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a b s t r a c t

In this work, an image representation based on Binary Partition Tree is proposed for object detection in hy-

perspectral images. This hierarchical region-based representation can be interpreted as a set of hierarchical

regions stored in a tree structure, which succeeds in presenting: (i) the decomposition of the image in terms

of coherent regions and (ii) the inclusion relations of the regions in the scene. Hence, the BPT representation

defines a search space for constructing a robust object identification scheme. Spatial and spectral information

are integrated in order to analyze hyperspectral images with a region-based perspective. For each region

represented in the BPT, spatial and spectral descriptors are computed and the likelihood that they corre-

spond to an instantiation of the object of interest is evaluated. Experimental results demonstrate the good

performances of this BPT-based approach.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Automatic object recognition to map areas has received a lot of

ttention thanks to the advance of remote sensing technology [2]. In

his context, the spatial and the spectral resolutions of the new sen-

ors have played a fundamental role. Specifically, the improvement

f the spatial information has been essential for this high-level im-

ge understanding task. Accordingly, morphological approaches have

eceived an important interest in gray value or color images [4,5,17].

In the hyperspectral literature, object detection techniques have

een mainly developed in the context of pixel-wise spectral classi-

cation. In this approach, spectra having a high similarity with the

aterial describing the reference object are individually detected.

he drawbacks of pixel-wise analysis is well-known in classical [8]

nd hyperspectral [12,16] remote sensing images. A major problem is

he important semantic gap due to the lack of concordance between

he low level and reduced information provided by a single pixel and

he human interpretation. Despite this, traditional algorithms char-

cterize objects only by their spectral signatures.

Because of the pixel-based model limitations, research on region-

ased object detection algorithms has recently received much
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ttention. Region-based representations allow in particular spatial

eatures such as shape, area or orientation to be computed. These

eatures can significantly contribute to the definition of robust ob-

ect detection algorithms. In this context, the ECognition software

10] was developed. It relies on hierarchical segmentation and pro-

uces an image partition on which various region descriptors can be

omputed. These descriptors are then used as region features for the

ecognition of objects in the image. One of the main limitations of

his strategy is that it assumes that the best partition corresponds

o one level of the previously computed hierarchical segmentation.

nfortunately, this assumption is rarely true and, very often, coher-

nt objects can be found at different levels of the hierarchy. Ideally, a

obust strategy should study the features in the complete hierarchy

o detect the best regions representing the object. As a result, recent

orks have tried to investigate how different spectral, spatial and

oint spectral/spatial features computed on regions evolve from one

evel to another in a segmentation hierarchy [15]. This study proposes

o study the regions at different scales, however, no methodology is

roposed to automatically select the regions forming the objects.

Instead of using a classical hierarchical segmentation approach

hich produces a single partition, a solution to address the need of

ultiscale analysis relies on image representations based on regions

rees. These representations are useful because besides allowing the

tudy of internal region properties (color, texture, shape, etc.), they

lso permit the study of external relations such as adjacency, inclu-

ion, similarity of properties, etc. Furthermore, a tree is essentially

hierarchical structure and therefore supports multiscale analysis

http://dx.doi.org/10.1016/j.patrec.2015.01.003
http://www.ScienceDirect.com
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Fig. 1. Example of BPT construction.
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of regions. The multiscale nature of trees provides flexibility to sit-

uations where a given image has to be studied at different scales

depending on the processing purpose. In this context, the work pre-

sented in [1] proposes the use of component trees resulting from the

iterative application of morphological opening and closing on indi-

vidual PCA spectral bands. The main limitations of this approach are

twofold: First, the component tree mainly describes the structure of

extrema of the spectral bands and, in hyperspectral images, there is

no particular reason why objects of interest should be limited to ex-

trema of spectral bands. Furthermore, in [1], the approach consists

in pruning the tree to create a partition before performing the object

recognition. The pruning essentially extracts the largest homogenous

regions. Once the partition is defined, the search for objects is per-

formed. As in [10], one of the drawbacks is that the object detection

task is done after a segmentation step producing a partition.

The work presented here proposes to initially generate a hier-

archical region-based representation of the image and, then, to use

this representation as search space for the object detection (therefore

avoiding the creation of a partition on which objects are searched as in

[1,10]. A Binary Partition Tree (BPT) as in [3] is used as hyperspectral

image representation. BPTs are less limited than component trees [1]

as they do not focus on the description of extrema of spectral bands.

