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Multi-View Video Representation Based on
Fast Monte Carlo Surface Reconstruction
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Abstract—This article provides an alternative solution for
the costly representation of multi-view video data, which can
be used for both rendering and scene analysis. First, a new,
efficient Monte Carlo discrete surface reconstruction method for
foreground objects with static background is presented, which
outperforms volumetric techniques and is suitable for GPU
environments. Some extensions are also presented, which allow
speeding up the reconstruction by exploiting multi-resolution and
temporal correlation. Then, a fast meshing algorithm is applied,
which allows interpolating a continuous surface from the discrete
reconstructed points. As shown by the experimental results, the
original video frames can be approximated with high accuracy by
projecting the reconstructed foreground objects onto the original
viewpoints. Furthermore, the reconstructed scene can be easily
projected onto any desired virtual viewpoint, simplifying thus the
design of Free-Viewpoint Video applications. In our experimental
results, we show that our techniques for reconstruction and
meshing compare favorably to the state-of-the-art, and we also
introduce a rule-of-thumb for effective application of the method
with a good quality vs. representation cost trade-off.

Index Terms—Free-viewpoint, Monte Carlo, Shape-from-
silhouette, Surface reconstruction, Meshing

I. INTRODUCTION

Multi-view video is a major focus of research in the
image processing and computer vision communities. In video
analysis applications, the availability of multi-view data allows
the understanding of scenes which would be ambiguous if
observed by a single camera (due to overlaps in monocular
views). Another advantage is the possibility of offering free-
viewpoint video (FVV). This application aims at rendering
photo-realistic views of a dynamic scene captured by a multi-
camera rig as viewed from virtual viewpoints. Image-based
approaches [1], [2] rely solely on the original video streams
in order to render the scene from a new viewpoint. These
approaches provide high-quality renderings interpolated be-
tween existing viewpoints (the ones captured by the multi-
camera rig). However, when a free choice of the viewpoint is
desired, either depth maps [3] or 3D geometry models of the
objects of interest in the scene [4] must be computed. This
paper proposes a surface representation and the corresponding
reconstruction method that can be used as an alternative to the
original multi-view video data [5], [6], [7] from which it is
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Fig. 1. Surface geometry and colored surface obtained from 16 views
by using the proposed method. Both are rendered as viewed from a novel
viewpoint. Multi-view data downloaded from [8].

obtained and can be a useful representation for both multi-view
analysis and FVV. In [5], the visual appearance of a multi-view
scene is stored in multi-channel images. Whereas this approach
allows reusing standard video coding tools, the 3D structure
of the scene, useful for analysis, is not explicit. Similarly,
in [6], [7] the current goals of the 3D Video project (3DV)
are shown to support advanced stereo display processing and
improved support for rendering of multi-views with small
baselines, targeting auto-stereoscopic displays, without pro-
viding a mechanism for explicitly describing the 3D structure.

The projection process that takes place in a camera in order
to generate a 2D image out of the 3D scene is an inherently
lossy process, given that most of the 3D information about
the scene is lost. Cameras just capture the projections of the
3D surfaces (the visible part of 3D objects). Multi-view data
provides cues that can be used to recover part of this 3D struc-
ture through reconstruction. Naturally, a large number of views
will be preferred, as they provide more information about the
scene. An efficient 3D reconstruction method should aim at
directly obtaining the position, appearance and orientation of
surfaces (in contrast with volumetric approaches), since these
are the only features of the real scene for which observations
are available. For a target resolution, it is also more efficient
to obtain a surface description than a volumetric one: surfaces
in 3D space are sparse, as opposed to volumes. For an object
in 3D space with volume ∝ r3, the corresponding enclosing
surface has an area ∝ r2. Thus, the support of a closed surface
in 3D space is more compact than that of its enclosed volume.
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Following this principle, surface reconstruction algorithms
of different levels of complexity have appeared in the last
years, which dedicate the computational resources to obtaining
and representing surfaces. Some of these algorithms provide
continuous surfaces (polygon meshes) [9], whereas some
others provide discrete ones (represented by surface samples
or surfels), either as final [10] or intermediate representations
[11]. The latter can also be used to obtain continuous rep-
resentations through the use of robust [12] or speed-oriented
[13] meshing algorithms. Among other possible applications
exploiting the reconstructed 3D structure from multi-view
data, [14] proposes a probabilistic framework for tracking
reconstructed surfaces in presence of reconstruction artifacts,
relying solely on the available 3D surfaces.

