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Generalized Lifting Prediction Optimization
Applied to Lossless Image Compression
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Abstract—A useful tool to construct wavelet decompositions is
the lifting scheme. The generalized lifting is an extension of the
classical lifting scheme to introduce more flexibility and to permit
the creation of new nonlinear and adaptive transforms. However,
the design of generalized prediction and update steps is more in-
volved. This letter proposes a generalized prediction design that
minimizes the detail signal energy and entropy at the same time.
Two algorithm variants are given. The fixed prediction uses the
image class statistics to derive the optimal transform. If the sta-
tistics are unknown, the adaptive prediction extracts them from
the image being coded. The resulting decompositions are applied
to lossless image coding, reporting good results. The adaptive al-
gorithm has no bookkeeping or side information requirements, yet
its performance is close to the fixed prediction performance.

Index Terms—Image compression, lifting scheme, nonlinear
filtering.

I. INTRODUCTION

THE LIFTING scheme [1] gives a suitable framework for
developing space-varying wavelet filter banks. Its initial

polyphase decomposition [or lazy wavelet transform (LWT)]
allows flexible signal analysis of one channel in order to apply
a good lifting filter to the other channel. The transform is
reversible because of the lifting scheme structure itself. Many
approaches [2]–[4] follow the idea, trying in different ways to
exploit the correlation existing between both decomposition
channels: the local shape or statistics of one signal is considered
in order to apply a better filter to the other one.

Going one step further, the adaptation may be improved if
the information given by the same channel to be filtered is taken
into account. A point-wise adaptation is possible by using a cri-
terion invariant to the filtering so that it can be recovered at the
decoder, thus allowing the correct choice of the synthesis filter.
The generalized lifting scheme follows this line of research. In
this scheme [5], the sums in the lifting are generalized to in-
clude possibly nonlinear and adaptive operations. Furthermore,
the proposal guarantees the transform reversibility by a simple
injectivity criterion of a mapping.

This letter presents a prediction step design within the gener-
alized lifting scheme. The prediction is optimal in the sense that
it minimizes at the same time the detail signal energy and en-
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tropy given the pixel value probability conditioned to its neigh-
bors pixel values. These statistics are extracted in two ways:
from the image class database (if it is available) or from the
image being coded. In both cases, good image coding results
are reported in the Jpeg2000 [6] environment and in a 3-D ver-
sion of the SPIHT [7] entropy coder.

This letter is organized as follows. Section II introduces the
lifting scheme and Section III the generalized lifting. Section IV
describes an optimal prediction given the probability of a sample
conditioned on its neighbors values, and Section V discusses an
adaptive algorithm if the probability is not previously known.
Section VI gives some experimental results, and main conclu-
sions are drawn in Section VII.

II. LIFTING SCHEME

The lifting scheme (LS) is a well-known method to create
biorthogonal wavelet filters from other ones [see Fig. 1(a)]. The
scheme input data are , which is divided into two subsignals:
an approximation signal formed by the even samples of
and a detail signal formed by the odd samples of . Then,
the lifting steps are applied as follows.

• Prediction lifting step that predicts the detail signal sam-
ples using the approximation samples :

. Vector denotes a subset of samples in
around location .

• Update lifting step that updates the approximation signal
with the detail samples .

The transform coefficients and are the output data. A mul-
tiresolution decomposition of is built by the concatenation of
the lifting decomposition blocks on the approximate subsignal,
like the recursive filter bank tree-structure does.

The prediction and update operators may be a linear combina-
tion of and , respectively, or any nonlinear operation (since
by construction, the LS is always reversible). The inversion of
the scheme is straightforward. The same prediction lifting step
(PLS) and update lifting step (ULS) are employed, and only the
sign of the addition is changed. Finally, subsignals are merged
into the higher rate signal to recover the original data .

The even-sampled channel is used to extract redundancy from
the odd-sampled channel by means of the prediction step. The
differences, which are the detail or wavelet coefficients, are left
in this odd channel. Details tend to be small, which amounts to
compression efficiency. Then, wavelet coefficients are used to
update the even channel in order to obtain a coarse scale version
of the input signal. The ULS can be seen as an anti-aliasing filter.

