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The segmentation of remotely sensed images acquired over tropical forests is of great interest for numerous eco-
logical applications, such as forest inventories or conservation andmanagement of ecosystems, for which species
classification techniques and estimation of the number of individuals are highly valuable inputs. In this paper, we
propose amethod for hyperspectral image segmentation, based on the binary partition tree (BPT) algorithm, and
we apply it to two sites located in Hawaiian and Panamean tropical rainforests. Different strategies combining
spatial and spectral dimensionality reduction are compared prior to the construction of the BPT. Various
superpixel generation methods including watershed transformation andmean shift clustering are applied to de-
crease spatial dimensionality and provide an initial segmentation map. Principal component analysis is per-
formed to reduce the spectral dimensionality and different combinations of principal components are
compared. A non-parametric region model based on histograms, combined with the diffusion distance to
merge regions, is used to build the BPT. An adapted pruning strategy based on the size discontinuity of themerg-
ing regions is proposed and comparedwith an already existing pruning strategy. Finally, a set of criteria to assess
the quality of the tree segmentation is introduced. The proposed method correctly segmented up to 68% of the
tree crowns and produced reasonable patterns of the segmented landscapes.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

There is a growing need for large-scale assessment of biodiversity
and species richness in ecosystems, as a means to improve forest con-
servation and management decisions. Tropical rainforest ecosystems
are of critical interest since they are hotspots of biodiversity, greatly
contributing to the world's biotic variety while covering only a small
percentage of the terrestrial surface.Moreover, they are particularly vul-
nerable to multiple factor pressures such as exploitation of natural re-
sources and climate change (Asner, Rudel, Aide, Defries, & Emerson,
2009; Thomas et al., 2004; Whitmore, 1990). In this context, informa-
tion about the forest structure, the number, spatial distribution and
identification of individual trees, the species richness and its evolution,
and the dynamics of invasive species across landscapes are highly
sought after for efficient management decisions applied to forest con-
servation. Related field data collection is extremely expensive, time-
consuming and requires very skilled field workers. Such constraints
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call for supporting technologies andmethods for the accurate and regu-
lar monitoring of the evolution of biological diversity over large spatial
scales. Remote sensing appears as a particularly efficient tool for such
applications (Rasi et al., 2013; Reiche et al., 2013). However, monitoring
tropical forest ecosystems using remote sensing remains extremely
challenging due to the complexity of the canopy in terms of density,
structure and species richness (Papes et al., 2013; Pouteau & Stoll,
2012; Somers & Asner, 2013).

Among the various information that can be derived from remotely
sensed data, individual tree crown (ITC) delineation is a particularly im-
portant product assisting in fine-scale analysis of ecological processes
linked to vegetation structure and gap dynamics (Phinn et al., 2008),
as well as improved tree species identification (Clark, Roberts, & Clark,
2005). Indeed, region properties such as texture, size, shape or radio-
metric variability, can be derived from each ITC delineated on an
image, resulting in the combination of spatial and radiometric informa-
tion. Such object-oriented approaches usually outperform traditional
pixel-based methods for classification and other image processing ap-
plications such as spectral unmixing and object detection, and dramat-
ically enrich contextual information delivered by remote sensing
products. In practice, high spatial resolution ITC delineation can be use-
ful to help monitor species of interest, such as dominant trees, rare or
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invasive species that are key indicators for environmental processes
(Asner, Jones, Martin, Knapp, & Hughes, 2008). It can also be used to de-
tect illegal logging, as logging practices are nowadays very selective and
assisted bymoderate resolution satellite images to detect large scale de-
forestation (Asner et al., 2005).

Several segmentationmethods have been developed for ITC delinea-
tion based on high spatial resolution imagery derived from various sen-
sors, from satellite very high resolution imagery to airborne Light
Detection and Ranging (LiDAR) data. However, the selection of a seg-
mentation algorithm is critical as the performances of these methods
are usually strongly ecosystem-dependent. ITCs that are typically en-
countered in temperate forests offer several appealing characteristics
for the development of segmentation algorithms. In fact, those trees
have a regular shape and elongated silhouette, and the canopy is rather
sparse. Existing segmentation algorithms devoted to the segmentation
of temperate forests are taking advantage of those properties. For in-
stance, it is often assumed in forested area high resolution digital imag-
ery that an ITC is represented by bright pixels (the top of the crown,well
illuminated by the sun) surrounded by darker pixels (either shaded por-
tions of the crown or the ground) (Wulder, Niemann, & Goodenough,
2000). Using a topographical analogy, an ITC can be viewed as a peak
and the valleys circling around it are its physical boundaries. The valley
following approach exploits this idea by encircling bright pixels with
darker boundaries, and was used by Gougeon (1995), Leckie et al.
(2003, 2005), and Leckie, Gougeon, Walsworth, and Paradine (2003)
for the segmentation of coniferous plantations, and by Warner, Lee,
and McGraw (1998) for deciduous forests. Also relying on the topo-
graphical representation, region growing approaches implement seeds
in local maxima of the image, each seed being therefore potentially lo-
cated at the top of an ITC. Regions are gradually expanded from the
seeds until a stopping criterion, based on the presence of valleys, is
reached. Region growing methods were validated on Australian euca-
lypt forests by Culvenor (2002) and Whiteside and Ahmadb (2008)
and on coniferous forests by Erikson (2004) and Pouliot, King, Bell,
and Pitt (2002). Themarker-controlled watershedmethod is analogous
to region growing when gray tones are inverted in the topographical
representation, that is, when local maxima corresponding to ITCs be-
come local minima. Instead of expanding regions from bright values to
dark ones, the watershed floods up the topographical map and creates
regions corresponding to catchment basins. Markers play the same
role as seeds in the region growing approach, and temper the algorithm
sensibility to noise in order to avoid over-segmentation. This approach
was validated by Wang, Gong, and Biging (2004) for the segmentation
of Canadian coniferous forests. A comparison between valley following,
region growing and marker-controlled watershed methods for conifer-
ous and deciduous tree stands is drawn byKe and Quackenbush (2011).
Templatematching can also be applied when all ITCs have a regular and
elongated shape. It consists of syntheticallymodeling the tree shapes by
a collection of templates being generalized ellipses with various physi-
cally possible parameter values. Each template is cross-correlated
against any potential tree position in the digital image, and the locations
of the highest correlations are considered to be ITC positions, while the
corresponding templates are assumed to be the tree shapes. Template
matchingwas used by Olofsson (2002) and Pollock (1996, 1998) for co-
niferous and mixed forests, and a comparison between template
matching and region growing approaches applied to the delineation of
Swedish spruce stands can be found in Erikson and Olofsson (2005). Fi-
nally, stochastic point processmethodsmodel the image as a realization
of a marked point process of ellipses. The process, being the digital
image, contains an unknown number of objects (trees), each of them
being in an unknown configuration (its elliptic shape and orientation).
An energy term corresponding to the fit between the model and the
real image is defined, and the model is iteratively adjusted in order to
decrease the energy term at each iteration. Prior knowledge about the
general distribution of shapes and sizes is needed to operate the meth-
od, and those parameters can be easily derived when all trees have
similar structures. Point processes were investigated by Perrin,
Descombes, and Zerubia (2005) for poplar plantations and by
Andersen (2003) for coniferous forests.

