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Abstract— The optimal exploitation of the information
provided by hyperspectral images requires the development
of advanced image-processing tools. This paper proposes
the construction and the processing of a new region-based
hierarchical hyperspectral image representation relying on the
binary partition tree (BPT). This hierarchical region-based
representation can be interpreted as a set of hierarchical regions
stored in a tree structure. Hence, the BPT succeeds in presenting:
1) the decomposition of the image in terms of coherent regions,
and 2) the inclusion relations of the regions in the scene.
Based on region-merging techniques, the BPT construction is
investigated by studying the hyperspectral region models and the
associated similarity metrics. Once the BPT is constructed, the
fixed tree structure allows implementing efficient and advanced
application-dependent techniques on it. The application-
dependent processing of BPT is generally implemented through
a specific pruning of the tree. In this paper, a pruning strategy is
proposed and discussed in a classification context. Experimental
results on various hyperspectral data sets demonstrate the
interest and the good performances of the BPT representation.

Index Terms— Binary partition tree, classification,
hyperspectral imaging, segmentation.

I. INTRODUCTION

HYPERSPECTRAL sensors collect multivariate discrete
images in a series of narrow and contiguous wavelength

bands. The resulting datasets contain numerous image bands,
each of them depicting the scene as viewed within a given
wavelength λ. The entire data Iλ can be seen as a three
dimensional data cube formed by a set of Nz discrete 2D
images Iλ = {Iλ j , j = 1, . . . , NZ }. Each Iλ j is formed
by a set of Np pixels where each pixel p represents the
spatial coordinates in the image. Consequently, given a specific
wavelength λ j , Iλ j (p) is the radiance value of the pixel p
on the waveband Iλ j . The spectrum of a pixel as a function
of wavelength λ is called the spectral radiance curve and it
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provides insightful characteristics of the material represented
by the pixel.

Hyperspectral imaging enables the characterization of
regions based on their spectral properties which provides a
rich amount of information. This new source of information
has led to the use of such images in a growing number of
real-life applications, such as remote sensing, food safety, and
healthcare or medical research. However, the price of this
wealth of information is a huge amount of data that cannot
be fully exploited using traditional imagery analysis tools.
Hence, given the wide range of real-life applications, a great
deal of research is invested in the field of hyperspectral data
processing [1].

A hyperspectral image can be considered as a mapping
from a 2D spatial space to a spectral space of dimension
Nz . The spectral space is important because it contains much
more information about the surface of target objects than
what can be perceived by human vision. Accordingly, con-
ventional analysis techniques have traditionally focused on
the spectral properties of the hyperspectral data by only using
the spectral space. These pixel-based procedures analyze the
spectral properties of every pixel, without taking into account
the spatial or contextual information related to the pixel of
interest. In this framework, many different supervised and
semi-supervised techniques have been proposed to perfom
pixelwise classification [5], [4], [2], [6], [3]. Without taking
into consideration the spatial location of the pixels, these
techniques assign to each pixel the label corresponding to its
predicted class.

In the last few years, the importance of the spatial space and,
in particular, of taking into account the spatial correlation has
been demonstrated in different contexts such as classification
[7], [8]–[10], image segmentation [11], [12], [13] or unmixing
[14]. In these techniques, the spatial information is combined
with the spectral information. For instance, in a classification
context, pixels are classified by their spectral information and
also by the information provided by their spatial neighborhood.
These approaches have corroborated how essential are the
spatial variations and correlation in order to interpret objects
in natural scenes.

For this reason, optimal hyperspectral analysis tools should
take into account both the spatial and the spectral spaces
in order to be robust and efficient. However, the number of
wavelengths per pixel and the number of pixels per image, as
well as the complexity of jointly handling spatial and spectral
correlation explain why this approach is still a largely open
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research issue for effective and efficient hyperspectral data
processing.

The inclusion of the spatial information in hyperspectral
analysis is directly related to the definition of a pixel neigh-
borhood. In this context, the work in [15] defines local fixed
square neighborhood around each pixel in order to introduce
the contextual information. To solve the limitations of the fixed
neighborhood window, morphological filters are proposed in
[16] to define an adaptive spatial neighborhood having similar
characteristics. One problem of such approaches is that the
spectral-spatial analysis of hyperspectral images is done at the
pixel level. This representation has major drawbacks given
that a pixel is the most elementary unit of the image. As
a result, hyperspectral image processing at the pixel level
has to face major difficulties in terms of scale: the scale of
representation is, most of the time, far too low with respect to
the interpretation or decision scale.

One the other hand, the definition of the best similar pixel
neighborhood (if there is any) is not straightforward. One
of the main difficulties is the huge number of applications
potentially considered for one given image. Hence, the inter-
pretation of an image at different scales of analysis has led
some authors to deal with hierarchical image segmentations.
This approach provides a hierarchy of partitions at different
levels of resolution through iterative merging steps. In this
framework, different hierarchical segmentation techniques pre-
viously proposed for mutlispectral data, such as ECHO [17] or
e-Cognition [18], have been used in a hyperspectral context.
The important difference between the number of spectral bands
in multi and hyperspectral data has led to nonoptimal solutions
for such approaches. Recently, some hierarchical segmentation
techniques working directly with hyperspectral imagery have
been presented [19], [20]. The result of these techniques is
a final image partition defining a pixel neighborhood. This
is obtained by stopping the merging process at some point
to reach one single hierarchical level. The stop criterion can
depend on different parameters: 1) the number of regions in
the case of [20] or 2) an intra-variance statistical criterion [19].

Despite hierarchical segmentations have introduced the
importance of the interpretation of an image depending on the
scale of observation [9], [10], they suffer from an important
drawback. The main problem of such strategy is that they
assume that the optimal partition corresponds to one actual
level in the hierarchy of segmentations. However, this assump-
tion is rarely true and the techniques following this assumption
are unable to deal with situation where coherent objects are
found at different levels of the hierarchy. By contrast, as will
be seen in the sequel, the technique proposed here does not
make this assumption and constructs the final partition by
selecting regions at different levels of the hierarchy.

The attractive solution consists in relying on region-based
image representations [21], [42]. These representations can be
considered as a first abstraction from the pixel-based represen-
tation, providing a multiscale hierarchy of regions at different
resolution levels. One example of such representations corre-
sponds to Binary Partition Tree (BPT) which was proposed
in [22]. This image representation has been successfully used
in the past for various applications dealing with color images

Fig. 1. Example of hierarchical region-based representation using BPT.

or video sequences. The BPT is a hierarchical region-based
representation having a rather generic construction (to a large
extend, application independent). A BPT can be interpreted as
a set of hierarchical regions stored in a tree structure. Fig. 1 is
an illustration of a BPT where the tree nodes represent image
regions and the branches represent the inclusion relationship
among the nodes. In this tree representation, three types of
nodes can be found. Firstly, leaf nodes representing the regions
of an initial partition; secondly, the root node representing
the entire image support and finally, the remaining tree nodes
representing regions formed by the merging of their two child
nodes corresponding to two adjacent regions.