In [15], an impressive system for joint segmentation and
reconstruction, robust to calibration errors, is presented. In this
method, oriented to offline processing (considering the high
computational load of the different involved stages), geometry
is extracted using [12]. This leads to sparse sampling in regions
with smooth geometry and dense sampling in more complex
regions. Although such a solution is efficient in terms of
geometry representation, it implies texture (the complexity of
which is in general independent of that of the geometry) cannot
be properly represented as an attribute of the reconstructed
geometry. In consequence, the original image data still needs
to be supplied for view-dependent texture mapping.

With real-time applications in mind, it would be desirable
to design massively parallel algorithms tuned to the comput-
ing capabilities found in Graphics Processing Units (GPUs).
[16] presents a multi-view stereo approach for small-baseline
scenarios (with tight limits on the angular separation between
neighbor cameras) based on dense surface sampling for GPU,
which greatly reduces the computing time. When working
in wide-baseline scenarios with real-time constraints, it is
necessary to consider image features robust against perspective
discrepancies, like silhouettes of foreground objects.

The methodology described in this article is able to reduce
the data complexity in multi-view scenarios by introducing
a reasonable amount of computational cost when compared
to state-of-the-art surface reconstruction methods (as shown
in Section VI). This is achieved thanks to a fast, massively
parallel algorithm for 3D reconstruction inspired by the spar-
sity of the features to be reconstructed. The suitable algorithm
design (Section III), inspired by Markov-Chain Monte Carlo
methods [17], [18] provides good scalability properties to a
growing number of input video streams, as shown in Section
V-B. We also show that the proposed representation for multi-
view video is a compelling approach for real-time streaming
applications. We are able to reduce the transmission/storage
cost of the multi-view video stream for distributed applications
by introducing controlled losses with respect to the original
video data, with the advantage of gaining the reconstructed
3D structure of the scene (Section VI-A).

II. PROBLEM STATEMENT

We consider a scenario where dynamic scenes are cap-
tured by calibrated multi-camera rigs, with static or known

background. We first focus on the multi-camera setup. Often,
practical constraints do not allow configuring a small-baseline
multi-camera rig. This does not only exclude multi-view
stereo techniques from being robustly applied to the captured
data, but also requires pre-calibration of all involved cameras,
since simultaneous reconstruction and calibration techniques
(structure-from-motion [19]) cannot be applied. Calibration
information can be obtained offline using semi-automatic
methods like [20].

Since cameras and background are fixed, a pre-processing
stage, not covered in this article, will be responsible of
segregating background and foreground pixels in each video
stream. Foreground (FG) silhouette information proves as a
sufficient visual cue for retrieving a good estimate of the
actual surfaces of FG objects, which are the dynamic part
of the scene and, therefore, the ones to be reconstructed from
frame to frame. These estimates will be acceptably accurate
as long as the number of available views is sufficiently dense
and the cameras are evenly distributed all around the scene. In
practice, for scenes without much clutter, it will suffice that
angles between viewing directions of neighbor cameras are
in the order of 60 degrees, while it would be much smaller
(10-20 degrees) for image-based interpolation [2]. In order to
extract FG silhouettes, [21], [22] provide improved results by
conveniently exploiting existing redundancies among views.
The latest results in monocular FG segmentation [23] are
capable of robustly detecting shadows and other undesired
false detections thanks to the fitting of finely tuned Gaussian
Mixture Models. Despite of the ever improving results in FG
segmentation, automatic silhouettes are still prone to errors.
In order to compensate this, the 3D surface reconstruction
scheme presented in Section III provides a mechanism for
enhanced robustness, resulting in conservative estimates of the
position of surfaces in the 3D space (it can be interpreted
as if the volume enclosed by the reconstructed surfaces had
been dilated by spatially-varying 3D structuring elements with
geometry given by the camera setup).

Reconstructed surfaces are represented by means of dense
sets of oriented, colored 3D points (also called surface patches
or surfels in the literature [24]). Relevant details about this
stage, which is the main contribution of this article, are given
in Section III. Compared to our prior work [13], we introduce a
more efficient and robuster mechanism for surface reconstruc-
tion, which is also able to exploit temporal correlation in order
to speed up the processing of multi-view video sequences.
In Section IV, a fast meshing algorithm produces continuous
surfaces out of the discrete surfel representation. Compared
to [13], an extension of the meshing method automatically
corrects previously unobserved topologic errors under certain
configurations. The continuous representation of the multi-
view data presents practical advantages: on the one hand,
it provides a complete description of the surface topology;
on the other hand, it automatically maintains an ordering for
interpolating the surface between known surface samples.