Cited methods, based on strong hypotheses about crown size and
shape (existence of one uniquemaximum for each individual and limit-
ed overlapping between individuals) show good results for high resolu-
tion digital images of temperate forests. However, they perform poorly
when applied to tropical dense forest ecosystems, where tree size and
shape are highly variable, and individuals usually overlap. Varekamp
and Hoekman (2001) proposed a method based on Fourier parameter-
ized deformable models for Interferometric Synthetic Aperture
Radar (InSAR) data. Using the intensity, the interferometric height-
coordinate and the coherence magnitude measures proper to the
InSAR imaging system, they matched ITCs with deformable ellipses,
and applied their method to a tropical forest located in Kalimantan,
Indonesia. Note that Zhou et al. (2010) also applied marked point pro-
cesses to high resolution imagery and LiDAR-derived canopy height in
order to detect individuals in high biomass mangroves, including only
one to two canopy species. Results were encouraging; however they
may not be replicable when applied to dense tropical forests given the
relatively low heterogeneity of mangroves.

Over the last decade, several studies explored the potential of spec-
troscopic imagery for the tree species identification in dense tropical
forests (Clark et al., 2005; Feret &Asner, 2013), aswell as tree crown de-
lineation (Bunting & Lucas, 2006) in open mixed forests. The differenti-
ation between species is based on their spectral signature, which is
related to leaf chemistry and individual tree structure. Detailed spectral
informationmay then be a valuable input to detect boundaries between
neighboring trees in dense tropical forests. However, it comes with a
major challenge related to the high dimensionality of the data and the
need of adapted algorithms for automated tree crown segmentation.
To the best of our knowledge, there is no reference study for the seg-
mentation of tree crowns in hyperspectral images of tropical rainforests.

Image segmentation applied to dense tropical forests is an ill-posed
task: a given image can often be segmented at several levels of details,
due to the complex architecture of the top of the canopy. For this reason,
it is better to have a consistent hierarchy of segmentations rather than a
collection of minimally related segmentations. This allows the user to
tune the exploration level within the hierarchy to the precise goal
(Jung, Pasolli, Prasad, Tilton, & Crawford, 2014; Tarabalka, Tilton,
Benediktsson, & Chanussot, 2012). Mathematical tree structures are
well suited for a hierarchical region-based representation of an image.
In such structure, each node of the tree represents a given region
in the corresponding image, and links between nodes illustrate a partic-
ular relationship between regions, such as inclusion or adjacency.
Among all tree representations, the binary partition tree (BPT) has re-
ceived much attention lately. Initially proposed by Garrido (2002) and
Salembier and Garrido (2000) for grayscale and RGB images, BPTs
have then been further extended to hyperspectral imagery by Valero,
Salembier, and Chanussot (2013a) and are now used for classical
hyperspectral remote sensing tasks such as segmentation (Valero,
Salembier, & Chanussot, 2011; Veganzones, Tochon, Dalla-Mura,
Plaza, & Chanussot, 2014), classification (Alonso-Gonzalez, Valero,
Chanussot, Lopez-Martinez, & Salembier, 2013), unmixing (Drumetz
et al., 2014) and object detection (Valero, Salembier, & Chanussot,
2013b; Valero, Salembier, Chanussot, & Cuadras, 2011), notably. The ef-
ficiency of the BPT to achieve a given task is greatly impacted by both
the pre-processing applied to the image prior to the construction of
the BPT and the post-processing of the BPT representation itself, called
pruning.

Consequently, we propose in the following study to adapt the
BPT representation to the segmentation of hyperspectral images
of tropical rainforests, through an adapted pre-processing of the
data and pruning of the BPT. The pre-processing stage consists of spec-
trally and spatially reducing the data by extracting discriminant infor-
mation using Principal Component Analysis (PCA) and spatial pre-
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segmentation, respectively. Different configurations for the PCA reduc-
tion as well as several pre-segmentation algorithms are investigated. A
novel BPT pruning strategy, dedicated to the segmentation of tree
crowns, is proposed and compared against an already existing pruning
strategy. A method to assess the quality of the resulting segmentation
is also introduced, allowing to state which is the most efficient spectral
reduction configuration and pre-segmentation algorithm in a given
context. The proposed method is tested on two datasets with different
characteristics.

The paper is organized as follows: Section 2 introduces the data used
to test our algorithm. Section 3 presents the methodology, namely the
pre-processing operations, the construction and pruning of the BPT,
and the method developed to assess the performance of the segmenta-
tion. The results are introduced and discussed in Section 4. Finally, some
conclusions and perspectives for the application of our method are
given in Section 5.
Fig. 1. (a) RGB colored composition of a hyperspectral sub-image of Hawaii site (R =
646 nm, G= 561 nm, B= 447 nm, stretched colors) with some ITCsmanually delineated
(in white) and (b) corresponding canopy height model derived from LiDAR with ITCs (in
red).
2. Materials

Two siteswere selected to conduct this study. Thefirst site, hereafter
namedHawaii, is located at theNanawale Forest Reserve, Hawaii (USA).
The Nanawale forest is classified as lowland humid tropical forest, with
an average elevation of 150 m above sea level. Mean annual precipita-
tion and temperature are 3200 mm·yr−1 and 23 °C, respectively. The
forest canopy is comprised of about 17 species, mostly invasive non-
native trees, with a few native species remaining. The remote sensing
data used in this studywere acquiredwith the Carnegie AirborneObser-
vatory (CAO) Alpha sensor package in September 2007 (Asner et al.,
2007). The CAO-Alpha is equippedwith a spectroscopic imagermeasur-
ing up to 72 bands in the visible and near infrared (VNIR) domain, as
well as a small footprint Light Detection and Ranging (LiDAR) sensor
working simultaneously. This first study site corresponds to a 1980 by
1420 pixel image with 0.56 m ground sampling distance, covering an
area of about 70 ha on the ground. The spectral resolution used for
this campaign results in the acquisition of 24 spectral bands of 28 nm
in width and evenly spaced between 390 nm and 1044 nm. The LiDAR
acquisitions were performed in discrete return mode (4 returns) and
both digital elevation model (DEM) and canopy height model (CHM)
coregistered with hyperspectral data were produced.