The BPT construction is often based on an iterative bottom-
up region merging algorithm. Starting from individual pixels
or any other initial partition, the region merging algorithm is
an iterative process in which regions are iteratively merged.
Each iteration requires three different tasks: 1) the pair of
most similar neighboring regions is merged, 2) a new region
containing the union of the merged regions is formed, and 3)
the algorithm updates the distance between the newly created
region with its neighboring regions. Working with hyperspec-
tral data, the definition of a region-merging algorithm is not
straightforward [48]. The first difficulty is the high intra-class
spectral variability which can be found in a region from the
same material. In the case of remote sensing images, this
variability is introduced by several factors such as the noise
resulting from atmospheric conditions, the sensor influence or
the illumination effects. Because of this variability, special care
has to be taken in modeling hyperspectral regions (it cannot
be assumed that the spectra of pixels belonging to a region
are strictly homogeneous) [44]. The second important issue
is the definition of a spectral similarity measure to establish
the merging order between regions. The main difficulty in
defining a spectral similarity measure is that most of the
spectral signatures cannot be discriminated broadly along
all the wavebands [49]. The reason of this difficulty is the
redundancy of the spectral information or equivalently the
correlation between consecutive values of the spectral radiance
curve. As a result, the definition of a region model and
a similarity metric defining a good merging order for the
construction of BPT is an open research problem.

On the other hand, it can be noticed that once the BPT
representation has been computed, this tree is a generic and
scalable image representation. This representation enables
many application-dependent processing strategies to select tree
nodes to form a specific partition in a robust fashion. Different
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Fig. 2. Diagram of BPT philosophy.

processing techniques can be defined using the BPT according
to the different applications. The processing of BPT, which
is highly application-dependent, generally consists in defining
a pruning strategy. This is true for filtering (with connected
operators), classification [24], compression, and segmentation
[25], [26] or object detection [27].

The goal of a tree pruning is to remove subtrees composed
of nodes which are considered to be homogeneous with respect
to some criterion of interest (homogeneity criterion, e.g., inten-
sity or texture). Hence, the hyperspectral image processing
framework based on BPT relies on two steps illustrated in
Fig. 2. The first one corresponds to the construction of the BPT
in the case of hyperspectral data, enabling the exploitation of
the spectral/spatial correlation. The second corresponds to an
application of a pruning strategy which is completely linked
to a specific application.

This paper introduces the construction and the processing
of BPT representation for the case of hyperspectral images.
Firstly, the construction of a robust region-merging algorithm
for hyperspectral data is studied. The work presented here
investigates and analyzes various region models and simi-
larity metrics defining different merging orders for the BPT
construction. Besides BPT construction, an example of BPT
processing is also presented here dealing with classification.
The organization of this paper is as follows. Section II briefly
introduces the BPT and focuses on its construction. The BPT
pruning for classification is discussed in Section III. Experi-
mental results are shown in Section IV. Finally, conclusions
are drawn in Section V.

II. BPT CONSTRUCTION

Binary Partition Tree (BPT) is a hierarchical representation
of a set of regions obtained from an initial partition. Note
that the regions of this initial partition may correspond to
individual pixels. If the initial partition involves n regions, a
BPT generates a tree structure containing 2n − 1 nodes. The
BPT should be created in such a way that the most interesting
or useful regions of the images are represented by nodes. A
possible solution, suitable for a large number of cases, is to
create the tree by the execution of a region-merging algorithm
[50]. In a bottom-up strategy starting from the leaves, the tree
construction is then performed by keeping track of the merging
steps. Following an iterative region-merging algorithm, the
most similar adjacent regions are merged at each iteration.
Fig. 3 shows an example of Binary Partition Tree construction.

In this last figure, tree leaves corresponds to the regions
belonging to the initial partition. However, in our BPT

1

2

3

4

1

2

5
6

5

3 4

5

1 23 41 2 3 4

5

1 2

6

7

3 4

5

1 2

6

7

Initial partition Merging Step 1 Merging Step 2 Merging Step 3

Fig. 3. Example of BPT construction using a region-merging algorithm.

construction, each leaf of the tree corresponds to an individual
pixel of the original image. The creation of BPT relies on
two important notions. The first one is the region model
MRi which specifies how regions are represented and how
to model the union of two regions. The second notion is
the merging criterion O(Ri , R j ), which defines the similarity
of neighboring regions and hence determines the order in
which regions are going to be merged. Therefore, the challenge
related to the construction of BPT to represent an hyperspectral
image are the definition of a region model (to model a set of
spectra) and the definition of a merging criterion (to measure
the similarity between two spectrum data sets).

Past hyperspectral works focusing on spectral classification
and hierarchical segmentation have presented different strate-
gies to model a set of spectra [19], [20], [29]. The most
popular solution to describe a set of spectra is the first-order
parametric model, that is the mean spectrum. As detailed in
the following, the key of this model popularity is its simplicity
which allows simple definitions of merging orders. However,
this model can have an important drawback because it assumes
the spatial homogeneity inside the region. In order to solve this
problem, parametric models for hyperspectral data have also
been studied for some approaches [17], [30]. In this case, the
strategy is to model regions by a gaussian probability density
function by estimating its mean and covariance matrix. This
model presents two important drawbacks: 1) the estimation
of the covariance matrix is not easy, in particular for small
regions, and 2) this model, as in the case of first order model,
is also unimodal.

In this paper, different region models and similarity metrics
to construct a robust hyperspectral BPT are studied. The study
can be roughly split in two important categories depending
on the type of region models. Firstly, the classical first-order
parametric model is studied. Then, besides the first-order
parametric model, a non parametric statistical region model is
also studied in the following sections [31]. This non parametric
statistical region model is proposed in order to avoid making
any assumption as homogeneity or gaussian probability distri-
bution inside the regions.

A. Region Model

1) First-Order Parametric Model: Given a hyperspectral
region R formed by NRp spectra containing Nz different
radiance values, the first-order parametric model MR is defined
as a vector with Nz components which corresponds to the
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Fig. 4. First-order parametric model.

average of the values of all spectra p ∈ R in each band λi .

