenarios. In it, corresponding contour elements among

views commonly show a significant disparity of their normal vector orientations.

Resulting partitions are denoted as {π∗∗∗i }. The whole procedure is summarized

in Algorithm 3.540

Algorithm 3 Global co-clustering

1: function Global(I, P,H,Nr). Where I - images, P - leaf partitions, H -

hierarchies, Nr - resolution

2: Apply Two-step-iterative(I, P,H,Nr)

3: Let {π∗∗1 ,π∗∗2 ,...,π∗∗M} be the output co-clustered partitions from two-step

iterative co-clustering

4: Compute region adjacency graph of {π∗∗1 ,π∗∗2 ,...,π∗∗M}. Inter adjacencies

for π∗∗i only consider regions from {π∗∗i−2,π∗∗i−1,π∗∗i ,π∗∗i+1,,π∗∗i+2}

5: Take partitions {π∗∗1 ,π∗∗2 ,...,π∗∗M}

6: Apply the optimization problem defined in Eq. 1

7: Let {π∗∗∗1 ,π∗∗∗2 ,...,π∗∗∗M } be the output partitions

8: end function
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4. Experimental validation

The experiments have been carried out over two different datasets: a multi-

view dataset [14], and the Video Occlusion/Object Boundary Detection Dataset

[32], which will be referred to as temporal dataset. The multiview dataset in-

cludes 6 sequences, where each sequence consists of a set of images captured545

around an object of interest, which is fully visible in every image. The temporal

dataset includes 30 short sequences (42 objects) with indoor and outdoor scenes.

The original dataset only included the ground truth of a single frame, but the

annotations were extended to the remaining frames in [8] to assess temporal

consistency. As in [8], we use the Consistency-Efficiency metric and the Volume550

Precision-Recall metric (VPR).

Regarding the experiments that have been performed using the co-clustering

framework, leaf partitions {Pi} have been obtained by applying the gPb-owt-

ucm algorithm [21] and performing a cut on the hierarchy so that they consist

of 200 regions. Furthermore, 22 different resolutions r have been considered555

(r ∈ {2, 4, 6, ..., 28, 30, 40, 50, ..., 100}) to obtain the multiresolution co-clustered

partitions.

In this section, we assess the proposed algorithms without using semantic

information. Three different configurations of the proposed co-clustering are

compared:560

• One-step co-clustering (I-1S): See first point in Section 3.2.

• Two-step iterative co-clustering (I-2S): See second point in Section 3.2.

• Two-step iterative co-clustering followed by a global optimization (I-2S+G):

See third point in Section 3.2.

Furthermore, state-of-the-art methods in the fields of video segmentation565

[20, 25, 26, 27] and co-segmentation [29, 30] are evaluated. We also propose two

baseline approaches: (i) the iterative algorithm in [8], which does not consider

motion cues, and, (ii) a system that propagates labels from regions obtained

with gPb-owt-ucm [21] using [42] (UCM+P), as done in [26, 8].
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Figure 11: Evaluation of the proposed co-clustering methods with state-of-the-art videoseg-

mentation and co-segmentation techniques using the consistency-efficiency measure for mul-

tiview (top) and temporal (bottom) sequences. The average consistency along the different

number of clusters is given in the legend for each technique.

Figure 11 shows the results of comparing the different techniques using570

the consistency-efficiency measure for both contexts (multiview and temporal).
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Each point on the figure represents the averaged Jaccard (Intersection over

Union or Consistency) which is achieved when a specific number of clusters is

selected (Efficiency on the representation). For instance, we can see for temporal

sequences and I-1S technique that an averaged consistency of 0.686 is achieved575

when only 1 cluster is selected whereas the average consistency increases up to

0.8267 when 5 clusters are selected. The average consistency along the different

number of clusters is given in the legend for each technique.

Regarding the experiments performed on the multiview dataset, we can ob-

serve that pixel displacements due to viewpoint changes are relevant. Thus, the580

co-clustering technique implemented in [8] gives the worst performance when

only 1 cluster is selected and only outperforms [26], [30] and [27] on average.

However, when motion cues are included in the optimization, I-1S outperforms

on average all state-of-the-art techniques ([30, 29, 25, 20, 26, 27]), including also

the UCM+P baseline, and is only surpassed by [29] and [25] when 1 or 2 clusters585

are selected. The inclusion of the two-step architecture (I-2S), which allows to

create clusters without being constrained by the hierarchies, increases the per-

formance on average from 0.7294 to 0.7838, which represents an improvement of

7.46%. The additional global optimization performed over the two-step iterative

architecture (I-2S+G) further increases the performance up to 0.7970 on aver-590

age. The I-2S+G co-clustering technique outperforms all other state-of-the-art

techniques.