The second site, hereafter named Panama, is situated in the Panama
forest. The data were collected over the Parque Nacional San Lorenzo in
the Republic of Panama. The site is humid tropical forest with a mean
annual precipitation of 3300 mm·yr−1. Mean annual temperature is
26 °C. The canopy is considered old growth forest populated by trees
of 200–300 years of age. Canopy height ranges from about 20 m to a
maximum of 45 m. The data was collected using the Carnegie Airborne
Observatory Airborne Taxonomic Mapping System (CAO-AToMS)
(Asner et al., 2012), launched in June 2011. The CAO-AToMS integrates
three sensors in the same platform, including a new High Fidelity
Visible-Shortwave Imaging Spectrometer (VSWIR) measuring the
380–2510 nm wavelength range at up to 5 nm spectral resolution, a
dual-laser, waveform LiDAR system, and a high-resolution Visible-to-
Near Infrared (VNIR) imaging spectrometer. The data acquired
over the study site corresponds to a 600 by 600 pixel VSWIR image
with a spatial resolution of 2 m and including 224 spectral bands
(12 nm FWHM) evenly spaced between 378 nm and 2510 nm and co-
registered DEM and CHM. 175 bands were retained from the VSWIR
image after the elimination of unwanted spectral bands such as those
corresponding to atmospheric water absorption.

A total of 160 ITCs for Hawaii and 100 ITCs for Panama were manu-
ally delineated by a trained operator, using the ENVI software, after vi-
sual interpretation of the hyperspectral imagery, in order to assess
segmentation accuracy. Particular care was taken to include individuals
of various shape, size and species. Some examples of manually delineat-
ed ITCs can be observed in Figs. 1 and 2.
3. Proposed segmentation strategy

3.1. Principle of the binary partition tree

A remotely sensed image of the Earth surface is typically composed
of several semantic regions of interest, such as buildings, trees, and
crop fields. Those regions often follow a hierarchical organization (for
instance, a building is enclosed in a neighborhood, which is itself
enclosed in a city), and the place of a particular region in a hierarchy
is directly related to the scale of exploration (the scale of exploration
of a building is finer than the one of a neighborhood). When analyzing
an image, one has to choose a scale based on the intended level of de-
tails, and this operation is application-dependent. As a result, it can be
valuable to represent the image in a task-independent hierarchy of re-
gions, and set the exploration level in this hierarchy afterwards based
on the application. The binary partition tree (BPT) is a solution to
achieve such hierarchical region-based representation of an image.
Starting from an initial partition of the image (corresponding to individ-
ual pixels or regions defined by a preliminary segmentation), the neigh-
boring regions are iteratively merged together until there is only one
region remaining, and those merging are stored in a tree structure.
Thus, in the corresponding tree representation, the leaf nodes corre-
spond to the regions in the initial partition of the image, the root of
the tree represents thewhole image support, and each node in between
corresponds to the region resulting from the merging of two children



Fig. 2. (a) RGB colored composition of a hyperspectral sub-image of Panama site (R=634 nm, G=549 nm, B=463 nm, stretched colors) with some ITCsmanually delineated (inwhite)
and (b) corresponding canopy height model derived from LiDAR.
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regions. Following this definition, the tree structure corresponding to an
initial partition of N leaves contains a total of 2N − 1 nodes. Fig. 3a
shows the different steps of the construction of a BPT, which is deter-
mined by two notions:

– The region modelMR, which specifies how a regionR is mathemat-
ically handled, and how to model the union of two regions. This re-
gion descriptor (for instance the mean grayscale value in Fig. 3a is
used to compare neighboring regions).

– The merging criterion O Ri;R j
� �

, which quantifies the similarity be-
tween neighboring regions Ri and R j by measuring a distance be-
tween their region models. Thus, the merging criterion determines
in which order the regions are merged.

The pruning step takes place once the BPT construction is completed.
The pruning aims at cutting off branches in the BPT so the new leaves of
the pruned tree achieve the most relevant segmentation regarding the
application. If the construction of the tree is generic up to the definition
of a regionmodel and amerging criterion, the pruning strategy is appli-
cation dependent. Therefore, the level of exploration is defined through
the pruning operation, and two different pruning strategies applied on
the same BPT are likely to produce different segmentations. A pruning
operation is illustrated in Fig. 3b.

3.2. Methodology

The proposed method is summarized by the flowchart displayed in
Fig. 4. It is composed of 4 different steps, namely the pre-processing
Fig. 3. (a) Construction of a BPT, and
stage, the construction of the BPT, the pruning of the BPT and the quality
evaluation of the produced segmentation map. The pre-processing
stage comprises data dimensionality reduction and pre-segmentation,
producing inputs for the BPT construction stage. By varying these
input configurations, we study their influence on the whole segmenta-
tion and quality evaluation processes. Moreover, we introduce a BPT
pruning strategy based on the evolution of the region size along
branches of the BPT. We compare this new pruning strategy with an
already existing one which relies on spectral graph partitioning
(Alonso-Gonzalez et al., 2013; Valero, 2011). Finally, we present the
metrics used for the quality assessment of segmentation maps.

3.3. Pre-processing step

The construction of the BPT is computationally very intensive and
may become problematic for applications on large datasets. Here, we
pre-processed the data in order to reduce both spectral and spatial di-
mensions of the data.

3.3.1. Spectral reduction
The detailed spectral properties of an element (pixel or object) ex-

tracted from spectroscopic imagery are particularly interesting for clas-
sification purposes. However, strong correlations exist betweenmost of
the contiguous bands, leading to redundant information (Thenkabail,
Enclona, Ashton, & Van Der Meer, 2004) and computationally intensive
processes. Therefore, a spectral reduction is required to extract relevant
information and eliminate these redundancies. Principal component
analysis (PCA) performs an orthogonal transformation from the initial
spectral space to another space of equal dimension showing no linear
(b) an example of pruning of it.



Fig. 4. Flowchart of the proposedmethod. Blue, green and yellow rectangles correspond to
input data, global operations that are further described in Section 3, and outputs of those
global operations, respectively.
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correlation between latent features. These latent features (named here-
after principal components, or PCs) are then ranked, following a de-
creasing amount of variance explained, which is a criterion commonly
used to perform component selection. Indeed, PCs explaining a low
amount of variance usually contain only noise. However, the choice of
selecting PCs explaining the most variance may lead to suboptimal se-
lection for a given application, as the signalmay be influenced by several
factors, and those being of interest for the considered application may
not lead to high variance values (contrarily, those leading to high vari-
ance values may not be of interest). It is known for instance that the in-
fluence of brightness is particularly strong on radiometric signals
measured from vegetation when using high spatial resolution imagery
with pixels smaller than ITCs (Fung & LeDrew, 1987; Horler & Ahern,
1986). Indeed, the angle of view, the illumination and the surface geom-
etry are responsible for directional effects and shade. Even though
brightness accounts formost of the total variance, this factor is not a rel-
evant criterion to differentiate individuals since spectral variations due
to brightness are particularly strongwithin individuals andmay not ev-
idence dissimilarities between ITCs. On the other hand, relevant factors
for the delineation of ITCs are related to individual- or species-specific
traits such as leaf chemistry (for instance, photosynthetic pigments or
water content) and vegetation structure (foliage density, leaf angle dis-
tribution, tree shape, etc). These factors are known to also significantly
influence spectral properties measured from individual trees (Conese,
Maracchi, Miglietta, Maselli, & Sacco, 1988; Morton, 1986), and this in-
fluence should be featured by some PCs. On the opposite, the selection
of PCs showing irrelevant information for ITC segmentation is in the
best case responsible for lower computational performances, and in
the worst case a source of nuisance for the accurate delineation of ITCs.