MR(λi ) = Ī R
λi

= 1

NRp

∑

j≤NRp

Iλi (p j ) i ∈ [
1, . . . , Nz

]
. (1)

Fig. 4 shows how this region model is interpreted. The grid
on the left represents the set of spectra of R. In this grid,
the horizontal dimension corresponds to the labels assigned to
the pixels of the spatial space whereas the vertical dimension
corresponds to the spectral domain for each spectrum. Hence,
each cell of the grid Iλi (p j ) represents the radiance value
in the wavenlength λi of the pixel whose spatial coordinates
are p j . In this same figure, the green square on the right
illustrates the model MR corresponding to the vector ĪR

λ which
contains in each position Ī R

λi
the mean radiance values for each

wavelength on the region.
Note that the MR model can be considered as a random

variable in the λ dimension. The probability distribution of
such variable PR(λ) can be easily estimated by applying the
spectrum normalization of Eq. 2 in each λi

PR(λi ) = Ī R
λi

Nz∑

t=1

Ī R
λt

(2)

where Ī R
λi

corresponds to the average of the values of all
spectra p ∈ R in each band λi .

Using the spectral distribution PR(λ), a classical spectral
similarity measure taking into account the overall shape of
the reflectance curves can be proposed as O(Ri , R j ). The use
of the Spectral Information Divergence [32] is analyzed here
since it can characterize spectral similarity and variability more
effectively than other measures [49].

2) Non Parametric Statistical Model: This region model
is directly estimated from the pixels of the region where
neither spectral nor texture homogeneity are assumed [31].
To formally tackle this idea, this MR supposes that a region
formed by a set of connected pixels is a realization of statistical
variables which can be characterized by the corresponding
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Fig. 5. Nonparametric statistical model.

discrete estimated probability distribution. In fact, considering
region pixels as a set of independent samples, their common
statistical distribution can be directly estimated. Therefore, the
region model is the probability density function representing
the pixels of the region. In other words, this region model
corresponds to the normalized histogram of the pixel values
belonging to each region.

Consequently, the region model is then represented by a set
of Nz non parametric probability density functions (pdfs), one
for each band H

λ j
R , with no assumptions about the nature of

the regions nor the shape of the pdfs.

MR = {H λ1
R , H λ2

R , ..., H
λNz
R }. (3)

Fig. 5 shows the non parametric statistical model interpre-
tation. It is observed how MR is a matrix where each cell
represents the probability of the region pixels to have a radi-
ance value as in a specific band λk . The region model is then
formed by the set of the rows H λk

R , each one corresponding to
the empirical spatial distribution (histogram) of the region R
in the band λk . As Fig. 5 shows each H λk

R is coded by NBins

bins.
For regions made of individual pixels, the histogram of

each band is a unit impulse as only one instance of pixel is
available. However, the pdf of individual pixels can be more
precisely estimated by exploiting the self-similarity present
in the image [33]. The key assumption behind the pixel pdf
estimation consists in considering that the image is locally
a general stationary random process and that it is possible
to find many similar patches in an image. Let be p a pixel
of the image I and P(p) the square neighborhood patch
centered at p defined by the dimensions W x × W y. The
probability distribution H λ

R of each individual pixel p given its
neighborhood P(p) can be estimated by looking for the similar
patches centered at different py pixels in a search window. It
is assumed that the probability distribution of p depends only
on the values of the pixels in P(p) and it is independent of
the rest of the image (markovian model). This patch similarity
is interpreted as a weight w(p, py) which is considered as an
additive contribution to the probability of the pixel p of having
the value of Iλ(py). Computing all w(p, py) associated to the
pixel p for all the possible pixels py in a search window �,
the function w(p, py) can be used to estimate the probability
density function for the individual pixel p.
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The computation of the weight w(p, py) associated to all
the pixels py in � in the hyperspectral context is proposed in
this work as

w(p, py) = 1

Z(p)
e

−
Nz∑

t=1

d(Pλt (p), Pλt (py))

h2
λt (4)

where P(py) is one possible similar patch centered in py in
the search window �. The Z(p) is the normalizing factor to
assure

∑
∀py∈� w(p, py) = 1. It is given by

Z(p) =
∑

∀py∈�

e

−
Nz∑

t=1

d(Pλt (p), Pλt (py))

h2
λt . (5)

Concernig the similarity between the pixel values of a patch
centered at p and a patch centered at py, it is computed by
using the following expression:

d(Pλt (p), Pλt (py)) =
Wy∑

by=−Wy

Wx∑

bx=−Wx

((Iλt (p + bx + by) − Iλt ((py + bx + by))
2

(2 ∗ dp + 1)2

(6)

where dp =
√

b2
x + b2

y is the local displacement on the patch
regarding the central pixel.

The smoothing parameter hλt , which stands for the typical
distance between similar patches, controls for each λt the
decay of the function w. This parameter hλt depends on
the standard deviation of the noise of the image band Iλt .
The standard deviation for each hyperspectral band can be
automatically estimated by calculating the pseudo-residuals of
each pixel p as described in [34].

B. Merging Criterion

Different merging criteria are proposed according to the
previous region models. On the one hand, the Spectral Infor-
mation Divergence is proposed for the first-order parametric
model. On the other hand, following the statistical analysis,
three different similarity metrics between histograms are pro-
posed as merging criterion. Battacharyya Coefficient, Diffu-
sion Distance, and Association Measure via Multidimensional
Scaling, respectively.

1) Spectral Information Divergence: The Spectral Infor-
mation Divergence computes the probabilistic discrepancy
between two corresponding spectral signatures modelled by
PRi (λ) and PR j (λ). Then, this measure can be proposed to
define the merging criterion defined by

OS I D(Ri , R j ) = argmin
Ri ,R j

{
D(Ri , R j ) + D(R j , Ri )

}
(7)

with D(Ri , R j ) the Kullback Leibler divergence between two
probability distributions

D(Ri , R j ) =
Nz∑

k=1

PRi (λk) log
PRi (λk)

PR j (λk)
. (8)

2) Battacharyya Coefficient: The bin-to-bin Bhattacharyya
distance between two statistical discrete distributions measures
the amount of overlap between them. Given two adjacent
regions Ri and R j , modeled by their non parametric statistical
region models, the Battacharyya distance at band λk between
the distributions H λk

Ri
and H λk

R j
is defined by

BC(H λk
Ri

, H λk
R j

) = − log

⎛

⎝
NBins∑

s=1

H λk
Ri

(as)
1
2 H λk

R j
(as)

1
2

⎞

⎠ (9)

where NBins are the number of bins used to quantify the
images intensities. Therefore, the merging criterion OB AT can
be defined by

OB AT = argmin
Ri ,R j

Nz∑

k=1

BC
(

H λk
Ri

, H λk
R j

)
. (10)

It can be observed that this merging criterion assumes that
the histograms are already aligned. To address this weakness, a
cross-bin measure between probability distribution is proposed
in order to be less sensitive to quantization, noise effect and
histogram misalignment. The second similarity measure is
called diffusion distance [47].