They perform a hierarchical grouping based on pixel homogeneity

and can directly take into the correlation between spectral bands. For

object detection, the use of BPT has been introduced in [19] where

a simple top-down analysis of the tree branches was done. During

this analysis, the objects were detected by selecting the largest nodes

having the appropriate features. Therefore, the detected object was

the first node in the branch and the rest of BPT branches were not

studied. However, the best region representing the object is not al-

ways the largest one with the appropriate features. Here, we present a

more robust strategy that studies all BPT nodes to detect the best ones

representing the sought object. The paper organization is as follows:

Section 2 introduces the BPT and its construction. The BPT analysis

for object detection is discussed in Section 3. Experimental results are

reported in Section 4. Finally, conclusions are drawn in Section 5.

2. BPT construction

The BPT is a structured representation of a set of hierarchical parti-

tions which is usually obtained through an iterative bottom-up region

merging algorithm. Starting from individual pixels or any other ini-

tial partition, the tree is constructed by iteratively merging the pair

of most similar neighboring regions. Each iteration requires three

different tasks: (1) the pair of most similar neighboring regions is

identified, (2) a new region corresponding to the union of the region

pair is formed, (3) the distance between the newly created region with

its neighboring regions is updated. Fig. 1 shows an example of BPT

construction created from an initial partition involving four regions.

The region merging algorithm is specified by: (1) a merging crite-

rion that defines the similarity between pair of neighboring regions;
nd (2) a region model that determines how to represent a region and

he union of two regions. The BPT construction and, in particular, the

egion model and the merging criterion have been previously studied

or hyperspectral data in [3,18,19]. The region model used here corre-

ponds to the set of normalized histograms of the pixels belonging to

ach region for each spectral band. Note that this region model based

n non parametric probability density functions assumes no spectral

or texture homogeneity [6]. Using this model with a hyperspec-

ral image containing {λ1, λ2, . . . , λN} bands, regions are modeled as

arbitrary discrete distributions, directly estimated from the pixel

alues.

R =
{

Hλ1

R , Hλ2

R , . . . , HλN

R

}
(1)

R is a matrix where each cell represents the probability of the re-

ion pixels to have a radiance value in a specific band λk. The region

odel is formed by the rows of the matrix H
λk
R . It corresponds to

he empirical spatial distribution (histogram) of the region R in the

and λk.

Note that this model can also be defined when tree leaves are single

ixels by using the image self-similarity as in [3,11] . Concerning the

erging criterion used to construct the BPT, the criterion proposed

n [9,19] is used here. It relies on distances between observations and

anonical correlations and is computed in two steps.

The first step corresponds to a local dimensionality reduction

hrough an analysis of the inter-waveband similarity relationships

or each region model. The goal is to remove the redundant hyper-

pectral information via multidimensional scaling (MDS) [7], which

epresents a set of objects as a set of points in a map of chosen dimen-

ionality, based on their interpoint distances. Thus, MDS attempts to

ocate n objects as points in Euclidean space E where the geometric

ifferences between pairs of points in E agree, as closely as possible,

ith the true differences between the n objects.

In our context, the n objects correspond to the N probability distri-

utions of each MR. Thus, the probability distribution similarities (or

issimiliarities) of MR can be represented by a N × N distance matrix

R = (δkl), where δkl = δlk ≥ 0 is computed by

kl = e(K(H
λk
R ,H

λl
R )) − 1 (2)

here K(H
λk
R , H

λl
R ) is the diffusion distance measured between the

robability distributions k and l, which is proposed in [13].

Hence, being A the matrix with entries A = −(1
2 )δ2

kl
and the cen-

ering matrix C = In − 1
n 11′, the so-called inner product matrix BR

ssociated to �R can be computed by BR = CAC for each MR. The inner

roduct matrix BR is N × N symmetric matrix which can be spectrally

ecomposed as BR = UR�
2
RU′

R. Assuming the eigenvalues in �R are

rranged in descending order, the matrix UR represents the standard

oordinates of the region MR where the s first columns contain the

ost relevant region information. It should be remembered that our

nterest, given two regions defined by MRi
and MRj

, is to measure the

ultivariate association between their s first standard coordinates.

herefore, a similarity measure is obtained by correlating the prin-

ipal axis of two region models obtained via MDS. This similarity

easure relies on a statistical test based on the multivariate analysis

f variance (MANOVA). The goal is to test whether there is a depen-

ence between the principal components of the regions or not. There-

ore, two distance matrices �Ri
and �Rj

to find BRi
= URi

�2
Ri

U′
Ri

and

Rj
= URj

�2
Rj

U′
Rj

should be computed using the explained procedure.