Thereforewe studied the influence of the identity of the retained PCs
on the quality of tree crown segmentation. The selection or exclusion of
a PC is related to the user ability to visually assess the presence of infor-
mation allowing species discrimination in the PC. This information,
called discriminant information, is contained in a PC whenever there
are some individuals or groups of individuals clearly distinguishable
from the background in the component. The following four spectral
configurations were investigated:

– the initial and unprocessed hyperspectral data, showing strong cor-
relations between bands,

– the output of the PCA transformation, without PC selection,
– a selection of PCs, visually selected to contain useful information for

species discrimination. This discriminant information was visually
assessed by the user, based on the presence of patterns highlighting
differences between individuals. In our case, PC # 1was not selected
due to the reason explained earlier.

– the previously mentioned selection of PCs, plus PC # 1.

A permissive strategy was adopted during the visual examination:
components showing a few individuals were retained even if the com-
ponent looked noisy overall. Even if the amount of variance was not
appropriate to select components, we noticed that the interesting infor-
mationwas contained in the first half of all components. Fig. 5 exhibits a
subset of the image corresponding to the Hawaii site and its first five
PCs. Discriminant information can be seen in Fig. 5c to f, where some in-
dividuals are clearly distinguishable within the components. Table 1
specifies the number of bands and the identity of the PCs used in each
case for the two different sites.

3.3.2. Spatial reduction
The partition used to initialize the construction of the BPT can be

composed of individual pixels (the finest partition scale) (Valero et al.,
2013a), or regions obtained from a preliminary segmentation. The for-
mer is recommended when no prior information is known about the
size of final regions, but the latter option is computationally more effi-
cient as it significantly decreases the number of nodes within the BPT.
In our application, the dimension of emerging ITCs ranged between
tens of pixels and thousands of pixels for the largest individuals. There-
fore, a preliminary segmentation of the original image was investigated
for the construction of the BPT. The main constraint of this pre-
segmentation was to produce regions smaller than individual trees in
order to avoid grouping several ITCs in one region, as the algorithm
does not include region splitting. The boundaries of the regions obtain-
ed from the pre-segmentation should also respect as much as possible
the actual boundaries between ITCs in order to recompose them with
a good accuracy.We investigated three different approaches to produce
the initial segmentationmap, and compared themwith an initialization
at the pixel level. Each approach used to derive the initial segmentation
map was based on different initial data and different segmentation
methods:

– The first approach used the LiDAR-derived CHM, as presented in
Figs. 1b and 2b. A preliminary smoothingwas first applied to the ini-
tial CHM, including the application of a 5 by 5median filter followed
by a discretization using steps of 0.5 m. This discretized CHM was
then segmented using the Watershed algorithm (Beucher &
Lantuejoul, 1979; Meyer & Beucher, 1990), which tends to produce
strongly-over-segmented regions.

– The second approach was based on hyperspectral Watershed seg-
mentation, as exposed in Noyel, Angulo, and Jeulin (2007) and
Tarabalka, Chanussot, and Benediktsson (2010). First, the gradient
map of the original hyperspectral data was computed, using a



Fig. 5. (a) Sub-image of Hawaii site (same bands and color stretching used as in Fig. 1 for RGB representation). (b)–(f) Corresponding first five principal components.
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Robust ColorMorphological gradient (Tarabalka et al., 2010). Then, a
classical Watershed algorithm was applied onto this gradient map,
once again resulting in a strongly over-segmented partition.

– The third approach was based on the mean shift clustering
(Comaniciu & Meer, 2002) of a RGB representation of the
hyperspectral data. Bands centered at 646.0 nm (R), 560.7 nm
(G) and 447.0 nm (B) were used for Hawaii, and bands centered at
638.83 nm (R), 548.77 nm (G) and 458.71 nm (B) were used for
Panama. Themean shift clusteringwas performedwith the freeware
Edge Detection and Image SegmentatiON (EDISON, http://coewww.
rutgers.edu/riul/research/code/EDISON/).

In all cases, the resulting initial segmentation maps were satisfying
after visual examination, as the obtained regions were small enough
to prevent several individuals to be merged in one region. Fig. 6 shows
the initial segmentation maps corresponding to the three methods.
Table 1
Number of bands used to perform BPT segmentation on the two study sites and identity of
the component selected.

Hawaii Panama

Hyperspectral image 24 175
PCA transformation 24 175
Visual PC selection + PC #1 8 22
Visual PC selection 7 21
Component selected through
visual inspection

2–8 2,3,5,9,10,12,13,15,17–21
23,25,28,29,33,34,42,46
3.4. Construction of the binary partition tree

The construction of the BPT starts once the pre-processing step is
completed, and depends on thedefinition of a regionmodel and amerg-
ing criterion. There are two commonly used region models when deal-
ing with hyperspectral images (Valero, 2011; Valero, Salembier, &
Chanussot, 2010a). One can choose to model a hyperspectral region
by its mean spectrum (also called first order parametric region model),
which allows the use of simple merging criteria measuring the discrep-
ancy between two spectra. However, such merging criteria proved to
perform poorly when used to discriminate tree species in tropical for-
ests (Clark et al., 2005), as they assume spectral homogeneity within
each region and do not preserve their spectral distribution and variabil-
ity. The non-parametric statistical region model is more satisfying for our
application, as it accounts for spectral variability within a region. In that
case, the region is modeled by its set of histograms as follows:

HR ¼ Hλ1
R ;…;HλM

R
� �

ð1Þ

whereHλi
R is the empirical distribution of reflectance values for the re-

gion R in the band λi and M is the number of spectral bands in the
image. Each of theseM histograms can then be converted in a probabil-
ity density function (pdf) after normalization (so that the sum of its bins
equals 1). This allows the use ofmetricswhichmeasure the discrepancy
between pdfs. In particular, we decided to use the diffusion distance,
proposed by Ling and Okada (2006), and successfully used as amerging
criterion for the BPT construction by Valero et al. (2010a). This distance,
detailed in Appendix A, is particularly robust to illumination change and
allows us to handle the casewhere a tree crown is half-lit and half shad-
ed. The construction of the BPT is initiated by the computation of the

http://coewww.rutgers.edu/riul/research/code/EDISON/
http://coewww.rutgers.edu/riul/research/code/EDISON/


Fig. 6. (a) Sub-image of Hawaii site and corresponding initial segmentation using (b) Watershed algorithm applied to LiDAR CHM, (c) hyperspectral Watershed, and (d) mean shift
clustering.
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merging criterion between each pair of neighboring regions. Eachmerg-
ing iteration then involves the search of the two neighboring regions
that achieve the lowest pair-wise similarity among all pairs of neighbor-
ing regions in the current segmentation map. Those two regions are
consequently merged. It is noteworthy that the method was pro-
grammed to favor the merging of very small regions (Calderero &
Marques, 2010), in order to decrease the risk of over-segmentation
and smooth the final segmentation. In practice, the average region size
in the segmentation map is computed at each merging iteration, and
all regions of size less than 15% of this average size are given the merg-
ing priority.