3) Diffusion Distance: The diffusion distance DK is a cross-
bin distance defined to measure the similarity between two
discrete probability distributions, which may overlap or not.
The main idea of this distance is to measure the difference
between two histograms at various resolution scales through a
diffusion process. If the histograms are different, the difference
between them will exist at several scales.

The diffusion process is computed by convolving the his-
togram difference dl(as) with a Gaussian filter φσG(as), where
as ∈ R

m is a vector. Thus, each diffusion scale l is computed
by a convolution and a downsampling step as

d0(as) = H λk
Ri

(as) − H λk
R j

(as) (11)

dl(as) =
[
dl−1(as) ∗ φσG(as)

]
↓2 l ∈ [1, . . . , L] . (12)

The notation ↓2 denotes downsampling by a factor of two.
L is the number of pyramid layers and σG is the constant
standard deviation for the Gaussian filter φ. From the Gaussian
pyramid constructed by Eq. 12, a distance DK between the
histograms can be computed summing up the L1 norms of the
various levels

DK

(
H λk

Ri
, H λk

R j

)
=

L∑

l=0

NB∑

s=1

∣∣∣dl(as)
∣∣∣. (13)

Consequently, the proposed merging criterion using the
diffusion distance defined through the equations is derived as

ODI F = argmin
Ri ,R j

Nz∑

k=1

DK

(
H λk

Ri
, H λk

R j

)
. (14)

Before concluding on merging criteria using classical his-
togram distances, it should be remembered that hyperspectral
bands are processed separately by the last two criteria: OB AT

and ODI F . As a result, the correlation between bands is
not taken into account in these merging criteria. In order to
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Fig. 6. Methodology for similarity measure via multidimensional scaling.

improve this limitation, a new merging criterion is defined
in the following. This criterion tries to exploit the distances
between wavebands to remove redundant information con-
tained in each region model. This last studied similarity crite-
rion consists in a new similarity measure based on distances
between observations and canonical correlations [35].

4) Association Measure Via Multidimensional Scaling: The
merging criterion is divided in two steps summarized in Fig. 6.
The first step, corresponds to a local dimensionality reduction
by analyzing the inter-waveband similarity relationships for
each data set MR . The purpose of this stage is to remove
the redundant hyperspectral information via multidimensional
metric scaling (MDS), [43], [45]. As a result, the princi-
pal components of the regions containing the most relevant
information are obtained. Afterwards, a similarity measure
correlating the principal axis of both data sets obtained via
multidimensional scaling is performed. This similarity mea-
sure, relies on a statistical test based on the multivariate
analysis of variance (MANOVA) [41], [46]. The goal is to
test whether there is a dependence (or correlation) between
the principal components of the regions or not.

The objective of Multidimensional scaling (MDS) [36]
transformation is to provide a lower-dimensional data where
the dissimilarities between the data points of the multidimen-
sional domain correspond to the dissimilarities of the lower-
dimensional domain. In our case, MDS attempts to reduce
the dimension formed by the Nz probability distributions of
each MR . To perform it, the probability distribution similarities
(or dissimilarities) of MR can be represented by a Nz × Nz

distance matrix �R = (δkl), where δkl = δlk ≥ 0 is the
diffusion distance value computed by Eq. 13. Hence, being
A the matrix with entries A = −( 1

2 )δ2
kl and the centering

matrix H = IN − 1
N 11′, the so-called inner product matrix

BR associated to �R can be computed by BR = H AH
for each MR [36]. The inner product matrix BR is an
Nz × Nz symmetric matrix which can be spectrally decom-
posed as BR = UR�2

RU ′
R . Assuming the eigenvalues in �R

are arranged in descending order, the matrices UR�R and UR

contain the principal and the standard coordinates of region R,
respectively. The aim of MDS is then achieved by taking the
Ds first most representative principal or standard coordinates
of each MR .

Given two regions defined by MRi and MR j , our interest
is to measure the similarity between their Ds first standard
coordinates. Therefore, two distance matrices �Ri and �R j

to find BRi = URi �
2
Ri

U ′
Ri

and BR j = UR j �
2
R j

U ′
R j

should be
computed using the explained procedure.

The number Ds of dimensions is an important aspect in
most multivariate analysis methods. In MDS, the number of
dimensions is based on the percentage of variability accounted
for by the first dimensions. Here, a criterion extending the
one proposed in [35] is used to set the value of Ds . Firstly, a
number of dimensions Ns suggested by the data should be
fixed. Then, being ui and vi , i = 1, . . . , Ns , the first Ns

columns of URi and UR j , a sequence Ck is defined as

Ck =
∑k

t=1
∑k

p=1 λ2
t Ri

(u′
tv p)2λ2

t R j∑Ns
t=1

∑Ns
p=1 λ2

t Ri
(u′

tv p)2λ2
t R j

k ∈ [1, . . . , Ns ] (15)

where λ2
t Ri

λ2
t R j

are the eigenvalues of BRi and BR j which
are proportional to the variances of the corresponding prin-
cipal axes. Here Ns is the minimum dimension for which∑Ns

t=1 λ2
t R/

∑N
t=1 λ2

t R ≈ 1 and (u′
tv p)

2 is the correlation
coefficient between the t-th and p-th coordinates. Thus the
numerator in Ck is a weighted average of the relationships
between principal axes. Clearly 0 ≤ C1 ≤, · · · ≤ CDs ≤, · · · ≤
CNs = 1. The dimension Ds is then chosen such that CDs is
high, for instance CDs = 0.9.

At this point, having two regions defined by their principal
coordinates (URi �Ri and UR j �R j ), a statistical test to measure
the similarity between the regions is defined by interpreting
the Ds columns of URi �Ri and UR j �R j as a predictor X
and a response variable Y of a multivariate linear regression
model.

Given a predictor X and a response variable Y , their
multivariate linear regression model is defined by

Y = Xβ + e (16)

where β is the matrix of parameters containing the regression
coefficients and e is a matrix of errors. The least-squares
estimation of β̂ is given by β̂ = (X ′ X)−1 X ′Y and the
prediction matrix is Ŷ = X β̂ = PY where P = (X ′ X)−1 X is
the hat matrix [37]. Clearly, if there is no relationship between
X and Y, the matrix β is equal to 0. Considering this, the idea
is to perform a test verifying the hypothesis β = 0 to measure
if a significant relationship between X and Y exists. Here,
the likelihood ratio test W (or Wilks’ lamba) is proposed to
measure if the hypothesis β = 0 is true or false through Eq. 17.
This measure has been proposed following the study presented
in [38].