Regarding the experiments performed on the temporal dataset, which have

little variation between frames, we can observe that the performance hardly

depends on whether the motion cues are considered or not. Therefore, motion595

cues can be used independently if the motion present in the sequence is negligible

or not. Consistently with the results reported in [8], the UCM+P baseline

gives the best performance when 3 or more clusters are selected. However,

all proposed co-clustering techniques ([8], I-1S, I-2S and I-2S+G) outperform

all state-of-the-art techniques (including UCM+P) when only 1 or 2 clusters600

are selected. The other state-of-the-art techniques ([30, 29, 25, 20, 26, 27])

perform worse than the proposed co-clustering techniques for the whole range
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of efficiency considered in this evaluation. Among the proposed techniques, I-2S

is the best technique when a low number of clusters is considered (4 or less),

whereas I-1S is the best when more clusters are selected (5 or more).605

Besides consistency-efficiency evaluation metric, experiments have been also

assessed using the Volume Precision Recall measure. Table 2 shows the results

for both multiview and temporal datasets. We give the averaged F-measure,

which results from averaging the maximum F-measure obtained for each se-

quence in the dataset.610

In the experiments performed over the temporal sequences, it is confirmed

that the inclusion of motion cues (I-1S) with respect to [8] has almost no im-

pact on sequences with small variations (0.7925 and 0.7912 respectively). Nev-

ertheless, in contrast to the results given by the consistency-efficiency measure,

the proposed co-clustering techniques outperform all state-of-the-art techniques615

([30, 29, 25, 20, 26, 27]), including the UCM+P baseline.

Similar conclusions are also drawn for the multiview dataset. Co-clustering

technique from [8] gives the second worst performance, but when motion cues

are included (I-1S), it is only surpassed by [29] and [25]. The inclusion of the

two-step architecture (I-2S) increases the performance from 0.6453 to 0.7280,620

outperforming all state-of-the-art techniques except for [29]. With the additional

global optimization (I-2S+G), the proposed co-clustering architecture becomes

the best technique with a performance of 0.7588.

We present some results obtained for both temporal and multiview sequences.

Figure 12 shows a qualitative comparison between the proposed co-clustering625

techniques and state-of-the-art co-segmentation and videosegmentation meth-

ods for some temporal sequences. Regarding the multiview dataset, the results

of applying the two-step iterative co-clustering (I-2S) are shown in Figure 13 for

each sequence. Furthermore, visual results for the datasets Ballet and Break-

dancers [46] where no ground truth is available are shown in Figure 14.630

31



Figure 12: Qualitative assessment for Trash can temporal sequence. Row 1: Original frames.

Row 2: Results from our proposed co-clustering technique. Remaining rows: Results of

applying [30, 29, 25, 20, 26, 27] and UCM+P respectively

5. Semantic-based co-clustering

The optimization approaches presented in Section 3.2 rely on the same low-

level features as the original approach [8]. Nevertheless, semantic information,

whenever available, can be used to better drive the global optimization towards

coherent semantic partitions.635

We propose a set of techniques that exploit the semantic information pro-

vided by [19], a Convolutional Neural Network (CNN) that computes dense

semantic segmentation for each image independently. Specifically, we consider

two results from [19]: the semantic segmentations, where every pixel from the

image is assigned a semantic category (e.g. cat, dog, person, car, etc.), and the640

confidence scores for each category.

This section is structured as follows. Section 5.1 presents how the semantic
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Figure 13: Qualitative assessment for generic co-clustering applied to BMW, Chair, Couch,

GardenChair, Motorbike and Teddy multiview sequences [14]. Column 1: A representative

image of the multiview sequence. Other columns: Co-clustering results.

Figure 14: Qualitative assessment for generic co-clustering applied to Ballet and Breakdancers

datasets[46]. Column 1: A representative image of the multiview sequence. Other columns:

Co-clustering results.

information is included in the optimization problem. Note that the result is

a multiresolution semantic-based co-clustering whose regions are not semantic

labels (e.g. cat, dog, etc.) but cluster labels (e.g. cluster1, cluster2, etc.).645

In Section 5.2, we use the available semantic information to select a single

resolution from the co-clustered multiresolution; that is, we obtain a single

resolution semantic-based co-clustering. Then, the previous single resolution

semantic-based co-clustering (with cluster labels) is used to propose a semantic

segmentation (with semantic labels) that exploits the spatial correlation among650

different views.