3.5. Pruning of the binary partition tree

After the construction of the BPT, the pruning aims at cutting off
branches so the leaves of the pruned tree correspond to meaningful re-
gions regarding the desired application. Therefore, this step is critical to
achieve a proper segmentation, and our goal is to design a generic prun-
ing strategy giving optimal ITC delineation for various forest types and
image characteristics (spatial and spectral resolutions), with minimal
expert parametrization. Many pruning strategies have already been in-
vestigated in the literature for classical (Salembier & Garrido, 2000) and
hyperspectral BPTs (Valero et al., 2010a,b). Among the attempts made
to design a generic pruning strategy, one can cite the minimization of
an energy or cost function, or recursive spectral graph partitioning
(Alonso-Gonzalez et al., 2013; Valero, 2011). The former associates a
pruning cost to each node in the BPT and looks for partitionminimizing
the overall cost, subject to a given number of region in the partition,
through the use of Lagrangian multipliers. This strategy requires
the knowledge of the final number of regions in the image to be
operated. It is inapplicable in our study as this parameter is not known
a priori. Therefore, we propose a new pruning strategy devoted to the
segmentation of tree crowns in hyperspectral images and compare its
results with those obtained when using the recursive spectral graph
partitioning.

3.5.1. Recursive spectral graph partitioning pruning strategy
The recursive spectral graph pruning strategy that we use as refer-

ence and compare to our method is based on two techniques: spectral
graph partitioning (Von Luxburg, 2007) and normalized cuts (Shi &
Malik, 2000). This pruning strategy analyzes each branch of the BPT,
seeking the best level to partition it in two sets, where the similarity
among all the nodes of a given set is high, and the similarity across the
two sets is low. Given that, each leaf of the BPT votes for the ancestor
in the branch it wishes to be represented by. For each branch, the cut
is then made under the node which has the highest ratio of votes with
respect to the number of leaves hanging under it, in order not to favor
nodes close to the root which have a greater number of leaves and po-
tentially a great number of votes. The partitioning process only relies
on dissimilarities among nodes of the BPT, and thus does not assume
any particular knowledge about the currently processed image.
3.5.2. The evolution of the region size pruning strategy
The above-presented pruning strategy is based on spectral properties

of graphs constructed from the BPT and depends neither on the scene
depicted by the hyperspectral image nor on the application. However, it
may not be optimal for such specific applications as the segmentation of
tree crowns in tropical rainforest hyperspectral images. Moreover, the
solving of the graph partitioning problem can become computationally
intensive for large images and potentially huge BPTs. To overcome this
limitation, we propose a novel pruning strategy by adapting the afore-
mentioned voting process to the tree crown segmentation in tropical for-
ests. Since the initial segmentation map is over-segmented, each ITC is
initially split up into several regions. Two neighboring regions belonging
to the same ITC are theoretically closer spectrally than two neighboring
regions belonging to two ITCs of different species. As a result, all the re-
gions defining an ITC should have low pair-wise distances and therefore
bemerged in the early iterations of themerging algorithm. Those early it-
erations lead all regions to reach some critical size at which point their
neighboring regions are spectrally dissimilar because containing one or
several ITCs belonging to different species. Final iterations of themerging
process usually involve regions comprising one or several individuals. As
a result, the evolution of the region size from a leaf of the BPT to its root
shows a clear discontinuity at the step where the region is no longer ag-
glomerating leaves around it, but is merging instead by default with an-
other grown up region in its neighborhood. We observed in practice
that the most accurate delineation of the ITC corresponds to the region
defined right before the discontinuity, as it can be observed in Fig. 7.

Our novel pruning strategy is derived from this observation: each
leaf votes for the node prior to the first discontinuity in the branch.
The introduction of a size thresholding parameter allows the detection
of a discontinuity: a discontinuity isflaggedwhen the size difference be-
tween two consecutive nodes exceeds the threshold. The pruning is de-
cided after all leaves have voted: each non-leaf node in the BPT has its
number of votes divided by its number of leaves, and each BPT branch
is cut under the node whose ratio number of nodes/number of leaves
is the highest in the branch. If two nodes have the same ratio in a
branch, then the cut is made under the one which is the farthest apart
from the root, to decrease the chance of under-segmentation. By setting
the size threshold and thus controlling the discontinuity height, it is
possible to influence the characteristic size of the final regions: the set-
ting of a low threshold value tends to generate small regions since the
voting process is more sensitive to leaps in the evolution of the region
size. Contrarily, a high value leads to large regions in the corresponding
segmentation. For Hawaii site, threshold values from 200 to 2000with a
200 stepwide have been tested, whereas for Panama site, where the av-
erage crown size is smaller, values ranging from 150 to 1500 with a 150
step wide have been tried.

3.6. Assessing the segmentation accuracy

Assessing a segmentation quality is a difficult task in general, since it
requires the definition of meaningful evaluation criteria, and those



Fig. 7.Evolution of a region (underlined in red) along a branch of the BPT: (a) initial region/leaf, (b) region after 21mergings, (c) region after 22mergings, and (d) plot of the corresponding
evolution of the region size along the branch. The first and second dots correspond to the regions after 21 and 22 mergings, respectively.
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criteria are often to be definedwith respect to a given goal and available
ground truth data.Most criteria found in the literature, such as symmet-
ric and asymmetric distances (Cardoso& Corte-Real, 2005), ask for a ref-
erence segmentation to be used. However, only some manually
delineated ITCs are available in our case. Table 2 displays somebasic sta-
tistics regarding those ITCs.

Once the tree has been pruned, an ITC can be described in the corre-
sponding segmentation by one of the following four different states:
detected, over-segmented, under-segmented, or missed. We propose to
evaluate the segmentation accuracy by using the percentage of ITCs
which were classified as correctly detected regarding the total number
of ITCs tested. It is very unlikely that an automatically delineated
crown exactly matches a manually delineated one. This inaccuracy be-
tween the two regions, which can be evaluated by the number of
missegmented pixels, also depends on the size of the region manually
delineated. Therefore, we define in the following some criteria integrat-
ing amargin of error between themanually delineated ITCs and the one
obtained from the segmentation process. For a givenmanually delineat-
ed ITC, the first step is the retrieval of segments that represent the ITC
the best in the final segmentation map. In practice, every segment that
shares at least 50% of its pixels with the ITC is considered an element
of the ITC. In the casewhere no segment has at least 50% of its pixels be-
longing to the ITC, then the ITC is represented by the segment having
the highest percentage of pixels in it. Consequently, an ITC can be com-
posed of one segment or several segments. In the following, c denotes
Table 2
Basic statistics about the delineated ITCs for both test sites.