III. SURFACE RECONSTRUCTION

Surface reconstruction from multi-view settings can be
viewed as a search for a sufficiently dense set of oriented 3D
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points that match the visual features detected in each view.
Whereas the a-priori distribution of the surface points might
be unknown (and, therefore, the search of each of these points
could be very costly), a Markov Chain can be built, tightly
describing the distribution of surface points at different scales
around detected ones. This allows to obtain a dense surface
reconstruction at a fraction of the expected linear cost of
adding each additional camera when a large number of input
video streams is available, as shown in Section V-B.

A. Markov-Chain Monte Carlo

The complex distribution of surface samples (or points) can
be described as a Markov Chain, where the density of surface
points is likely to be higher in regions around detected surface
points and lower otherwise. Thus, once a parent surface point
has been found, its position and orientation can be used to
condition the distribution of new surface points around it, as
introduced below.

Metropolis-Hastings [25] is a useful Monte Carlo method
for Markov Chains when statistical moments (of the surface
distribution in our problem) are requested. However, in our
surface reconstruction problem, we intend to find just two
features: surface positions and corresponding orientations.
Rejection sampling allows obtaining suitable samples by first
generating random ones and then keeping those fitting the
desired distribution, which is locally modeled based on previ-
ously detected values for the two features.

B. Algorithm overview

In outline, given a set of (noisy) FG silhouettes correspond-
ing to images captured in the same time instant, the goal
of our Markov-Chain Monte Carlo approach is to classify a
subset of randomly generated 3D points as lying on surfaces.
We base the classification on the result of a cost function
defined over the silhouettes, taking into account these may
contain errors in form of misclassified pixels. Let pc be the
pixel onto which a randomly generated 3D point projects in
view c and Ic(pc) ∈ {1, 0} the image value indicating whether
pixel pc belongs to the foreground. The 4-neighborhood of the
pixel N4 = {p : ‖p− pc‖1 = 1}, where ‖ · ‖1 stands for the
Manhattan distance, is also used to define the cost function
d =

∏
c Ic(pc) ·

(∑
c

∑
p∈N4

(1− Ic(p))
)

. The first term
indicates whether the 3D point projects onto a FG pixel for
all views, whereas the second one indicates wether the 3D
point belongs to the contour of at least one of the silhouettes.
Note that the definition of the second term implies not only rim
points (i.e. points projecting onto the contour of all silhouettes)
are reconstructed, but rather any 3D point lying on the surface
of the visual hull. In order to enhance the robustness of the
cost function in presence of segmentation errors, we define a
relaxation of this cost function as

δ =

⌊
1

Nv − τ
∑
c

(1− Ic(pc))

⌋
·

∑
c

∑
p∈N4

(1− Ic(p))

 ,

(1)
where the modification of the first term allows that up to τ
out of the total Nv views classify the projection of a 3D point

as background before deciding that the point does not belong
to the silhouette-consistent volume.

By producing clusters of surface points at small distances,
the surface orientation can be estimated at these discrete
locations. This is done by fitting a plane to each of these
clusters (assuming large local curvature radius at small scales)
and extracting the normal as the director vector with its sign
set such that, when projected onto the available views, it points
out of the silhouette for at least one of them.

In the following, we introduce the complete method with
improved efficiency. An initial scouting procedure, out of
which a sparse set of seed surface points is obtained, is
followed by a propagation stage, in which arbitrarily dense
sets of surface points are efficiently obtained by exploiting
spatial correlation (embedded in the Markov-Chain model).

C. Scouting

Let sx×sy×sz be the volume of a bounding box enclosing
the scene to be reconstructed. Random 3D points are uniformly
generated to lie inside of this bounding box. In order to accept
a random 3D point x as a seed surface sample xs, locally
describing the surface of one of the objects to be reconstructed,
three conditions, ranging from multi-view consistency tests to
topologic requirements, have to be fulfilled:

a) x projects onto a FG pixel for at least Nv − τ views.
b) x projects onto a contour pixel for at least one view.
c) A normal (x’s orientation) can be estimated by operations

on a close neighborhood.
In the following we review the details of each of these three
conditions and their relation to Eq. (1).

a) Robust consistency: The first condition restricts the set of
reconstructed points to those in the (conservative) visual hull.
Let Nv be the number of cameras with frustum including the
3D point x under evaluation, i.e. the number of cameras for
which the projection lies inside of the image. If the pixel onto
which x projects belongs to the background of the scene for
at least τ+1 of these Nv cameras, the point is discarded. This
maps to the first term of Eq. (1).