33



5.1. Semantic-constrained global optimization problem

As shown in Figure 15, the proposed semantic-constrained global optimiza-

tion is based on the coherent partitions resulting from the two-step iterative

co-clustering {π∗∗i } (row 3 in Fig. 15). Semantic information is introduced in655

the optimization process through the semantic partitions {SPi} from [19] (row

2 in Fig. 15). The use of this semantic information requires defining some

similarity penalizations and optimization constraints. Algorithm 4 gives the

pseudo-code for the semantic-constrained co-clustering.

Algorithm 4 Semantic-based global co-clustering

1: function Semantic-global(I, P,H,Nr) . Where I - images, P - leaf

partitions, H - hierarchies, Nr - resolution

2: Apply Two-step-iterative(I, P,H,Nr)

3: Let {π∗∗1 ,π∗∗2 ,...,π∗∗M} be the output co-clustered partitions from two-step

iterative co-clustering

4: Compute region adjacency graph of {π∗∗1 ,π∗∗2 ,...,π∗∗M}. Inter adjacencies

for π∗∗i only consider regions from {π∗∗i−2,π∗∗i−1,π∗∗i ,π∗∗i+1,,π∗∗i+2}

5: Apply semantic segmentation to {Ii}Mi=1

6: Apply the optimization problem defined in Eq. 1 adding the semantic

constraints (Eqs. 9 and 10).

7: Let {π∗∗∗1 ,π∗∗∗2 ,...,π∗∗∗M } be the output partitions

8: end function

Semantic information is injected in the optimization first by assigning se-660

mantic labels to regions in {π∗∗i }. Semantic labels are assigned as follows: each

pixel receives the semantic class from the CNN confidence scores with higher

confidence at its position. This confidence should be above a certain threshold

(Tsp). Otherwise, no semantic label is assigned. Then, each region in {π∗∗i } is

labeled with the predominant semantic class over its pixels, if this percentage665

is larger than Tsr. If no class fulfills this condition, no label is assigned to the

region.

The semantic label assignment to the regions is used to define two new con-
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straints in the optimization process. The first semantic constraint forces the

merging of adjacent regions from the same partition with the same semantic la-670

bel. We define BiINTRAV IEW as the set of boundary variables between adjacent

regions from the same view i. Therefore, the intra-image boundaries connecting

regions with the same semantic label must be inactive:

∑
Dk,l∈Bi

INTRAV IEW

Dk,lδ(k, l) = 0 (9)

where δ(k, l) = 1 if Rk and Rl have the same semantic category and δ(k, l) = 0

otherwise. The second semantic constraint ensures that adjacent regions from675

different partitions with different semantic labels are not assigned to the same

cluster. We define BINTERV IEW as the set of boundary variables between

adjacent regions from different views. Therefore, the inter-image boundaries

connecting regions with the different semantic label must be active:

∑
Dk,l∈BINTERV IEW

Dk,l(1− δ(k, l)) =
∑

Dk,l∈BINTERV IEW

(1− δ(k, l)) (10)

where δ(k, l) = 1 if Rk and Rl have the same semantic category and δ(k, l) = 0680

otherwise.

Semantic information is also introduced as a penalization in the similarity

matrix Q. Fusions between regions Rk and Rl from the same partition which

have been assigned different semantic labels (δ(k, l) = 0) are penalized. Since

their similarity is encoded by Qk,l (see Eq. 1), a constant Ks is subtracted to685

Qk,l.

5.2. Automatic resolution selection technique

Our approach creates a multiresolution of co-clustered partitions, providing

a rich framework for image and video analysis [45, 20]. However, in some appli-

cations such as semantic segmentation, a single resolution is required. For such690

cases, we propose a semantic-based method for automatic resolution selection.

The proposed selection method is based on the semantic information already
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Figure 15: Semantic-based global co-clustering flowchart. Note that semantic information is

used to improve the optimization in the global co-clustering but the final result is not semantic;

that is, partitions in row 1 {π∗∗∗
i } are generic and regions do not have semantic labels.

used in Section 5.1. The idea is, given an initial semantic classification of the

pixels in a collection of images, assess which resolution of the multiresolution

co-clustering better fits this classification.695

First, for each semantic label l, we select the clusters that maximize the

Jaccard index with respect to the mask formed by all pixels classified as l. If

the same cluster is selected for different semantic labels, it receives the label l∗

that maximizes the sum of the confidence scores over the cluster.