Hawaii Panama

Number of ITCs 160 100
Mean size (in pixels) 843 205
Standard deviation 648 158
Minimal ITC size 36 39
Maximal ITC size 3846 778
the set of pixels corresponding to the ITC, and s = {s1, …, sITC} is the
set of segments in the final segmentation map that were retrieved to
compose the ITC. Fig. 8 presents the process to determine how c has
to be classified regarding its corresponding set of segments s:

– The first test concerns the over-segmentation. The ITC crown ap-
pears to be over-segmented if several segments were found to com-
pose it, and that case is treated aside. If s contains only one segment,
the overlap degree between s and c is computed. It is defined by

overlap ¼ c∩ sj j
cj j ð2Þ

where |c ∩ s| denotes the number of pixels in the intersection of c
and s, and |c| is the number of pixels composing the ITC. It represents
how much of the ITC was captured by the segment representing
it. Consequently, if this overlap degree does not exceed at least
0.7 (the segment representing the ITC contains less than 70% of the
ITC), the ITC is classified asmissed.

– If the ITC is notmissed, the ratio degree between s and c is computed,

ratio ¼ sj j
cj j : ð3Þ

If this ratio is greater than 1.5 (the segment is at least 50%
bigger than the ITC it represents), then the ITC is classified as
under-segmented.

– If the ITC is neithermissed nor under-segmented, then it is classified
as detected.

– In the case where the ITC was found to be over-segmented, an addi-
tional test examines how severe is the over-segmentation. If there is
one segment s*∈ {s1,…, sITC} such that s* accounts for at least 85% of
the area covered by s, and the overlap and ratio degrees of s* alone
are such that they makes the ITC being detected, then the over-
segmentation is discarded and the ITC is classified as detected. Other-
wise, the ITC remains over-segmented.



Fig. 8. Flowchart summarizing the quality assessment method.
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All the previous cases can be observed in Fig. 9. Threshold values for
overlap and ratio degrees and to discard over-segmentation were set
empirically. The influence on the final segmentation quality of each
Fig. 9.Manually delineated ITC (in red borders) and segmentation result (in yellow borders) fo
input parameter (the initial segmentation map and the PCA configura-
tion) and of the pruning strategy can be assessed by the percentage of
correctly delineated ITCs.
r the case: (a) correctly delineated, (b) missed, (c) under-segmented, (d) over-segmented.



Table 4
Percentage of correctly segmented ITCs for Panama test site, according to the chosen set-
ting. A setting is defined by a spectral reduction configuration (no PCA, all PCs, selection of
PCs), an initial segmentation (pixel scale, mean shift clustering, hyperspectral watershed,
watershed on LiDAR) and a pruning strategy (graph cut, region size discontinuity). Per-
centages are displayed in bold. For the region size discontinuity pruning strategy, several
threshold values were investigated: is reported the maximum percentage along with the
corresponding threshold value (in parentheses). The highest percentage among all config-
urations is highlighted in red.

Selection of PCsPanama

Graph cut

Region size
discontinuity

Pixel Scale
Mean Shift
Hyperspectral
LiDAR
Mean Shift

No PCA

44.0
44.0
26.0 (150)
39.0 (150)
45.0 (150)

All PCs

54.0
54.0
33.0 (150)
55.0 (150)
63.0 (150)

with 1st PC

51.0
59.0
42.0 (150)
51.0 (150)
66.0 (150)

without 1st PC

63.0
61.0
43.0 (450)
49.0 (150)
68.0 (150)
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4. Results and discussion

4.1. Results

Tables 3 and 4 display the percentages of ITCs correctly delineated
for the Hawaii and Panama test sites, respectively, with respect to vary-
ing input parameters and pruning strategies. The two investigated
pruning strategies are denoted graph cut for the recursive spectral
graph partitioning strategy, and region size discontinuity for the pro-
posed evolution of the region size strategy. The initial segmentation
maps are denoted as follows: pixel scalewhen the initialization is done
at pixel level, hyperspectral for the hyperspectral Watershed segmenta-
tion, LiDAR for the classicalWatershed algorithm applied on LiDAR data,
andmean shift for the mean shift clustering. The input images on which
the BPT is built are denoted as no PCA, all PCs, selection of PCs with 1st PC
and selection of PCs without 1st PC for the raw hyperspectral data, the
PCA transformation with all PCs retained, the PCA transformation with
only a selection of PCs, and with and without PC # 1 retained, respec-
tively. Percentages are displayed in bold. Several threshold values
were tested for the proposed pruning strategy, ranging from 200 to
2000 with gaps of 200 for Hawaii, and from 150 to 1500 with gaps of
150 for Panama. Themaximumpercentage alongwith its corresponding
threshold value (in parentheses) is reported. The highest percentage
among all configurations is highlighted in red. For both sites, this config-
uration involves a spectral reduction performed by PCAwith a selection
of PCs excluding PC # 1, an initial segmentation resulting from themean
shift clustering and the proposed region size discontinuity strategy for
the pruning of the BPT. Rationales of this conclusion are discussed in
the next subsection 4.2. Fig. 10 displays some segmentation results ob-
tained for both sites.

4.2. Discussion

4.2.1. About the PCA configuration
For both test sites, all the initial segmentations and both pruning

strategies, results show significant improvements when a PCA transfor-
mation is performed with respect to the case where the BPT is directly
built on the raw hyperspectral data. We conclude that the discriminant
information extracted by the PCA eases the species discrimination and
improves the region model for the BPT. Regarding the most efficient
PCA configuration, there is no clear conclusion about the best strategy
between using all PCs and using only the selection of PCs including PC
# 1. There are in fact very little variations in terms of amount of discrim-
inant information between those two configurations, since all bands
excluded in the latter configuration contained only and no useful infor-
mation for species discrimination. On the other hand, discarding the
first PC improves the results. As explained in Section 3.3.1, the first PC
contains brightness variations measured in the NIR domain, which is a
Table 3
Percentage of correctly segmented ITCs for Hawaii test site, according to the chosen set-
ting. A setting is defined by a spectral reduction configuration (no PCA, all PCs, selection
of PCs), an initial segmentation (pixel scale, mean shift clustering, hyperspectral water-
shed, watershed on LiDAR) and a pruning strategy (graph cut, region size discontinuity).
Percentages are displayed in bold. For the region size discontinuity pruning strategy, sev-
eral threshold values were investigated: is reported the maximum percentage along with
the corresponding threshold value (in parentheses). The highest percentage among all
configurations is highlighted in red.