Being in our case Y = UR j �R j and X = URi �Ri , the
predicted model corresponds to Ŷ = PY = URi U

′
Ri

UR j �R j .
Eq. 17 is then defined by using E = �R j (I −U ′

R j
URi U

′
Ri

UR j )

�R j and E + H = Y ′Y = �R j U
′
R j

UR j �R j = �2
R j

. These
two last equations define the Wilks’ lambda test W (Ri , R j )
as

W (Ri , R j ) = det (E)

det (E + H )
= det (I − U ′

R j
URi U

′
Ri

UR j ).

(17)
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The Wilks’ criterion of Eq. 17 can also be defined by
W (Ri , R j ) = λ1

w × λ2
w · · · × λDs

w where λi
w are the

eigenvalues corresponding to

det (E − λw(E + H )) = 0. (18)

Being these values 0 ≤ λi
w ≤ 1, the squared canonical

correlation r2
i is defined by 1 − λi

w . The Wilks’ criterion can
thus be expressed in terms of canonical correlations as

W (Ri , R j ) =
Ds∏

i=1

(1 − r2
i ). (19)

This last equation satisfies that 0 ≤ W (Ri , R j ) ≤ 1 and
W (Ri , R j ) = 1 if Ri is equal to R j . Thus, this leads to the
definition of the proposed merging criterion

OM DS = argmin
Ri ,R j

W (Ri , R j ). (20)

To conclude this section, it should be remarked that the
area of the regions is not included in any proposed merging
order. Thus, these approaches may suffer from small and
meaningless regions into the generated partition. To overcome
this limitation, the fusion between small regions in the first
merging levels has been set as a priority. The approach consists
in forcing the merging of regions having an area smaller than
a given percentage (typically 15%) of the average size of the
regions created by the merging process [31].

III. PRUNING STRATEGY FOR HYPERSPECTRAL IMAGE

CLASSIFICATION

The processing of a BPT representation can be understood
as the extraction of a set of nonoverlapping regions coded in
BPT nodes according to a specific criterion. This analysis of
the tree can be performed by a pruning strategy aiming at
removing redundant subtrees from the original tree. A subtree
is redundant if all its nodes can be considered homogeneous
with respect to some criterion of interest (e.g., homogeneity
of intensity or of texture). This task can be performed by
analyzing a pruning criterion along the tree branches to retrieve
the nodes of largest area fulfilling the criterion. Three different
results of BPT pruning are shown in Fig. 7. Note that using
the pruned tree, a partition composed of NR regions can be
easily constructed by selecting the leaf nodes of the resulting
pruned tree.

The tree analysis may follow a bottom-up or a top-down
strategy. The pruning strategy discussed in this section corre-
sponds to a bottom-up analysis of the BPT. The task consists
in evaluating some regions (or nodes) criterion by performing
an analysis running from the leaves to the tree root. In practice,
this particular cost directly depends on the considered applica-
tion. Classification, filtering, object detection and segmentation
are different examples of applications. In this section, as an
illustrative example, a classification application is discussed.
Other examples of applications involving object detection and
segmentation can be found in [25], [26], and [27]. In this work,
the goal of this pruning is to remove subtrees composed of
nodes belonging to the same class and to construct a classifi-
cation map. To address it, the analysis of the tree consists of

Fig. 7. Pruning examples.

two important steps. The first one is the BPT population which
computes and assigns specific region descriptors to each node
of the tree structure. The second step is the pruning decision
whose task is to evaluate a cost function φR associated to the
region descriptors and eventually to decide where to prune the
tree.

A. BPT Population

Given the classification aim, the main information, or node
descriptor, to be used to define the pruning involves the class
probability distribution PR . This probability distribution is a
vector containing the probabilities that the node belongs to
each class Ci . The resulting class distribution is denoted by
PRi (C j ).

The task of node population can be easily achieved in a
supervised way by using a multiclass classifier. Here, Sup-
port Vector Machine is used as an example of probabilistic
classifiers which have proved to be well suited to classify
hyperspectral data [5], [6], [1]. The standard Gaussian kernel
is chosen in this work since it is one of the most used kernels
in hyperspectral data.

Being SVMs supervised [28], the kernel parameters should
be first computed by a training step. In our case, this step
follows the classical crossvalidation strategy: the training set
is divided into k parts, then the SVM is trained using (k − 1)
parts and the obtained parameters are tested on the remaining
part. The SVM training step is done by using some leaf nodes
which correspond to single spectra. The selection of these
nodes directly depends on the available ground truth.

Once the kernel function is constructed, it is used to classify
all the BPT nodes by assigning to each of them their PR . In
order to classify the data, the kernel function usually uses a
spectrum as an input parameter. However, note that in our
case, each BPT node represents a region formed by a set of
spectra not a single spectrum. For this reason, each BPT node
is modeled by its mean spectrum to be able to apply the kernel
function on the node.

The information provided by the class probability distribu-
tion is used to evaluate the node Misclassification Rate (MR).
Misclassification Rate can be understood as the error of
assigning to a node a wrong class. The use of Misclassification
Rates has been previously studied in binary decision tree
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prunings [39]. In these decision trees, a reliable classification
result of a node Ri implies a likely minimum misclassifica-
tion rate MR(Ri ) which has been previously mathematically
expressed by

MR(R) = 1 − max
i

PR(Ci ). (21)

The misclassification rate of Eq. 21 can have two important
problems in our context. The first problem comes when a node
is formed by merging a very large region with a small one.
Assume the node R is formed by two sibling nodes RL and RR

having an area relation such that ARL >> ARR . If RL belongs
to class Ci and RR to class C j , the union of both regions
will belong to Ci since the region contained in RL is much
larger than RR . Thus, the reliability of the SVM classifier for
the node R will not significantly change even if both regions
belong to two different classes.

The second important problem of Eq. 21 is the presence of
mixed pixels in the image forming mixed regions. The mixed
pixels in hyperspectral context are spectra which are formed
with some materials involving different ground truth classes.
Consequently, pixels belonging to these regions do not have a
high probability of belonging to any given class. As a result,
an important misclassification rate can appear for this type of
regions. In order to solve these problems, the misclassification
rate of Eq. 21 for nonleaf nodes has been modified as follows:

MR(R) = 1 − BC(PRR , PRL ) (22)

where BC(PRR ,PRL ) is the Battacharryya coefficient between
the probability class distributions of the left and the right
children of R. With Nc different ground truth classes, the Bat-
tacharrya coefficient in this classification context is described
by

BC(PRR ,PRL ) =
Nc∑

i=1

PRR (Ci )PRL (Ci ). (23)

Last expression cannot be used for leaf nodes as they have
no children. Hence, two types of misclassification rates are
used: 1) eq. 21 is the misclassification rate used for BPT
leaves, and 2) eq. 22 is the one used for nonleaf nodes. The
use of eq. 22 solves the weak area relation problem allowing
to detect if two reliable but different regions are going to be
merged in an unique node. However, as this last equation is
sensitive to small regions, a node formed by a very small
wrongly classified region (for instance 1 pixel) can give a high
MR(R). Thus, this weakness should be solved setting that if
a node has a very small area (for instance smaller than 3),
its parent will have a very small MR(R). In other words,
very small regions cannot cut BPT branches since they are
not considered as reliable.