Then, a foreground score sfg is computed as the addition of the confidence700

scores of the semantic labels for all the selected clusters. Since all pixels have also

associated a background confidence score in [19], the set of unselected clusters is

also considered to compute a background score sbg by adding their background

confidence scores. Finally, the score for a given resolution is obtained as sfg+sbg.

This process is performed for each resolution and the resolution with the greatest705

score is selected as the proposed single resolution co-clustering. Note that if

the background is not considered, the resolution selection method is biased to
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resolutions with selected clusters covering the largest possible image area.

This resolution selection method can be applied to any multiresolution par-

tition and, specifically, to the proposed co-clusterings. Note that, although710

semantic information is used in the resolution selection, the hierarchy itself may

have been built without using this information (Section 3).

The proposed resolution selection method also provides a semantic segmen-

tation since, once all label conflicts have been solved, each cluster is assigned

only one semantic label.715

5.3. Experimental validation

In this section, the semantic-based techniques are assessed. All experiments

have been conducted setting the parameters at the following values: Tsp = 15,

Tsr = 70 and Ks = 1000. Experiments in this section focus on the multiview

dataset. Images in the temporal dataset present only small changes and, there-720

fore, semantic segmentations from [19] are almost identical. Since the CNN used

in [19] for semantic segmentation has been trained in PASCAL [47], there are

only 20 models available. Nevertheless, main objects in the multiview dataset

can be matched with PASCAL categories, allowing a correct assessment.

In Figure 16, we assess the proposed techniques in three different contexts:725

(i) as multiresolution representation, (ii) as single resolution representation, and

(iii) as semantic segmentation. Since we are focusing on the multiview database,

we select the best performing technique in this scenario; that is, the two-step

iterative co-clustering followed by a global optimization (I-2S+G) (see Table 2).

This way, Figure 16 shows the comparison between the following techniques:730

• Two-step iterative co-clustering followed by a global optimization (I-2S+G).

No semantic information is used in the global optimization. Both multires-

olution (MR) and single resolution (SR) are assessed. SR is selected using

the automatic resolution selection presented in Section 5.2. A semantic

segmentation obtained from SR and denoted as GCSS is also evaluated.735
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• Two-step iterative co-clustering followed by a semantic-based global opti-

mization (I-2S+SG). Semantic segmentation from [19] is used in the global

optimization. Both multiresolution (MR) and single resolution (SR) are

assessed. SR is selected using the automatic resolution selection presented

in Section 5.2. A semantic segmentation obtained from SR and denoted740

as SCSS is also evaluated.

For the semantic segmentation assessment, two baseline techniques have

been also evaluated: the so-called Conditional Random Field as a Recurrent

Neural Network described in [19] (CRF-RNN) and a system that propagates la-

bels from the first view semantic segmentation obtained with CRF-RNN using745

optical flow [42] (CRF-RNN+OP).

In Figure 16, it can be observed that, in the context of multiresolution co-

clustering, the inclusion of semantic information in the optimization process

leads to a better multiresolution representation. Note that the I-2S+SG (MR)

technique outperforms the I-2S+G (MR) approach in 14 points for one cluster750

(0.7623 vs 0.6225) and in more than 3 points for ten clusters (0.8844 vs 0.8473).

Figure 16 also presents the results of automatically selecting a given resolution

from the multiresolution representation. In this single resolution context, the

results obtained in the semantic-based co-clustering are remarkable: the loss in

performance from the selected resolution (I-2S+SG (SR)) with respect to the755

potential performance of the complete multiresolution (I-2S+SG (SR)) ranges

only from 4 points (one cluster, 0.7218 vs 0.7623) to 2 points (ten clusters, 0.8635

vs 0.8844). In the case of the multiresolution co-clustering (I-2S+G (MR)) this

range is wider due to the loss of performance when selecting few clusters: from

19 points for one cluster (0.4324 vs 0.6225) to 2 points for ten clusters (0.8264760

vs 0.8473). The previous assessments have been also performed in terms of

F-measure and results are presented in Table 3. In terms of this performance

summary measure, the drop in performance from the multiresolution to the

single resolution representation is about 3 points (0.8503 vs 0.8220).