Selection of PCsHAWAII

Graph cut

Region size
discontinuity

Pixel Scale
Mean Shift
Hyperspectral
LiDAR
Mean Shift

No PCA

15.0
32.5

6.9 (600)
36.9 (600)
28.1 (1000)

All PCs

24.4
38.8
30.6 (1400)
47.5 (600)
47.5 (1000)

with 1st PC

28.1
40.0
29.4 (1200)
47.5 (600)
45.6 (1600)

without 1st PC

33.8
42.5
40.0 (1600)
48.8 (600)
54.4 (1200)
highly non-discriminative feature. Including this first PC can be prejudi-
cial for instance when a tree crown is half-lit and half-shaded. In that
case, the distance between the two halves increases during the con-
struction of the BPT as their histograms corresponding to the first PC
show significant differences. The two halves may even not be merged
together, preventing the tree crown to be correctly segmented during
the pruning step. As a result, the selection of PCs without PC # 1 includ-
ed is the configuration which gives the highest percentage of detected
ITCs among all studied spectral reduction configurations.

4.2.2. About the initial segmentation map
Among the three pre-segmentation methods investigated, the

hyperspectral Watershed systematically gives the lowest percentage
of correctly segmented ITCs. This is counter-intuitive since the
hyperspectral Watershed produces smaller regions than the two other
segmentation methods (see Fig. 6), hence should decrease the risk
that its regions already group several ITCs together. However, when
precisely analyzing those initial regions, one can see that they all
have the same square-like shape. On the opposite, initial regions
derived from LiDARWatershed andmean shift clustering are more het-
erogeneous in shape and size and have more pertinent boundaries
(some ITCs are directly recognizable in the initial segmentation map).
This is plausibly due to the fact that the hyperspectral Watershed in-
volves the computation of a multidimensional gradient on the raw
hyperspectral data. The noise present in this data, along with a low
ground sampling resolution, leads to an imprecise gradient map. The
following Watershed on this gradient map therefore produces regions
not only following the real edges of the image (high value areas in the
gradient map), but also fake edges introduced by the noise, thus initial
regions lacking consistency. In contrast, mean shift clustering and
LiDAR Watershed are based on three bands of the raw hyperspectral
data and on a smoothed version of the CHM, respectively. They are con-
sequently less sensitive to noise and generate more accurate regions.
This emphasizes the necessity for the initial segmentation map to
have regions relevant enough to recompose accurately the real bound-
aries between ITCs. Additionally, the LiDAR Watershed method tends
to produce larger initial regions than the mean shift clustering method
(if several neighboring trees have the same height, they will likely be
grouped in the same region for instance), increasing the risk of final
under-segmentation. For the Panama site, ITCs have a rather small size
(205pixels in average for the 100 delineated ITCs) and are consequently
more sensible to under-segmentation, explaining why the LiDAR Wa-
tershed is slightly outperformed by the mean shift clustering. This is
less true for Hawaii test site where ITCs have a larger size and where
both segmentation methods produce comparable results.

Conversely, there are many more possible merging combinations
when the BPT is initialized on the pixel level, therefore more chances
to miss or over-segment a region. It is in fact easier to reconstruct a
real region when its borders are already partially known, as it is the



Fig. 10. Visual results obtained when using mean shift clustering, PC selection without PC # 1 and size threshold of 1200 for Hawaii (a, b) and 150 for Panama (c).
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case if the initial segmentation was correctly performed. This is particu-
larly truewhen the expected regions have a rather large size, explaining
whymean shift clustering leads to better results than the pixel scale for
Hawaii site. However, both mean shift clustering and pixel scale initial-
ization give similar results for Panama, due to smaller regions. Never-
theless, the number of nodes in the BPT is proportional to the number
of regions in the initial partition. That is why the use of mean shift clus-
tering as an initial pre-segmentation should still be preferred as it dras-
tically decreases the number of regions in the initial partition (thus
reducing the computational load) without degrading the results.

4.2.3. About the pruning strategy
It ismore challenging to compare theperformances of the two inves-

tigated pruning strategies. As said in Section 3.5, the pruning strategy
strongly depends on the application. The recursive spectral graph
partitioning strategy tries to be as generic as possible, only exploiting
dissimilarities along each branch of the BPT, for every type of images.
Our pruning strategy, presented in Section 3.5.2 relies on a property
holding when a BPT is built on an image which contains regions with
a limited size range. This is indeed the case for forested areas since
real regions correspond to tree crowns, which have an upper and
lower bound in size for physical reasons, ensuring a clear discontinuity
in the evolution of the region size along the corresponding BPT branch.
When analyzing detection percentages, it can be seen that our proposed
pruning strategy leads to slightly better results than the recursive spec-
tral graph cut pruning strategy, confirming that it is more appropriate
for the segmentation of tree crowns.

4.2.4. About the threshold value for the proposed pruning strategy
The tuning of the threshold value for the proposed pruning strategy

is also an important point. As said in Section 3.5.2, the threshold value
impacts the average region size in the final segmentation map. Indeed,
a high threshold value is permissive in terms of discontinuity in the evo-
lution of the region size along a branch since larger discontinuities are
allowed. Consequently, leaves vote for nodes closer to the root, hence
large final regions and a potential under-segmentation of the image.
On the other hand, a low threshold value is sensitive in terms of discon-
tinuity, and favors small regions in thefinal segmentationwhile increas-
ing the chances of over-segmentation. Naturally, the percentage of
over-segmented (under-segmented) ITCs is a decreasing (an increas-
ing) function of the threshold value, as it can be observed in Fig. 11.
On the other hand, the percentage of missed ITC remains relatively con-
stant (an ITC is declared missed when there is no region matching it). It
is then clear that a threshold value can be considered optimal when
it achieves a trade-off between over-segmentation and under-
segmentation phenomena. There is no explicit rule to find the best
value achieving such compromise, but one can remark that it should
be close to the average size of expected regions. As a matter of fact,
Fig. 11a shows that threshold values achieving the best trade-off
between over- and under-segmentation for Hawaii, PC selection with-
out PC # 1 and mean shift clustering are 1000 and 1200 whereas
Table 2 exhibits a mean ITC size of 843 pixels. For Panama, Fig. 11b
gives optima threshold values of 150 and 300 while the average ITC
size is 205. The difference regarding the average ITC size between the
two sites can be explained by i) the difference in spatial resolution be-
tween the two images (0.56 m for Hawaii and 2 m for Panama), and
ii) the structural differences of individual trees between these two
sites, explained by physical, environmental and anthropic factors.
Therefore, one can roughly estimate a threshold value based on the av-
erage size of the expected regions (regarding the characteristics of the
image to segment), and then adapt this value depending on the result,
if needed. A means to locally and automatically adjust the threshold
value would overcome the supervised nature of the method as well as
ensuring robustness regarding a highly variable ITC size.