In presence of segmentation errors, with some pixels
wrongly marked as belonging to the foreground, inter-camera
consistency will most likely reject points projecting onto one
such pixel. The case of missed foreground, however, would
introduce severe reconstruction errors.

Assuming segmentation errors are uncorrelated between
views, the presence of such an error in τ = 1 of the Nv
cameras onto which x projects is probably accompanied by
Nv−τ (= Nv − 1) correct decisions in the remaining cameras.
This assumption holds when the baseline is large enough and
the neighbor viewpoints are clearly dissimilar. In other case,
the tolerance τ must be set to a higher value. By appropriately
setting τ , a better estimate of the actual object can be obtained
from noisy foreground detections at the cost of slightly dilated
reconstructed shapes, resulting in the conservative estimate of
the silhouette-consistent enclosed volume.

b) Topology: The second condition checks that the 3D point
belongs to the silhouette-consistent surface. Given the pixels
{pc} onto which x projects in the images corresponding to
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each camera c, we test if at least one of the pixels in its 4-
neighborhood belongs to the background. If this condition is
met by at least one of the cameras, the point passes this test.
Note that this condition, which maps to the second term in
Eq. (1), does not restrict the search to only rim points, but
rather to any point lying on the conservative estimate of the
silhouette-consistent surface.

c) Orientation: The third condition checks that the orien-
tation of each surface point (necessary for an efficient dense
search through propagation, as shown in Section III-E) can be
estimated by locally approximating the surface by a plane. In
order to estimate x’s orientation, a plane is fitted to a small
local cluster of surface points (4 points are used in practice) in
a close neighborhood of the target one: given x, a new random
search is performed in a small ball of radius ρl centered at x.
ρl is an adjustable parameter that defines a small radius such
that the local surface is practically flat (constant normal). The
three new points generated in the small ball around x are
required to fulfill Eq. (1). Then, a plane is fitted to the set of
4 points by least squares and the director vector, n̂, is taken.

To determine the sign of n̂, an iterative method is applied,
which consists in: (1) Add and subtract the orientation of the
surface point multiplied by a small scaling value to the posi-
tion of the surface point (x+ := x+ εn̂ and x− := x− εn̂).
Project x+ and x− onto all views. (2) If one of these points lies
inside of the visual hull and the other outside, x (and its local
neighbors) are accepted. If x− belongs to the visual hull, the
current sign is correct. Otherwise, we change it (n̂ := −n̂). (3)
Else, if both projection tests have the same result and ε > εmin,
repeat the process with ε := 4/5ε. If ε ≤ εmin, the point cannot
be successfully oriented and x and its neighbors are discarded.

This condition also constrains the shapes that can be re-
constructed. If a volume is thin enough as to project onto
silhouettes with very narrow widths for all views, surface
points may be discarded. One possible solution could be using
other models better fitting such regions, e.g. cylindrical.

D. Improved scouting

The result of the scouting stage is a sparse set of seed
surface samples uniformly distributed all over the surfaces
of foreground objects. However, this stage constitutes the
bottleneck of the sampling strategy. Indeed, we observe the
search is driven at random in large work volumes (the space
where the scene takes place captured by the multi-camera rig).
Even though most of the surface samples are to be obtained
during the local propagation stage of the method (Section
III-E), a large amount of computational resources are spent
in this initial search.

Two different techniques are proposed, which reduce the
computation time for scouting. The first one (multi-resolution
scouting) is based on considerations about the spatial sampling
density related to the resolution of the input images, whereas
the secone one (dynamic scouting) is based on the exploita-
tion of temporal correlation between the position of surface
samples in consecutive time instants.

a) Multi-resolution scouting: A multi-resolution ap-
proach can be used to speed up the scouting stage. As stated

ρm

Fig. 2. Local search in a sphere with radius ρm centered at a low-res. seed
(gray dot) to obtain the high-res. one (black dot). The gray and black half-
lines starting at each camera show the back-projection of a low-res. contour
pixel and a high-res. one, respectively.

above, the projection onto a contour pixel for at least one
of the silhouettes is a requirement for a 3D point to be part
of the silhouette-consistent surface. We observe that given a
set of silhouettes corresponding to different views of a scene,
the likelihood of finding a contour pixel by a random search
decreases when the resolution of the images increases.