B. Pruning Decision

The pruning of a sub-tree Ts hanging from a node R consists
in deciding if all its descendants, can be replaced by R. This is
done by the function φR which compares the misclassification
rate at node R with the misclassification rate corresponding
to the set of leaf nodes of the sub-tree Ts . Fig. 8 shows
an example of the concepts presented in the evaluation of

Ts rooted at RiBPT representation

Ts

Ri

l1

l2l3

Fig. 8. Subtree definition.

a nonleaf node R. In this example, the misclassification rate
associated with the node Ri should be compared with the error
associated to the 3 leaves Rleaves

i = {l1, l2, l3} contained in Ts .
Mathematically, the function defining the pruning function

φR is given by

φR(Ri ) = MR(Ri ) − MR(Rleaves
i ) (24)

where MR(Rleaves
i ) represents the average misclassification

rates of the leaves of the subtree rooted at of Ri . The aim
is to detect when φR is higher than an allowed threshold α.
Considering a node Ri , if the cost function φR(Ri ) < α, the
subtree hanging from Ri can be pruned and replaced by Ri .
Contrarily, if φR(Ri ) > α, the node Ri cannot be a leaf in
the pruned BPT. Note that the α value determines the size of
the pruned BPT. When α is small, the penalty term is small,
so the size of the pruned tree will be large. Contrarily, as α
increases, the pruned BPT has fewer and fewer nodes.

IV. EXPERIMENTAL RESULTS

In this section, a complete evaluation of the BPT-based
representation is provided. Firstly, experiments have been
performed to evaluate the different merging order criteria
proposed in Section II. To this goal, some partitions obtained
during the construction of the BPT following the merging
sequence are compared between themselves and also with the
RHSEG technique [20], which is the reference hierarchical
representation and segmentation tool for hyperspectral data.
Secondly, experiments are conducted to evaluate the pruning
technique described in Section III. In this context, two different
data sets are used. Firstly, an AVIRIS hyperspectral image is
used to study how the construction of BPT affects the pruning
results in our classification context. Secondly, the last experi-
ment is devoted to compare the classification results obtained
by pruning the BPT with the spectral-spatial classification
approach [40].

A. Evaluation of the BPT Construction

This experiment evaluates the partitions that are obtained
following the merging sequence involved in the BPT construc-
tion. Note that, appropriate pruning techniques can produce
a much larger set of partitions, but the partitions involved
in the tree creation allows us to make an evaluation of the
region models and the associated merging criteria proposed in
Section II. The initial partition is composed of regions formed
by individual pixels and, therefore, involves Np regions. In
order to get a partition with NR regions, a number of Np − NR
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(a) (b)

Fig. 9. Urban Hydice data set. (a) False-color composition. (b) Ground truth.

merging steps have to be performed. The quality of the parti-
tions having NR regions is then evaluated using two different
partition distances. Both measures have been defined in the
context of image segmentation and previously used in [31].

The first quality measure is the asymmetric partition dis-
tance dasym which is ranging between 0 and 1. This dis-
tance measures the minimum number of pixels whose labels
should be changed so that partition P1 becomes finer than
partition P2, normalized by the total number of pixels of
the image minus one. If P1 is the ground truth and P2 is
the computed partition, dasym(P1, P2) measures the under-
segmentation and dasym(P2, P1) the oversegmentation. In
this work, an average asymmetric distance has been used:
dT

asym = (dasym(P1, P2) + dasym(P2, P1))/2.
The second used partition distance corresponds to the sym-

metric distance dsym which is used as a global error measure to
establish a compromise between under- and oversegmentation
error since it is measured between partitions with equal num-
ber of regions. The distance is defined as the minimum number
of pixels whose labels should be changed in P1 to achieve
a perfect matching with P2 (P1 and P2 become identical),
normalized by the total number of pixels of the image minus
one. Here, both distances dsym and dT

asym are used to measure
the quality of the BPT hierarchical levels obtained by studying
two different data sets.

1) Urban HYDICE Data Set: The first experiments have
been performed using a portion of a publicly available
HYDICE hyperspectral image. After removing water absorp-
tion and noisy bands, the data contain 167 spectral bands in
a range from 0.4 to 2.5 micrometers. The studied image has
60 × 60 pixels having a spatial resolution of a few meters.
Fig. 9(a) shows a false color composition of three of them and
Fig. 9(b) features a manually designed segmentation ground
truth.

For this image, the BPT is computed by the procedure
described in Section II. The number of bins to represent the
histograms depends on the image range (here NB = 256).
For the multidimensional scaling approach, the number of
used components found by the sequence Ck is Ds = 3.
To visually illustrate these results, some partitions obtained
following the merging sequence are shown in Fig. 10. This
figure shows the partitions obtained by BPT constructed by
different merging orders and the RHSEG algorithm [20]. In the
case of RHSEG, the similarity criterion used is SAM [9]. The
spectral clustering weight has not been used in this experiment.
It should be noticed that the RHSEG algorithm also uses the
mean region model as the BPT with the OS I D distance.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 10. Visual evaluation of the results over the HYDICE data
set. (a) OSID, NR = 27. (b) OSID, NR = 37. (c) OSID, NR = 56.
(d) OBAT, NR = 27. (e) OBAT, NR = 37. (f) OBAT, NR = 56.
(g) ODIF, NR = 27. (h) ODIF, NR = 37. (i) ODIF, NR = 56 (j) OMDS, NR= 27. (k) OMDS, NR =37. (l) OMDS, NR = 56. (m) RHSEG, NR = 27.
(n) RHSEG, NR = 37. (o) RHSEG, NR = 56.

(a) (b)

Fig. 11. Distance evaluation for Hydice image. (a) Symmetric.
(b) Asymmetric.

The first test to evaluate the quality of the BPT construction
is done by computing dsym using the manually created ground
truth image shown in Fig. 9(b) that contains 37 regions.