4.2.5. About the general performances of the proposed method
Tropical rainforests are among the richest andmost complex ecosys-

tems in the world. Given the density of the canopy in terms of individ-
uals and species, as well of the complexity of its structure, achieving a
perfect delineation of each tree crown is highly unrealistic. However,
even partial information allowing a better delimitation, identification
and enumeration of certain species of interest (such that dominant,
rare or invasive species that are key indicators for environmental pro-
cesses) can help ecologists to better understand these complex ecosys-
tems. Despite several studies about tree crown classification of tropical
rainforests (see for example Feret and Asner (2013) or Clark et al.
(2005)), there is, to the best of our knowledge, no reference study for
the segmentation of tropical rainforests. Bunting and Lucas (2006) de-
veloped a segmentation method for hyperspectral images, and applied
it on Compact Airborne Spectrographic Imager (CASI) data acquired
over mixed Australian forests. They reported over 70% of success for
the segmentation of trees or clusters of trees belonging to the same spe-
cies, for relatively sparse vegetation covers. However, they noted a sig-
nificant drop in this segmentation accuracy for dense and complex
canopies. Results obtained by our proposed method (up to 54.4% for
Hawaii and 68% for Panama in the best cases) for the delineation of
tree crowns with various characteristics (such as size, shape or species)
are therefore very promising. Moreover, segmentation results are visu-
ally consistent, as can be seen in Fig. 10. This motivates us to pursue ad-
ditional measures to improve the proposed method, in order to better
identify and segment tree crowns in tropical rainforests.

5. Conclusion

The accurate and automatic delineation of tree crowns in tropical
rainforests allows application of various object-oriented methods, for
example the estimation of leaf chemistry, and tree species identification
which proved to perform better than pixel-oriented counterparts.



Fig. 11. Percentages of ITCs correctly segmented, over-segmented, under-segmented andmissedwith respect to the threshold value. Results are for (a) Hawaii site and (b) Panama site, PC
selection without PC # 1 and mean shift clustering.
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However this task is extremely challenging in these complex ecosys-
tems. Here, we presented a method for the segmentation of
hyperspectral images of tropical rainforests, based on binary partition
trees. The evaluation of our method was conducted on two test sites
presenting different image properties (ground sampling distance and
number of spectral bands) and forestry characteristics. The contribu-
tions of the present study are the following:

– The adaptation of the generic BPT algorithm to a specific application,
being the segmentation of tree crowns in hyperspectral images of
tropical rainforests. This was done through the selection of pertinent
region model and merging criterion.

– The introduction of a pre-processing step including spectral and spa-
tial dimensionality reduction. The former, achieved using a PCA
transformation, demonstrated how the PCA extracts and highlights
discriminant informationwhen applied on images acquired over for-
ested covers. It also illustrated the low discriminant capacity of the
first PC by comparing several PC combinations as the input image
for the BPT construction. The latter showed the interest of initializing
the BPT on an initial over-segmentation of the imagewith respect to
the pixel level. We showed how this pre-segmentation has to meet
strict requirements in terms of size and borders of the generated re-
gions. The results of three different segmentation algorithms were
compared. Mean shift clustering proved to be the most efficient
method among the three investigated.

– The introduction of a new BPT pruning strategy, based on a voting
process where each leaf of the BPT elects its favorite ancestor. The
vote depends on the evolution of the region size along a branch, as
we remarked a clear discontinuity in terms of region size for the
node whose corresponding region represents a tree crown the
best. This pruning strategy is adapted not only for the segmentation
of forested areas, but also for images featuring a patchwork of homo-
geneous regions. We compared this novel pruning strategy with an
already existing one, based on spectral graph partitioning. Results
showed that the proposed pruning strategy was more adapted to
this precise task.

– The introduction of a method assessing the segmentation quality,
based on the knowledge of some reference regions only. Indeed,
due to the high complexity of the canopy, it is unrealistic to generate
a reference segmentation manually. To overcome this issue, ITCs
weremanually delineated and accounted for ground-truth. A partic-
ular care was taken to select ITCs of various sizes and shapes, and
representing the species diversity. We proposed to classify these
ITCs into four categories depending on their segmentation state,
namely correctly detected, over-segmented, under-segmented and
missed. The segmentation quality was then defined as the percent-
age of ITCs correctly segmented.

We are nowworking on using LiDAR data in amore optimal way. As
for now, LiDAR was only used to provide an initial segmentation map,
the BPT being built on the raw or transformed hyperspectral data,
thus relying only on spectral properties of the scene. However, by incor-
porating the LiDAR during the BPT construction, physical properties
such as the height or diameter of the crown could be taken into consid-
eration. In particular, the use of LiDAR could overcome the case where
several trees of the same species are aggregated together and are likely
to appear as only one region if using only spectral properties. The auto-
mated selection of PCs containing discriminant information as well as
the automated tuning of the threshold value for the BPT pruning will
also be investigated in order to make the proposed method fully
unsupervised.
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Appendix A. About the diffusion distance as a BPTmerging criterion

Detailed below is the expression of the diffusion distancewhen used
as a merging criterion for the construction of a BPT with a non-
parametric statistical region model. This distance was proposed
by Ling and Okada (2006) as a measure of discrepancy between histo-
grams. The underlying idea is to view the difference between two histo-
grams as a temperature field. The distance between the two histograms
is based on the time needed for the temperature distribution to reach
stability via a heat diffusion process, or equivalently, on the state of
the temperature field after a given time. As opposed to bin-to-bin dis-
tances which assume that histograms are already aligned and compare
a bin in one histogram only to the corresponding bin in the other histo-
gram, the diffusion distance is a cross-bin distance and is usable even
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when histograms are not aligned. More specifically, for two histograms
H1 and H2 whose P bins are denoted by

ap ∀p∈ 1 : P½ �; ðA:1Þ

the diffusion distance first defines the difference histogram:

d0 ap
� �

¼ H1 ap
� �

−H2 ap
� �

; ðA:2Þ

and then simulate the temperature diffusion process by convolving the
current temperature field with a Gaussian kernel

dm ap
� �

¼ dm−1 ap
� �

� gσ ap
� �h i

↓2 ∀m∈ 1 : L½ � ðA:3Þ

where gσ(x) stands for a Gaussian kernel with variance σ, L is the num-
ber of layers in the convolution process (the time after which the diffu-
sion is stopped), and ↓2 denotes a downsampling by factor 2. The
distance between the two histograms is then obtained by summing up
the L1 norm of each layer:

O H1;H2ð Þ ¼
XL

m¼0

dmk k1 ðA:4Þ

with

dmk k1 ¼
XP

p¼1

jdm ap
� ����: ðA:5Þ

The diffusion distance was successfully adapted to the construction
of BPTs by Valero et al. (2010a). Being Ri and R j two neighboring re-

gions during the BPT construction, andHRi ¼ Hλ1
Ri
;…;HλM

Ri

� �
andHR j ¼

Hλ1
R j
;…;HλM

R j

� �
their respective region models, the diffusion distance

measures for each spectral band λk the similarity between the pair of

histogramsHλk
Ri

andHλk
R j
, O Hλk

Ri
;Hλk

R j

� �
. The merging criterion between

the two regionsRi andR j immediately follows on by adding up the con-
tribution of theM spectral bands:

O Ri;R j

� �
¼

XM

k¼1

O Hλk
Ri
;Hλk

R j

� �
: ðA:6Þ
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