Thus, the presented strategy exploits this fact by (1) first
driving a search for low-resolution surface seeds from nearest-
neighbor-downscaled silhouettes and (2) then driving a local
search for high-resolution surface samples from the original
silhouettes in high resolution.

Let Nx×Ny and lc be the area of the input images and the
length of a contour, respectively. If the resolution of an image
is reduced by decimating each dimension by a factor δ, the
corresponding contour length is also divided by δ.

Now let a randomly chosen 3D point project onto one of
the input views in search of a contour pixel. The success
probability at full resolution, πf , can be considered ∝ lc

Nx×Ny
,

assuming random points project with equal likelihood to any
point in the image. Then, for the success probability after
decimation, πd ∝ lc/δ

Nx/δ×Ny/δ
= δπf . This translates into a

reduced number of random attempts to find a surface point.
The low-resolution seed xl obtained from the low-resolution

silhouettes (step 1) is not used as a surface sample, since it
is not accurate with respect to the high-resolution silhouettes.
However, similar to the case of dynamic scouting (introduced
below), a seed surface sample can be found in a small
neighborhood of every low-resolution seed.

Using the high-resolution silhouettes (step 2), a low-
resolution seed xl can be used as the center of a smaller search
region. As shown in Fig. 2, a spherical search region with a
multi-resolution search radius ρm can be defined in order to
find a valid seed surface sample. ρm should be as small as
possible in order to keep the method efficient, but still large
enough to be able to find a valid high-resolution seed in the
region delimited by the back-projection of the pixels in the
low-resolution views.

b) Dynamic scouting: The scouting stage can also benefit
from exploiting temporal correlation in multi-view video se-
quences. Indeed, the information about the position of surface
samples in a given time instant can reduce the time required to
find the seeds in the next time instant by limiting the volume
in which new surface samples are to be searched for.
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t-1
tρd

sz

sx

sy

Fig. 3. By exploiting temporal correlation, the search space for scouting can
be reduced from the whole volume (sx×sy×sz) to a smaller one (4/3πρ3d),
thus increasing the search efficiency.

In order to exploit this correlation, the seed samples are
transferred from one time instant to the next one using a more
efficient search strategy than random search in the whole work
volume. The complete, high-density covering of the surfaces
is left to the efficient propagation scheme presented in Section
III-E.

Assuming seed surface samples are evenly distributed over
the surfaces of objects –which actually occurs–, new positions
for these samples can be searched for by independently setting
a symmetric search region with a large enough dynamic
scouting radius ρd. This way, the placement of new seed
samples for the current time instant does not favor any specific
direction. Given three random values u, v, w in the ranges
[0, 1], [0, 2π] and [0, π], respectively, the candidate seed sample
in the time instant t is computed as:

xt = xt−1 + uρd(sinw cos v, sinw sin v, cosw)>. (2)

A valid xt is found when all three condition introduced in
Section III-C are met. Then, the method continues until the
complete list of seed surface samples from the previous time
instant is processed.

Fig. 3 illustrates the gain in search efficiency that can be
achieved by exploiting the temporal correlation of the scene in
this manner. The search volume is reduced to 4/3πρ3d, which
increases the probability of succeeding at finding a surface
sample ∝ sx×sy×sz

4/3πρ3d
.

E. Fast propagation

New surface samples in the neighborhood of each seed
surface sample can be iteratively obtained with progressively
smaller distances from each other, resulting in a dense surface
sampling, by exploiting the expected local distribution of
surface samples. The benefit of introducing new samples in
this manner is the reduction of the number of tries until a
valid surface sample is found when compared to that of the
scouting stage.

A 3D propagation region is defined for each surface sample,
where new surface samples are very likely found. The design
rules of this region are the following: (1) Assuming surfaces
are locally flat, or present a large curvature radius, preference
will be given for new surface samples to be placed close to the
plane defined by the surface sample’s position and orientation;
and (2) given the fact that the omni-directional method is going

to be applied iteratively, new surface samples will be placed
at a sufficiently large distance from the seed surface sample.

Given a seed surface sample, we define two tangential
vectors û and v̂ which are orthogonal to each other and also
to the normal n̂. By construction, the two former vectors lie
on the plane defined by the seed surface sample’s position and
orientation.