he number s of dimensions is an important aspect in most multi-

ariate analysis methods. In MDS, the number of dimensions is based

n the percentage of variability accounted for by the first dimensions.

ere, a criterion which extends a sequence c defined and studied in

9] is used to set the value of s. At this point, having two regions

efined by their standard coordinates URi
and URj

whose dimensions

re N × s, the Wilk’s criterion W for testing B = 0 in a multivariate
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branch should be detected.
egression model is given by:

(Ri, Rj) = det(I − U′
Rj

URi
U′

Ri
URj

) =
s∏

i=1

(1 − r2
i ) (3)

here det means the determinant and ri corresponds to the canonical

orrelation of each axis. Using Eq. (3), the definition of the proposed

erging criterion can be defined as:

MDS(Ri, Rj) = min
Ri,Rj

W(Ri, Rj) (4)

atisfying 0 ≤ W(Ri, Rj) ≤ 1 and W(Ri, Rj) = 0 if Ri is equal to Rj.

Once constructed with this region model and similarity measure,

he BPT is used as search space for object detection as discussed in the

ollowing section. Note that the goal here is not to extract a partition

rom the BPT and to perform the search on the partition. Instead, all

PT nodes are analyzed.

. Object detection strategy

As instantiations of the object of interest, O, may have many dif-

erent visual appearances, the detection relies on a set of features, �F ,

haracterizing O. Based on these features, the likelihood of each BPT

ode P(O|Ri) to be an instantiation of O is assessed and assigned to

he node. Once the BPT has been populated with these likelihood, a

earch is performed to detect the most probable instantiations of the

bject of interest.

.1. Populating BPT

For each node Ri, the likelihood P(O|Ri) is computed by using a set

f spectral and spatial features �F = {F1, F2, . . . , FK}. Based on these

eatures, the likelihood of each node to be an instantiation of O can

e estimated by the Bayes rule as:

(O|Ri) = P(O|�F) = P(�F|O)P(O)

P(�F)
(5)

The a priori probability of the object P(O) is being equally probable

o be observed (uniformed prior) and the probability of the evidence

(�F) can be viewed as a normalizing constant. Thus, considering

ndependent the K local features computed at each Ri, the P(O|Ri) can

e defined by

(�F|O) ≈
K∏

n=1

P(Fn|O) (6)

The specific choice of features computed on the regions contained

t the BPT nodes strongly depends on the reference object. The spatial

nd spectral features must characterize the shape and the spectral sig-

ature of the object. For instance, buildings have a rectangular shape

nd their spectral signature can be related to asphalt material. In con-

rast, trees are circular regions having a classical vegetation spectrum.

ere, four features are proposed, which leads to the description of the

ollowing four feature probabilities:

.1.1. Spectral features characterizing the object of interest

A hyperspectral scene image is composed of a certain number of

pectral classes Nc defining different types of materials. In general,

ne specific object can be associated to one material Cs. For instance,

oads can be associated to asphalt material whereas trees can be

ssociated to the vegetation one.

Accordingly, the goal is to compute the spectral class probability

istribution PRi
[3] for each BPT node. This distribution describes the

robability that the region Ri has to belong to all the materials Nc

escribing the scene.

Note that this can be done by training a probabilistic support vec-

or machine (SVM) pixelwise classifier [14] for these classes and using
t on the region mean spectrum. As a result, the class probability dis-

ribution {PRi
(Cs)}1≤s≤Nc is available for each node. The PRi

compu-

ation allows us to define the spectral class probability and the class

embership homogeneity features defined in the sequel:

The spectral class probability P(F1|O): It corresponds to the proba-

ility PRi
(Cs) that the region Ri has to belong to the material class Cs of

he object of interest. For instance, for the road detection application,

his probability is the likelihood that the region belongs to the asphalt

lass. This probability is directly extracted from the class probability

istribution PRi
estimated by the SVM.

The spectral class membership homogeneity P(F2|O): This feature

valuates the region homogeneity in terms of class membership. Note

hat if a region is an object, all its pixels ideally belong to the same

lass. This term is important in the BPT context, as nodes close to the

oot node represent regions combining many different classes. It is

efined as:

(F2|Ri) =
Nc∑

s=1

√
PRr

Ri
(Cs)PRl

Ri
(Cs) (7)

here PRl
Ri

and PRr
Ri

are the class probability distributions of the

eft and the right child nodes of Ri. Note that if two sibling nodes

ave similar class probability distributions, their union will also

ave a similar distribution, i.e. the object is in the process of being

ormed.