We present as well results in the context of semantic segmentation. These765
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Figure 16: Evaluation of multiresolution co-clustering techniques, with and without semantic

information. Results for resolution selection and semantic segmentation are also provided.

results are shown in Figure 16 to allow comparing them with the previous

generic segmentations and in Table 4 to have the exact values. In Figure 16,

results appear as horizontal lines in the plot since multiview semantic segmen-

tations present a single cluster with a given semantic label. Note that the

semantic-based multiresolution co-clustering (I-2S+SG (MR)) outperforms the770

CRF-RNN approach when selecting more than four regions. This allows the

semantic segmentation based in this representation (SCSS) to reach an average

Jaccard of 0.8625, whereas the CRF-RNN approach gives an average Jaccard

of 0.8569. Moreover, SCSS has a standard deviation of 0.09, being more robust

than CRF-RNN with a standard deviation of 0.14 over the six sequences.775

Qualitative results are presented in Figures 17 and 18. In Figure 17, results

from the various proposed techniques can be compared on three views of the

Couch sequence. In Figure 18, the semantic segmentation obtained using the

CRF-RNN semantic segmentation [19] can be compared with our results (SCSS).

Note that the problem with the similar texture of the couch and teddy bear780

objects is solved by the proposed approach (see Fig. 1 as well).
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Figure 17: Qualitative assessment for Couch sequence [14]. From left to right: original image,

initial partition, two-step iterative co-clustering (I-2S), I-2S + global co-clustering (I-2S+G), I-

2S + semantic global co-clustering (I-2S+SG) and co-clustering based semantic segmentations

(SCSS).

Figure 18: Qualitative assessment for Teddy sequence [14]. Row 1: original images. Row

2: CRF-RNN semantic segmentation [19]. Row 3: Proposed co-clustering based semantic

segmentations (SCSS).

6. Conclusions

In this work, a multiresolution co-clustering framework for uncalibrated mul-

tiview sequences is proposed. Based on this framework, a generic two-step it-

erative co-clustering is presented to overcome the limitations imposed by the785

use of hierarchies in previous approaches. On top of this two-step iterative al-

gorithm, a global optimization process which exploits semantic information is

described, having as a result a system where generic co-clustering and semantic

segmentation benefits one from each other. Finally, an unsupervised resolution

selection technique that automatically obtains a single coherent labeling of the790
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whole set of views has been presented.

In order to promote reproducible research, all the resources of this project

are publicly available in [48].
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Ii Image from view i or frame i

Pi Partition of Ii

P 0
i Leaf partition of Ii

ni Number of regions in leaf partition P 0
i

Rk Region from any partition Pi

Hi Hierarchy of regions belonging to Pi

Qk,l
Similarity between regions Rk and Rl. Considered as intra if

both regions belong to the same partition and as inter otherwise

Dk,l

Variable being optimized. It encodes if regions Rk and Rl belong

to the same cluster (Dk,l = 0) or not (Dk,l = 1)

u Contour element

θu Orientation of contour element u

fui Feature vector of contour element u from Pi

Wu,v Similarity between contour elements from different partitions

of(x, y) Optical flow estimation at position (x, y)

rq q-th resolution in a multiresolution representation

Nr Number of clusters for output resolution

π∗i Output partition from one-step iterative co-clustering for Ii

π∗∗i Output partition from two-step iterative co-clustering for Ii

π∗∗∗i Output partition from global co-clustering for Ii

SPi Input semantic partition for image Ii

Tsp Threshold to assign a semantic class to a pixel

Tsr Threshold to assign a semantic class to a region

Ks Similarity penalization in semantic co-clustering

sfg Foreground score in resolution selection technique

sbg Background score in resolution selection technique

Table 1: Notation table
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VPR multiview VPR temporal

[8] 0.5096 0.7912

I-1S 0.6453 0.7925

I-2S 0.7280 0.8095

I-2S+G 0.7588 0.8062

[30] 0.6124 0.5923

[29] 0.7451 0.7623

[25] 0.7061 0.6903

[20] 0.5600 0.7212

[26] 0.5816 0.6996

[27] 0.0856 0.0701

UCM+P 0.6000 0.7653

Table 2: Evaluation of multiresolution co-clustering with state-of-the-art video segmenta-

tion and co-segmentation techniques using Volume Precision-Recall measure (Averaged F-

measure).

VPR multiview

I-2S+G (MR) 0.7588

I-2S+SG (MR) 0.8503

I-2S+G (SR) 0.6832

I-2S+SG (SR) 0.8220

Table 3: Comparison between global and semantic-based global co-clustering techniques using

Volume Precision-Recall measure (Averaged F-measure).
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Average Jacquard

CRF-RNN [19] + OF 0.6663

CRF-RNN [19] 0.8569

SCSS (Ours) 0.8625

GCSS (Ours) 0.8068

Table 4: Comparison between semantic segmentation techniques.
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