III. GENERALIZED LIFTING SCHEME

This section introduces a generalization of the lifting scheme,
which is similar to the classical lifting, except that the sums after
the filters are embedded in a more general setting [see Fig. 1(b)].
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Fig. 1. (a) Lifting scheme and (b) the generalized lifting scheme.

For instance, the classical lifting prediction is a filter that gener-
ates a predicted value that is used to modify through sub-
traction. In the generalized lifting (GL) scheme, the prediction
step is viewed as a function that maps to , taking into
account values from the approximation signal . The restriction
of modifying only through a sum has been removed, and
so, the scheme allows more complex, possibly adaptive or non-
linear modifications. The same generalization can be done for
the ULS, so the generalized lifting steps (GLSs) may be noted
as and .

The following is a formal definition of a GLS. Let be the set
of functions a from to itself, i.e.,

. Let be the subset of containing all functions
that do only modify the first component, that is, for which the
restriction to is the identity: .
A GLS is defined as a function belonging to the subset . At
the same time, if a reversible scheme is desired, the GLS should
be an injective function of . The same statements apply to the
generalized prediction and update steps.

The GL scheme as presented so far assumes that the values
taken by , , , and are real numbers. Quantization steps
should be avoided in lossless compression. Then, the values
taken by the GLS inputs and outputs are integers. We call this
integer version the discrete GL. A bijective condition arises in
a natural way in the discrete GL because the input and output
discrete spaces have the same size, so mappings have to be
one-to-one in order to have all the elements in each space re-
lated. Consider now the following framework for discrete gray-
scale images where each pixel is represented by 8 bits. Without
loss of generality, sample values are assumed to range from

128 to 127. Let be the set of integers that belong to the
interval [ 128,127]. The discrete generalized update and pre-
diction are mappings from the space to itself that
can only modify the first component.

IV. OPTIMIZATION OF THE GENERALIZED PREDICTION

Once the framework has been established, the problem is to
design useful GLS for specific applications. This section focuses
on the design of a prediction step. To this end, it is useful to
define the concept of a column. For

Fig. 2. Discrete mapping from the � space to itself. The lifting step
is reversible if the mapping from each column C to itself is bijective.

fixed, the set of all possible values of describes a
column in the space. Let such a column be denoted
by in the following:

(1)

The generalized prediction only modifies the component
, so it maps each to itself. Fig. 2 illustrates this for

the case . The mapping of to itself should be
bijective for all columns in order to have a reversible scheme.

The PLS design is formulated as an optimization problem
that depends on the signal probability density function (pdf).
As stated, the transform is reversible if every column mapping
is bijective. The column prediction mappings are independent
because columns partition the space. Accordingly,
every column mapping is independently designed from
each other

(2)

Given , the transform relates every input value
one-to-one to every output value . There-

fore, output values for each column are related to input values
simply through a permutation matrix , so a prediction step
may be seen as the union of permutation matrices.

Entropy coders benefit from several characteristics of wavelet
coefficients. Specifically, they tend to increase their perfor-
mance when the detail signal coefficients energy is minimized.
For compression purposes, it is also interesting to reduce the
output entropy. A reasonable goal is to design a mapping that
minimizes the expected energy of the detail signal. Such an
optimal prediction is

(3)

The second equality in (3) is due to the independence be-
tween columns. The design of the prediction function reduces
to finding the optimal column mapping (or permutation
matrix ) for all columns. As explained in [8], the output ex-
pected energy for a column may be expressed as

(4)

Note that stands for the probability function. The
energy expectation in (4) is minimized when the permutation
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matrix relates input values of high probability with small en-
ergy output values. Proposition 1 in the Appendix confirms this
statement. This mapping also minimizes the output entropy, as
proposition 2 shows.