VALERO et al.: HYPERSPECTRAL IMAGE REPRESENTATION AND PROCESSING 1439

TABLE I

CLASS SPECIFIC ACCURACY USING 20% OF TRAINING SAMPLES

Class Simple
SVM

Pruned
BPT
OSID

Pruned
BPT
ODIF

Pruned
BPT

OMDS

1 75.61 82.93 82.93 80.49
2 83.46 92.75 92.19 92.75
3 84.35 95.21 96.81 96.01
4 76.14 96.59 92.05 91.48
5 94.37 95.44 95.17 95.71
6 97.15 97.65 98.40 97.50
7 92.31 88.89 88.89 88.89
8 98.09 99.73 99.18 99.73
9 90 100 85.71 100

10 83.06 88.02 89.94 88.57
11 91.52 97.24 96.06 99.73
12 86.55 92.62 91.76 94.36
13 96.22 97.48 98.11 98.76
14 95.57 97.53 97.89 97.94
15 67.72 84.21 80.35 97.89
16 91.67 95.83 93.06 97.22

Overall 87.74 93.89 92.40 94.69

The dsym between Fig. 9(b) containing 37 regions and the
partitions obtained by doing Np-37 merging steps over the
initial partition is computed. This distance is also computed
for the partition involving 37 regions obtained by the RHSEG
to compare the BPT results with a state of the art technique.
Table I shows the values of the symmetric distance between
the ground truth of Fig. 9(b) and the partitions obtained by
BPT constructed by different merging orders and the RHSEG.
It should be noticed that all the results shown in Fig. 11(a)
are obtained by partitions involving 37 regions.

Comparing the results of Fig. 11(a), it can be observed that
region-merging algorithms using the non parametric statistical
region model obtain better results. As this model is more accu-
rate than the traditional mean, the BPTs constructed by using
OM DS , ODI F and OB AT achieve smaller dsym values. A small
improvement is introduced by ODI F regarding OB AT [31].
This is explained by the fact that the diffusion distance is
more robust to histogram misalignment. Comparing all the
obtained results, it can be observed that OM DS achieves the
best results. Besides relying on a non parametric statistical
region model, this distance takes into account correlation
between bands. OM DS removes redundant information through
multidimensional scaling which allows the introduction of the
spectral information inside the merging criterion.

For this image, a second test evaluating the merging orders
for BPT construction is carried out using dT

asym. This measure
is computed for various partitions having different number of
regions NR . The evolution of dT

asym according to the number
of regions is shown in Fig. 11(b).

As it can be seen, the effectiveness of the statistical region
model and the good performances of OM DS can be corrobo-
rated. For the case of OS I D some peaks can be observed in
the dT

asym curve. They correspond to the merging of regions
without any meaning because of the poor mean region model.
The quantitative evaluation can be corroborated by observing
Fig. 10. Looking at the second column, the results described by
dsym can be corroborated. OM DS with NR = 37 corresponds
to dsym = 0.236 which is the best result.

(a) (b)

Fig. 12. Pavia Center ROSIS data set. (a) False-color composition.
(b) Ground truth.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 13. Visual evaluation of the results over the Pavia Center data set.
(a) OSID, NR = 13. (b) OSID, NR = 25. (c) OSID, NR = 39. (d) OBAT, NR= 13. (e) OBAT, NR = 25. (f) OBAT, NR = 39. (g) ODIF, NR = 13.
(h) ODIF, NR = 25. (i) ODIF, NR = 39. (j) OMDS, NR = 13. (k) OMDS, NR
= 25. (l) OMDS, NR = 39. (m) RHSEG, NR = 13. (n) RHSEG, NR = 25.
(o) RHSEG, NR = 39.

2) ROSIS Pavia Data Set: A second data set is processed
to confirm the previous results. In this case, a portion of the
Pavia Center image from the hyperspectral ROSIS sensor is
used having a spatial resolution equal to 1.3 m per pixel. These
data contain 99 × 60 pixels and 102 spectral bands. Fig. 12(a)
shows a false-color composition of three hyperspectral bands
while Fig. 12(b) shows the ground truth that has been manually
created. Similar experiments have been performed for this
image. The number of bins used to represent the histograms
is Nbins = 256. The dimension Ds of the multidimensional
scaling reduction techniques is 2.

The same evaluation is also carried out for this second data
set. The visual evaluation is shown in Fig. 13. Concerning
the quantitative evaluation, Table II in Fig. 14(a) shows the
symmetric distance values dsym between the ground truth
partition and the partitions generated by the proposed methods,
both with the same number of regions (equal to 25).
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TABLE II

CLASS SPECIFIC ACCURACY FOR PAVIA UNIVERSITY DATA SET

Class Simple SVM Spectral-Spatial Approach [24] Pruned BPT

1 85.93 83.6 88.84

2 76.66 77.9 71.69

3 70.46 82.9 91.95

4 97.55 96.7 95.14

5 99.55 98.7 98.81

6 91.99 95.2 97.08

7 92.48 94.0 99.02

8 92.31 95.0 98.13

9 99.26 97.4 95.99

Overall 88.58 91.26 92.96

(a) (b)

Fig. 14. Distance evaluation for Pavia Center ROSIS image. (a) Symmetric.
(b) Asymmetric.

Fig. 14(b) plots the evolution of the average asymmetric dis-
tance according to the number of regions. Fig. 14(b) confirms
the good performances of the non parametric statistical region
model. Also, OM DS obtains the best results for this second
data set. The efficiency of OM DS against the other merging
criteria can also be verified looking at Fig. 13 and 14.

As can be seen, the results obtained with criteria using the
mean region model are similar to those obtained with the
non parametric region model but with a larger number of
regions. However, it can be seen that when regions become
more complex, the simple model becomes less accurate. This
explains why the average asymmetric distance value obtained
with the nonparametric statistical model starts decreasing
when the number of regions gets close to the number of
regions of the ground truth. The curve also shows that in some
iterations dT

asym is smaller by using the ODI F than OM DS .
This is because, at this level of the tree construction, the pixels
forming the background have been merged earlier with ODI F

than with OM DS .

B. Evaluation of the Classification Pruning

1) Aviris Indian Pines: In the first pruning experiment,
Indian Pines AVIRIS hyperspectral data containing 200 spec-
tral bands having a spatial dimension of 145 × 145 pixels
is used. Fig. 15(a) shows a false-color composition of this
data set. In this image, it can be seen how a simple RGB
composition of the hyperspectral data does not allow to dis-
criminate between the different materials. The whole image is
formed by 16 different classes having an available ground truth
as illustrated on Fig. 15(b). For this image, three different BPT
are constructed using the following merging criteria OS I D ,
ODI F and OM DS , respectively. In the case of non parametric

(a) (b)

Fig. 15. (a) False-color Indian pines composition. (b) Available ground truth
image.

(b)(a)

Fig. 16. Indian pines pruning evaluation. (a) Number of regions versus α.
(b) Overall accuracy versus α.

statistical region model, the histogram quantification is set
to Nbins = 150. Concerning the merging criterion OM DS ,
the estimated Ds value defining the number of principal
components is equal to 3.

Once the three different BPT have been created, the pop-
ulating BPT strategy described in Sec. III-A is performed.
The SVM classifier is trained by selecting randomly 20% of
samples for each class from the reference data described in
Fig. 15(b). Using the constructed SVM model and the BPT
representation, the PR probability distributions are assigned
to all BPT nodes in order to compute their misclassification
rates.