One possible shape for the propagation region is a rectangle,
although others could be used with similar results. Thus, we
parameterize the sample distribution by the position, orien-
tation and scale of a rectangular propagation region around
an existing surface sample. Three random values are required
for defining each testing point xp: (1) normal offset νn, or
distance between the seed sample and the new testing point
along the axis of the seed sample’s normal n̂; (2) tangential
offset ωu, or distance between the seed sample and the new
testing point along the û axis; and (3) tangential offset ωv , or
distance between the seed sample and the new testing point
along the v̂ axis.

The random 3D testing point for local propagation xp is
computed from these three random values and the position
and orientation of an existing seed surface sample xs as:

xp = xs + ωnn̂+ ωuû+ ωvv̂. (3)

Let νn and ρp be a maximum offset along the normal
direction and a propagation radius, respectively, n a uniform
random variable in the range [0, 1], and u and v uniform
random variables in the range [−1, 1]. The three random values
ωn, ωu and ωv , which are used to generate candidate 3D points
xp in the rectangular propagation region, are obtained as:

ωn := νn (2n− 1)

ωu :=

{
ρp
(
u+ 1

2

)
, u ≥ 0

ρp
(
u− 1

2

)
, u < 0

(4)

ωv :=

{
ρp
(
v + 1

2

)
, v ≥ 0

ρp
(
v − 1

2

)
, v < 0

The appearance of the rectangular propagation region is shown
in Fig. 4 (a). The goal of the empty space between a seed
surface sample and the new ones obtained by propagation
is to let the propagation algorithm be applied iteratively, at
increasingly smaller scales, until the desired number of surface
samples is reached. With this, an omni-directional search for
new surface samples using the same propagation region at

2νn 

ρp ρp ρp 

ρp 

ρp 

ρp 

xs 
xs

(a) (b)

Fig. 4. (a) Rectangular propagation region around a surface sample xs (and
its neighbor samples, used for estimating the local orientation). (b) It favors
propagation on the plane orthogonal to the normal vector while allowing small
surface curvatures with variations of up to νn along the normal.
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different scales can be done without creating undesired clusters
of surface samples at small distances. A typical distribution of
samples obtained by propagation is shown in Fig. 4 (b).

In more detail, let q := {xs} be a queue of seed surface
samples and Ns the desired total number of surface samples.
Initially, q contains Nq seed surface samples obtained in the
scouting stage (q does not contain the additional samples
obtained for the local estimation of the orientation of each
seed surface sample). νn and ρr are initialized to suitable
values (Section V). Then, while the required number of surface
samples Ns is larger than the current number Nt (which is
initially equal to 4Nq , the total number of samples including
neighbors), the method proceeds iteratively, as summarized in
Algorithm 1. As a result, Ns surface samples densely cover

Algorithm 1: FAST PROPAGATION( q, ρp )
Data: Seed samples q and propagation radius ρp
Result: Propagated (s) and neighbor (n) samples

1 Create empty q′, s and n queues
2 while Nt < Ns do
3 while q not empty do
4 Pop seed sample xs from q
5 for i← 1 to 4 do
6 repeat
7 Obtain a test sample xp (Eq. 3)
8 until xp passes tests (Section III-C)
9 Push xp into q′ and s, and neighbors into n

10 Nt ← Nt + 4
11 q ← q′ q′ ← ∅ ρp ← 1

2ρp
12 return s and n

the surface with an increased sampling efficiency, thanks to the
adaptation of the propagation region to the local distribution
of surface samples.

F. Post-processing
In order to both improve and complement the geometric

information about the surface, three post-processing stages are
cascaded at the output of the reconstruction method. These
three methods follow the same design as the post-processing
stages in [13].

These stages are: (1) a refinement of the orientation esti-
mation (by using larger neighborhoods when fitting planes by
least squares); (2) an anisotropic smoothing stage in which
each surface point is displaced along the direction of the sur-
face orientation in order to lie on a plane identically oriented
passing through the average point of a local neighborhood,
while being subject to the (τ -relaxed) silhouette constraints;
and (3) a coloring stage adding color information to the
geometric description of the surfaces by making a weighted
average of the color viewed by the three best oriented cameras
where the surface point is visible.

By applying these post-processing stages we make the
detection of 3D points robust against geometric errors due
to the discretization of the input images. Besides, we also
add valuable color information that completes the compact
description of the reconstructed surfaces.