.1.2. Spatial features characterizing the object of interest

The spatial features of objects are automatically inherited from

heir structure. In this study, two spatial properties describing the

rea and the shape of the object have been proposed.

The region area P(F3|O): This feature corresponds to the number

f pixels forming the region contained in each BPT node. The goal of

his feature is to prevent the detection of small or large meaningless

egions. It is done by assuming that the area interval [Amin,Amax] of

he object of interest is known. P(F2|O) is then defined as a uniform

istribution between [Amin,Amax]. The definition of Amax is impor-

ant to detect individual objects as the union of two identical objects

an result into a similar object of larger size.

The area of the smallest oriented bounding box P(F4|O): This last

eature is used to compute a probability related to the region shape.

n this work, two different P(F4|O) have been used to deal with two

ifferent object detection applications. Both are based on the same as-

umption: the use of a measure normalized between [0, 1] as a shape

robability distribution. In the case of building detection, P(F4|O)
easures the region compactness and is the ratio between the area

f the region and the area of the smallest oriented bounding box in-

luding the region. For road extraction, this term measures the region

longation and it is defined as the ratio between the width and the

eight of the oriented bounding box.

.2. Processing populated BPT

At this stage, the BPT processing consists in detecting the nodes

hich are the most likely to be the sought objects. This strategy as-

umes that the objects of interest appear as individual nodes. The goal

s to use the P(O|R) values to discard nodes that significantly differ

rom the object of interest and to detect the best object representa-

ions. As a first approximation, BPT nodes with high P(O|R)values are

learly candidates to be the sought objects. At this point, it should be

emembered that the BPT structure represents inclusion relationships

etween regions. As a result, it is likely that nodes belonging to the

ame tree branch have similar P(O|R)values than their parent or child

odes. As our goal is to detect non overlapping regions representing

nstantiations of the object of interest, only the best node R∗ on the
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Fig. 2. Example of P(O|R) evolution along a BPT branch.

(a) Multiple detection (b) Pruning decision

Fig. 3. Multiple detections of R∗ in a same BPT branch. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)

4

e

t

s

t

a

d

(

c

1

e

S

i

i

O

i

i

{
c

c

Fig. 4. False color composition of two portions of the Pavia urban hyperspectral data

used for building detection.
One solution for the detection of R∗ is to decide that it corresponds

to the region with the highest P(O|R) value. However, this approach

based only on the P(O|R) value is not robust as the maximum can be

obtained for nodes close to the leaves where the objects are not yet

formed (mainly because P(F1|O) and P(F3|O) may be high for small

regions). Another strategy to detect R∗ is to select the closest node

to the root whose P(O|R) value is higher than a given threshold δT

[19]. This approach is somewhat arbitrary since the best node may

not always be the closest to the root.

Taking into account these considerations, the approach used here

is based on the analysis of the P(O|R) evolution during the object

formation along the branch. If we draw the P(O|R) values along a

BPT branch containing an object of interest starting from the leaf

node, the first interesting point of the curve arrives when the smaller

regions start having a high P(O|R) value. After this, a stable range

of values where no important change concerning P(O|R) is generally

observed. Finally, the last important step occurs when P(O|R) suffers

an important decrease after a specific merging step. At this point, the

resulting region usually corresponds to a non-meaningful object of

the image. In these situations, the best object representation R∗ is

found just before the important decrease.

An example of this typical evolution can be observed in Fig. 2

where the curve of P(O|R)values from a leaf to the root is represented.

The horizontal axis indicates the level on the BPT branch. The

left side corresponds to the leaf and the right side to the root

node, whereas the vertical axis indicates to probability values. In

this example, the object formation starts around the fifth BPT level

whereas level 58 corresponds to the important decrease where a non-

meaningful object is formed. In the case of Fig. 2, the object R∗ is then

formed at level 57. We have observed that this behavior is really typ-

ical of branches containing the object of interest. Accordingly, the

detection of R∗ in a BPT branch is given by

R∗ = min
R

P(O|R+)− P(O|R) , with P(O|R) > δT (8)

where R+ is the parent node of R and δT is the threshold used to

decide if a region may be considered as a candidate of the sought

object.