The permutation matrix optimizing (4) that relates input con-
ditional probabilities with output energies is used in the dis-
crete sample space to relate each input with the corresponding
output. Assuming that the pdf is known, a column map is cre-
ated by constructing a vector with input values sorted by their
probability in descending order. The first element of this vector,
which is the most probable input sample for the given context,
is assigned (mapped) to a 0 output value (the minimum energy
output). Following, the output value of 1 is assigned to the
vector second element (corresponding to the input values of
second highest probability), 1 is assigned to the third element,
2 to the fourth, and so on. In practice, a PLS is performed by
column mappings, which are look-up-tables (LUT) that reorder
input values according to their probabilities. These LUT are a
practical representation of the permutation matrices and permit
a fast transform but paying the cost of an LUT storage per image
class at the coder and decoder.

V. ADAPTIVE PREDICTION DESIGN

This section describes a modification of the optimized predic-
tion that avoids the necessity of the previous knowledge of the
pdf and, thus, also avoids the storage of an LUT for every image
class. Indeed, in this approach, the LUT may be different from
level to level and for each filtering direction, which may result
in compression gains w.r.t. one fixed LUT per image class. The
drawback is the computation cost of an adaptive pdf estimation,
which is not required in the previous “fixed” prediction.

The pdf estimation should be updated at each sample in
a way that permits the coder and the decoder reaching the
same results, i.e., a synchronized iterative estimation. There-
fore, the prediction is adapted to image statistics. Indeed, the
pdf may be independently estimated at each resolution level
reaching finer optimization than using a fixed LUT for the
whole decomposition.

Nonparametric density estimation methods are suited for
this application because they model data without making any
assumption about the form of the distribution. Kernel-based
methods (which is a subclass of the nonparametric methods)
construct the estimation by locating weighted kernel-functions
at the index position of the samples. Experiments using dif-
ferent kernel shapes and bandwidths have been carried out,
leading to similar results for a wide range of values.

The delta function has been chosen as the kernel. It is the sim-
plest kernel and amounts to the computation of the histogram.
The delta kernel is the choice because its results are not worse
w.r.t. other kernels, and it has two interesting properties for our
purpose. First, the histogram pdf estimation converges to the op-
timal pdf that minimizes the detail signal energy for the image
at the given resolution level and filtering direction. Second, in
practice, the choice of delta avoids an explicit pdf estimation that
other choices would not allow: since at each sample, only one
histogram bin is modified, it is only necessary to reorder that bin
in the vector that relates input probabilities with output values.
In consequence, the time-consuming pdf re-estimation and the
sorting pass of probabilities for constructing the input-output
vectors are avoided.

TABLE I
BIT-RATES IN BITS PER PIXEL FOR FOUR-LEVEL DECOMPOSITIONS.

MEAN VALUES FOR THE MAMMOGRAPHY AND SST SETS AND

FOR TWO SYNTHETIC IMAGES USING JPEG2000. BELOW, RESULTS

FOR THE MRI SET USING A 3-D SPIHT

An initial pdf estimation is required when no data are avail-
able. Different initial pdf may be considered. An interesting ap-
proach is to use the LUT of the image class at hand and then
adaptively refine the pdf on the fly for the specific image being
coded. For the experiment section, the chosen initial pdf is the
one corresponding to the average pdf of the images in our data-
base. This conditioned pdf turns out to be simple and structured.
It has a maximum at the mean value of the neighbors and de-
creases monotonically and symmetrically on both sides. At a
given sample, the pdf estimation is done by adding the initial
pdf (i.e., the “average” pdf) with the histogram of all samples
seen until the current one. The initial pdf sums up to one, while
each processed sample adds one to the histogram, thus giving
much less importance to the prior and speeding up the adapta-
tion. The estimated pdf is then used to optimize the prediction
for the current sample.

VI. EXPERIMENTS

The fixed and adaptive optimized predictions are derived for
(i.e., two neighbors are considered for the prediction) and

compared to the 5/3 wavelet via lifting scheme. This wavelet is
employed in the Jpeg2000 standard for lossy-to-lossless com-
pression purposes, and it also considers two neighbors to com-
pute the PLS. No ULS follows the proposed predictions. The
image is first filtered vertically and the approximation signal is
filtered horizontally, resulting in a three-band decomposition.
In the adaptive case, the pdf is estimated at each resolution level
vertically and horizontally.