(a) (b)

(c) (d)
Fig. 5. Detailed views of meshing results using (a) Poisson Reconstruction,
(b) BPA and (c) our proposed method, obtained from the oriented vertices of
(d) the reference ground-truth mesh. Better viewed when zoomed in.

IV. MESHING

A continuous surface representation is of interest for two
reasons. On the one hand, the complete description of the
surface topology can be exploited in post-processing [26];
on the other hand, by choosing a proper primitive for de-
scribing elemental surface patches, such as triangles, standard
rendering pipelines in graphics hardware can be used for
quickly rendering the reconstructed surfaces as viewed from
any desired virtual viewpoint.

We present an extension of the fast propagation-based
meshing algorithm originally presented in [13]. The major
differences between our method and the Ball-Pivoting Algo-
rithm (BPA) [27] are the introduction of a different set of
rules for guiding the propagation while keeping topological
correctness and the use of an efficient and more flexible
method for making spatial queries (nearest neighbors from
a kd-tree), which does not require the iterative application of
surface propagation at different scales and avoids topological
inconsistencies, as shown in Fig. 5 (b) and (c).

In outline, the algorithm is applied iteratively until at least
αNp surface points have been added to the continuous surface,
with α = 0.9 in all our experiments. The purpose of the
iterative method is two-fold: on the one hand, it allows ob-
taining continuous surfaces out of disconnected sets of surface
points; on the other, it provides new propagation directions for
areas that were not tessellated from previous directions due to
restrictions on the allowed propagation cases.

Similar to BPA, the proposed propagation algorithm starts
by defining a triangle connecting three close coherently ori-
ented surface points and adding the corresponding three edges
(initial surface contour) to an edge queue. Then, the algorithm
processes the edge queue until it is empty. The propagation
of the contour basically consists in connecting each edge
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TABLE I
MESHING PERFORMANCE WITH KNOWN GROUND-TRUTH

Method armadillo dragon happy

Poisson
Time 35.64 43.61 49.55
Mem. 224 640 704
RMSE 591 874 1232

BPA
Time 347.00 1846.49 2988.64
Mem. 64 192 224
RMSE 61 105 144

Proposed
Time 3.06 10.11 15.44
Mem. 96 288 320
RMSE 40 103 113

extracted from the queue to a suitable surface point (either
a point forming part of the current tessellated surface contour
or an unused one), thus generating a new triangle and adding
up to two new edges to the edge queue. The set of rules, the
details of which are given in [13], is defined to prevent the
surface from folding, by restricting propagation in the forward
direction, and from creating two close, overlapping layers.

As an improvement with respect to the original version of
the algorithm described in [13], the extended version includes
a mechanism for detecting and correcting topologically incor-
rect configurations of triangles. The mechanism consists in
removing edges shared by more than two triangles, as well as
the set of triangles sharing these edges, and proceeding with
the propagation from the new contour edges of the resulting
hole. These multiple-shared edges were empirically found to
be the source of erroneous topological configurations in our
extended meshing experiments, shown in Section IV-A. The
resulting tessellated surface is a 2D manifold in 3D space.

As a difference with volumetric regularization-based mesh-
ing algorithms, e.g. Poisson reconstruction [12], our method
is not designed to be robust against noisy surface points but,
in exchange, it provides a greater accuracy (avoiding over-
smoothed results) and a much smaller computational cost in
terms of memory and run-time, as shown below.

A. Meshing tests

In this section we provide a partial testing on the per-
formance of our extended meshing algorithm. Two well-
known and extensively used meshing algorithms, BPA [27]
and Poisson Reconstruction [12] (both available in Meshlab
[28]), and the proposed method have been used for obtaining
continuous surfaces out of several sets of oriented points
extracted from the Stanford 3D scan repository [29], for which
reference meshes are provided. These reference meshes are
used as the ground-truth in order to compare the accuracy by

TABLE II
SURFACE RECONSTRUCTION PARAMETERS

Parameter Value

Reference radius ρr 1
200

√
s2x + s2y + s2z

Initial propagation radius ρp 2ρr
Normal estimation radius ρl 1

2
ρr

Multi-res. scouting radius ρm 2ρr
Dynamic scouting radius ρd 8ρr
Propagation normal offset νn ρl

Fig. 6. Left, surface reconstruction using empirically determined parameters;
right, erroneous surface reconstruction (non-uniform sampling) due to a wrong
choice of the multi-resolution scouting radius ρm (1/8 smaller than default).

means of the RMS Hausdorff distance (RMSE). Besides, the
computation time and memory usage of each method is also
measured. The input used for all methods is the set of oriented
vertices of each reference mesh. As shown in Table I, the
proposed method is consistently more accurate and faster than
the reference methods, whereas the memory usage is close to
that of BPA. In Fig. 5, close-up views of the results obtained
with each of the three tested methods can be compared to the
ground-truth mesh.