As shown in Fig. 3, because of the inclusion relationship described

by the BPT, the detection process described above may result in sev-

eral detections of R∗ along unique BPT branch. In the example of

Fig. 3(a), the red and the green branches have been analyzed follow-

ing Eqs. (4)–(8) and two different R∗ are detected depending on the

studied branch. Hence, a decision should be taken in order to avoid

overlapping regions in the final result. Here, it has been considered

that the region analysis is more reliable for large regions. Accord-

ingly, in case of overlap, the R∗ corresponding to the closest region

to the root is kept. In the case of Fig. 3(a), the green branch decision

is retained as shown in Fig. 3(b). Following this pruning strategy, the

selection of the R∗ corresponding to the sought objects is done in a

top-down fashion: the BPT is analyzed from the root to the leaves by

selecting the first nodes found as R∗.
. Experimental results

This section addresses the evaluation of the object detection strat-

gy proposed in Section 3. The goal of the experiments is to compare

he results of the proposed strategy with a classical pixel-wise method

uch as SVM classification. In order to perform this evaluation, detec-

ion examples of two different urban objects: roads and buildings,

re discussed. The experimental evaluation is carried out using two

ifferent hyperspectral images captured by two different sensors.

The first studied hyperspectral image was acquired over Pavia

Italy) by the ROSIS sensor having a 1.3 m spatial resolution. It

orresponds to a urban area and the hyperspectral data involve

02 spectral bands. The ground truth (available at http://www.

hu.es/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_

cenes&redirect=no) is composed of 9 classes and 7456 samples

The experiment targets the detection of buildings. The evaluation

s performed on two different portions of the complete image shown

n Fig. 4 as RGB false-color compositions of three hyperspectral bands.

n these images, the BPTs are computed with the procedure described

n Section 2.

Once the BPT has been computed, the four features presented

n Section 3 are computed. The class probability distribution

PRi
(cs)}1≤s≤Nc is estimated with a SVM Gaussian kernel function

onstructed through a training step. This step follows the classical

ross-validation strategy: the training set is divided into k parts, the

http://www.ehu.es/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes&redirect=no
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Fig. 5. Obtained results on Pavia urban data. First row: Pixel-wise SVM classification. Second row: BPT-based detection.
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Fig. 6. RGB combination of Hydice urban scene.

Fig. 7. Building detection example on Hydice urban scene. (a) Ground truth, (b) pixel-

wise classification, (c) BPT-based detection.

m
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l

VM is trained using (k−1) parts and the obtained parameters are

ested on the remaining part. The SVM training step is done by se-

ecting randomly 20% of samples for each class from the available

eference data. Once the kernel function is constructed, it is used to

ssign to each BPT node their class probability distribution {PRi
(cs)}.

n order to classify nodes corresponding to regions with several pixels,

he region mean spectrum is used as input to the SVM classifier.

The constructed SVM kernel function is also used to perform a

ixel-wise classification. The corresponding classification results ob-

ained for the class of buildings are shown in Fig. 5. As can be seen,

hese classification results are rather noisy.

The results obtained by the proposed BPT-based strategy are

hown in Fig. 5. In this case, the δT parameter is set to 0.65 and

he range [Amin,Amax] is set to [30, 1000]. As can be seen, most of

he rectangular buildings have been precisely detected. These results

orroborate the advantage of using the BPT representation. The use of

pectral as well as spatial descriptors of BPT nodes clearly outperforms

he classical pixel-wise detection using only spectral information. On

he other hand, it should be also remarked that the results shown

n Fig. 5 are also comparable with the results obtained by Akay and

ksoy [1], where a building detection map is also presented on the

ame hyperspectral Pavia image.

The second experiment has been performed using two portions

f a publicly available HYDICE hyperspectral data (available at http:

/www.agc.army.mil/hypercube/). After removing water absorption

nd noisy bands, the data contain 167 spectral bands shown in Fig. 6

s a RGB combination of three bands. The data set is composed of 8

lasses and 4712 ground truth samples. The same building detection

xperiment has been carried out on this dataset. In this case, the range

Amin,Amax] is set to [10, 400] due to the lower spatial resolution of

his image (approximately 3 m).

The obtained results are shown in Fig. 7 where the first column

hows the manually created ground truth. The obtained results for the

VM pixel-wise classification and BPT strategy are shown in Fig. 7(b)

nd (c). The SVM results have been obtained by repeating 10 times

he random selection of the training data set. Looking at these re-

ults, the benefit of incorporating the spatial information by using

he BPT representation is also remarkable. Thanks to the availability

f ground truth, the results of Fig. 7 are also evaluated objectively by
easuring the precision and recall values. The precision corresponds

o the percentage of positive detection that are correct, whereas the

ecall indicates how many pixels belonging to the object are correctly

dentified as such.