In this example, different α threshold values are used to
compare the different classification maps obtained by the three
BPTs. Two different evaluations are carried out for different
α values ranging from 0 to approximately 0.4. It has been
considered that α higher than 0.4 means a high misclassifica-
tion error. The first evaluation corresponds to the number of
BPT leaves obtained after the pruning. This measure gives
information about the BPT construction. For a given class
accuracy, if a pruning strategy removes more BPT nodes from
a tree, this means that the BPT has been better constructed. The
second evaluation corresponds to the overall class accuracy
obtained by the classification maps achieved by the BPT
pruning. Both experiments are shown in Fig. 16.

Fig. 16(b) shows how the highest accuracies are obtained
with αC ≈ 0.30 where the results obtained by OM DS out-
performs the other results for all the αC values. However, it
should be noticed that in some cases, OS I D can lead to similar
classification accuracies than OM DS . Contrarily, the merging
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(a) (b)

(c) (d)

Fig. 17. Obtained classification map using 20% of training samples. (a) Pixel-
wise classification. (b) Pruned BPT, OSID, α = 0.34. (c) Pruned BPT, OSID,
α = 0.27. (d) Pruned BPT, OMDS, α = 0.29.

criterion ODI F achieves the worst results. These results can
be explained by the fact that the criterion processes separately
the different bands and this turns out to be a serious drawback
for classification.

Comparing the curves of OS I D and OM DS in Fig. 16, it
could be said that both criteria have similar performances in
a given αC interval. However, comparing the results on the
curves of Fig. 16(a), it can be remarked how OM DS removes
more BPT nodes in its pruning. Note that the number of
regions corresponding to the pruned BPT leaves, is much lower
for OM DS than for the other two merging criteria.

Following this evaluation, the classification maps corre-
sponding to the highest overall accuracy of Eq. 16(b) are
shown on Fig. 17. The obtained results are compared with
the classical SVM pixel-wise classification of Fig. 17(a). The
same training samples are used for all the classification results.

Looking at the BPT pruning results, it can be observed
that the classification maps are formed by quite homogeneous
regions. In particular, the BPT nodes selection according to the
proposed pruning criterion provides a less noisy classification.
This can be noticed in the case of Fig. 17(d) correspond-
ing to the OM DS merging criterion. The obtained results
also corroborate the BPT performances since extracted nodes
reflect semantic real-world objects of the image. It should be
remarked that Indian Pines has a high spectral variability due
to its low spatial resolution.

The interest of using the BPT structure to obtain the
classification map can be summarized as follows: the classifi-
cation noise observed with pixel-wise approaches is strongly
reduced, while no edge noise is introduced (a classical post-
processing or a Markovian regularization would suffer from
this drawback). The regions do actually map real borders as
determined while constructing the tree. In addition, the final
partition can contain small (but meaningful) regions as well as

(a) (b) (c)

Fig. 18. Pavia University data set. (a) False-color composition. (b) Test data
set. (c) Training data set.

(a) (b) (c)

Fig. 19. Comparison between obtained classification maps. (a) Pixel-wise
classification. (b) Spectra-spatial approach. (c) Pruned BPT.

large regions. All these regions are selected in different levels
of the hierarchy.

According to Fig. 17, Table II illustrates the corresponding
class-specific and the global classification accuracies. The
best class accuracies are highlighted in bold. Observing these
results, the proposed BPT pruning classification improves the
classification accuracies for almost all the classes compared
to pixel-wise classification. Studying the different merging
criteria, OM DS leads to the best results.

2) ROSIS Pavia University: The second data set used
to evaluate the classification pruning corresponds to Pavia
University from ROSIS sensor. The image is formed by
103 channels and has 610 × 340 pixels. Fig. 18(a) shows
a false-color composition for this second data set. For this
data set, Fig. 18(b) and Fig. 18(c) illustrate the used test and
training data sets, respectively.

This second experiment tries to verify that the classification
accuracies obtained by pruning the BPT can be comparable to
one of the state of the art recent spectral-spatial classification
approach [40]. This classification approach combines two
kernel functions to include both the spatial and the spectral
classification in the SVM classification process. The spatial
information is extracted by a morphological area filtering
of size 30. In this experiment, the results obtained by this
classical method are compared with the results obtained by
pruning a BPT which is constructed by using OM DS as
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merging criterion. The region model has been defined by using
Nbins = 256 and the number of principal components is
equal to 2. Fig. 19 shows the classification maps obtained
by the pixel-wise classification on Fig. 19(a), the spectral-
spatial approach [40] on Fig. 19(b) and the results obtained
after applying BPT pruning on Fig. 19(c). Comparing with the
pixel-wise approach, it can be observed that, using the BPT,
a better classification map is also obtained for this second
data set. BPT pruning improves the classification accuracy
preserving most of the edges and shapes. In order to compare
the results obtained by Fig. 19(b) and (c), Table II shows
the global accuracies. The global accuracy of the proposed
approach presented in Fig. 19(c) obtains the best results.

V. CONCLUSION

In this work, Binary Partition Trees have been proposed as a
new representation for hyperspectral images. Obtained through
a recursive region-merging algorithm, they can be interpreted
as a new region-based and hierarchical representation of the
hyperspectral data. The main advantage of BPT is that it
can be considered as a generic representation. Hence, it can
be constructed once and used for many applications such
as segmentation, classification, filtering, object detection, etc.
Many tree processing techniques can be formulated as pruning
strategies. Concerning the BPT construction, two concepts
have been highlighted to define the recursive merging algo-
rithm. The first concept is the use of non parametric statistical
region models which efficiently deal with the problems of
spectral variability and textures for clustering hyperspectral
data. The second one is the use of a new similarity mea-
sure called MultiDimensional Scaling (MDS) depending on
canonical correlations relating principal coordinates. Note that,
in this approach, as in many hyperspectral image processing
algorithms, there is a dimension reduction step represented by
the number of principal components. However, by contrast to
classical approaches, the dimension reduction is not defined
and applied globally on the entire image but locally between
each pair of regions. It has been demonstrated that BPT
enables the extraction of a hierarchically structured set of
regions representing well the image. As a first example of
BPT processing, we have proposed and illustrated a pruning
strategy to classify hyperspectral data. Experimental results
obtained from different data sets have shown that the proposed
method improves the classification accuracies of a classical
SVM and a spectral-spatial approach. Obtained classification
maps contain a reduced amount of noise. preserving most
of the edges and shapes. Future work will be conducted for
the pruning strategy. New global techniques are currently
being studied to improve the accuracy and the robustness
of the results. We will also develop pruning strategies for
different types of applications including object detection and
segmentation.
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