The optimal prediction mapping resulting from the “average”
pdf is very similar to the 5/3 wavelet prediction mapping [9].
Therefore, there is more potential compression gain with re-
spect to the 5/3 wavelet for those images belonging to a class
with a pdf that significantly differs from the average pdf. The
experiments consider such images. The test data include: a set
of biomedical images (mammography), a set of remote sensing
images (sea surface temperature), and synthetic images. Table I
shows the bit-rate results for four-level decompositions. The
proposed methods perform better than the 5/3 in all cases, with
a small performance gap between the fixed and adaptive predic-
tion. For synthetic images (which cannot be treated as an image
class with a common pdf), the adaptive prediction gives com-
pression rates up to 80% better than the 5/3. The two examples
given in the table come from the official Jpeg2000 test set.
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An MRI set of images of a human head is decomposed
through the three dimensions and encoded with a 3-D version
of the SPIHT. The fixed prediction employs the “average” pdf
(note that this is not the MRI set pdf) and beats the 5/3 by a
little margin. Results are improved by the adaptive prediction.

Both algorithms have distinct computational cost and
memory requirement characteristics. The fixed prediction LUT
implementation is computationally very efficient. However, its
memory requirement is high: for the previous experiments with

and 256 gray-level images, an 8 Mbyte LUT per class
is needed. The adaptive prediction keeps track of one LUT on
run-time. This LUT contains the initial pdf prediction, and it
is modified with each incoming sample by carrying out the
following steps: 1) search the gray-level sample value within
the column given by the context, 2) output the position of the
value in the column, 3) update the gray-level value count by 1,
and 4) sort the column updating the value position according
to the new count. Therefore, the computational cost is much
higher compared to the fixed prediction.

VII. CONCLUSIONS

The GLS defines the lifting step as a mapping between
spaces. Its discrete version reduces the whole step design to
a column-to-column mapping. The image pdf is employed to
optimize the discrete generalized prediction. Propositions 1 and
2 show that the optimized prediction attains the minimal detail
signal energy as well as the minimal entropy at the same time.

The optimized prediction can be applied to all the images in
the class if the pdf is previously extracted from a training set
of images. This fixed prediction is derived for the mammog-
raphy and SST sets with considerable coding gain w.r.t. the 5/3
wavelet in the Jpeg2000 environment. The fixed prediction’s
main drawback is the LUT storage at the coder and decoder
side. This fact suggests the creation of an adaptive optimized
generalized prediction. The adaptation algorithm is simple and
offers good convergence properties, which amounts to compres-
sion results only slightly worse than those of the fixed version.
Additionally, the adaptive prediction is applicable to images that
do not belong to any class with a common pdf. For example,
the adaptive generalized scheme clearly outperforms the 5/3
wavelet for the synthetic images or the MRI volume set.

To sum up, from the initial formulation, two image coding
approaches are derived that are useful and applicable in different
situations: when the image statistics are known (such as in the
biomedical or remote sensing image applications), an optimal
fixed scheme can be used, and when they are unknown (as in
the synthetic images case), an adaptive scheme has to be used.

APPENDIX

MINIMUM ENERGY/ENTROPY MAPPINGS

Proposition 1: Let , , where the elements of
are sorted , and the elements

of are all different. Let be an permutation matrix and
be the permutation matrix such that

and . Then, is
optimal in the sense that , .
That is

Remarks: The demonstration shows that the objective value
is not a minimum for any . The proof is

included in [9].
Definition: Let . Function is defined as

.
Proposition 2: Let , where the elements of

are sorted , and the
elements of are all different. Let be an permutation
matrix and be the permutation matrix such that

and . Then,
is optimal in the sense that ,

. That is

Remarks: The proof is also included in [9]. These results
can be extended to any number of couples of equal elements
and any number of equal elements. By symmetry, results still
hold if is the sorted vector and the vector to be permuted.
Finally, the same optimal rearrangement of vectors elements by
a permutation matrix can be done if neither vector is sorted.
Proofs are straightforward.

If there is more than one vector , then
is minimized when permutation

matrices with align the values of each in
the same fashion as in the two-vector case (proposition 2). If

, then the resulting column vector
is a probability distribution and

its entropy.
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