These measures are computed from the number of true positives

P (pixels correctly labeled), of false positives FP (pixels incorrectly

abeled as building class) and of false negatives FN (pixels not labeled

http://www.agc.army.mil/hypercube/
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Fig. 8. (a) False color composition of a small area of Fig. 6, (b) BPT node at level 4, (c) BPT node at level 13, (d) P(O|R) evolution along a BPT branch. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

Quantitative evaluation for building detection.

Precision = TP
(TP+FP) Recall = TP

(TP+FN)

SVM pixel-wise BPT SVM pixel-wise BPT

Fig. 7 (top) 0.47 0.73 0.91 0.89

Fig. 7 (bottom) 0.57 0.74 0.83 0.88

Fig. 9. Road detection example on Hydice urban scene. (a) Ground truth, (b) pixel-wise

classification, (c) BPT-based detection.
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as building but actually belonging to a building). The obtained preci-

sion and recall measures are reported in Table 1. The recall evaluation

shows how the two methods detect most of the pixels belonging to

the buildings. However, the evaluation in terms of precision corrobo-

rates the good performance of the BPT strategy against the pixel-wise

detection.

At this point, the importance of the area feature Amax and the

δT may be discussed. Let us consider the small portion of Fig. 7(a)

located at the lower left corner of the bottom image. A zoom of this

area can be observed at Fig. 8(a) where two buildings appear very

close. For this example, the detected BPT node at Fig. 7(c) is shown in

Fig. 8(c). As it can be observed, the two buildings have been detected

as a unique object. Therefore, the maximum decrease of the curve

does not correspond to the best node representing the building.

This fact can be explained by studying the P(O|R) evolution from

a pixel belonging to the left building. The resulting curve is plotted at

Fig. 8(d) where two δT values are highlighted in red and green.

Looking at this figure, it is observed that the detected node shown

in Fig. 8(c) corresponds to the branch level 13 by using δT = 0.5.

However, the merging at the level 5 should not be done since the

best representation appears at level 4. However, it must be remarked

that the resulting region is indeed a candidate according to the Amax

feature. In fact, Amax should be used here to detect that the resulting

region corresponds to the union of two objects. However, a building

having an area equal to Amax may actually exist. Besides, the example

of Fig. 8(d) shows the importance of δT definition. As it can observed,

the δT = 0.65 detects the region at level 4 as R∗ whereas δT = 0.5 has

detected the level 13. Hence, this example shows how the definition

of Amax and δT may not be straightforward and it must be chosen as
compromise. To demonstrate the flexibility of the BPT approach, a

econd example aiming at road extraction is proposed. In this case, the

ame HYDICE images presented in Fig. 6 are used. For road extraction,

he first three features previously computed for the building applica-

ion are used. However, the region elongation has been computed as

he fourth feature describing the shape of the object. As mentioned

bove, the elongation of region is the ratio between the width and the

eight of the oriented bounding box. This measure ranges from 0 to

and is used as P(F4|O). The obtained results are shown in Fig. 9(b)

nd (c).

The visual evaluation clearly shows how roads do not appear only

s pixels whose radiance values are similar to asphalt and the im-

rovement provided by the BPT approach is also quite significant. A

uantitative evaluation based on precision and recall has also been

arried out by using the ground truth shown in Fig. 9(a). Table 2 shows

he precision and recall values. Looking at these results, it can be ob-

erved how the BPT approach also obtains the better results in this

xperiment, in particular for the precision values.
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Table 2

Quantitative evaluation for road detection.

Precision = TP
(TP+FP) Recall = TP

(TP+FN)

SVM pixel-wise BPT SVM pixel-wise BPT

Fig. 9 (top) 0.669 0.875 0.9327 0.9432

Fig. 9 (bottom) 0.223 0.7344 0.8814 0.9289
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. Conclusions

An automatic hyperspectral object detection methodology using a

PT image representation has been detailed in this work. It has been

llustrated how BPT can be a powerful image representation which

rovides a hierarchically structured search space for object recog-

ition applications where the spectral and the spatial information

an be incorporated in the search of a reference object. The obtained

esults show the interest of studying the objects of the scene with

region-based perspective and to avoid reducing the search space

y producing a partition as preprocessing. This new object-based

nalysis can open the door to an important number of techniques

xploiting the extremely high resolution (very few centimeters) im-

gery such as hyperspectral UAV images. Future works will be con-

ucted on the detection of other urban structures using the presented

ethodology.
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