V. EXPERIMENTAL RESULTS

The surface reconstruction algorithm is parameterized by
the number of output surface samples (100000 in our ex-
periments) and the size of the different search regions used
in every stage. These parameters, including the ones for im-
proving the scouting stage, have been empirically determined
in order to provide the expected behavior, derived from the
bounding box volume sx× sy × sz , and are listed in Table II.
The datasets used for determining them contain scenes similar
to those reconstructed in our tests: they are multi-view (7
views) captures of persons in an empty space with approximate
dimensions of 4 × 3 × 2.5 m3. About the sensitivity of the
parameters, in Fig. 6 we show the effect of an erroneous
selection of the initial multi-resolution scouting radius ρm,
where some parts of the surface are not covered by the seed
samples. A nice feature of these parameters is that they are
independent of the resolution of the images, since they are
defined on 3D space.

Three multi-view real sequences from datasets available in
[8] and a synthetic one (kung-fu girl, [30]) have been used,
the details of which are listed in Table III.

Three experiments have been performed on these data.
The first two experiments demonstrate the efficiency increase
that can be achieved by applying any of the two proposed
improvements for seed surface sample scouting. The third
experiment showcases an interesting property about the scaling

TABLE III
MULTI-VIEW SEQUENCES FROM [8] AND [30]

Sequence # Views # Frames Resolution
dancer 8 201 780× 582
children 16 339 1624× 1224
martial 16 210 1624× 1224
kung-fu girl 25 200 320× 240
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TABLE IV
FRAME PROCESSING TIME WITH DYNAMIC SCOUTING

Sequence Default Dynamic
dancer 1.02 s 0.46 s
children 2.73 s 0.92 s
martial 2.35 s 0.88 s
kung-fu girl 1.4 s 0.56 s

of the proposed surface sampling strategy to large multi-view
settings that makes it ideal to be used in such conditions. The
results are obtained from a single-threaded implementation
running on a Core 2 Duo 2.8 GHz CPU.

A. Dynamic and multi-resolution scouting

These two first experiments demonstrate the increase in ef-
ficiency that can be achieved by modifying the initial scouting
stage with the two proposed scouting improvements.

In Section III-D-a, a multi-resolution approach has been
proposed, the most important adjustable parameter of which
is the decimation level in the input silhouettes. In Fig. 7, the
execution times with different levels are shown. The case with
decimation set to 1 corresponds to the default scouting.

In Section III-D-b, a dynamic scouting strategy has been
presented, which reduces the computation time in multi-
view video sequences by exploiting temporal correlation. The
average computation times for each sequence with and without
dynamic scouting are listed in Table IV, showcasing how inter-
frame similarity of the position of surfaces can be effectively
used for reducing the search regions for seed surface samples.
This results in a clear increase in frame-rate.

The resulting efficiency gain obtained by both dynamic
and multi-resolution scouting is similar. The extra cost from
initially obtaining seed samples at low resolution in multi-
resolution scouting is partly balanced with the fact that the
low-resolution seeds are in average closer to the actual surface
than the high-resolution seeds from a previous time instant in
dynamic scouting, which translates in the choice of a multi-
resolution scouting radius smaller than its dynamic scouting
counterpart. In Table V we list the average RMS Hausdorff
distance (RMSE) between the surfaces obtained with default
scouting and the ones obtained by using one of the improved
scouting strategies for each sequence. For multi-resolution
scouting, we have chosen an initial decimation of 8. Distances
are one order of magnitude below the reference radius ρr.
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Fig. 7. Reconstruction time vs. initial level of image decimation in multi-
resolution scouting. A decimation of 1 is equivalent to the default scouting
with full-resolution images.

TABLE V
AVERAGE RMS HAUSDORFF DISTANCES TO DEFAULT SCOUTING

Sequence ρr Multi-res. Dynamic
dancer 0.03 0.0052 0.0043
children 0.03 0.0047 0.0045
martial 0.03 0.0043 0.0055
kung-fu girl 0.35 0.051 0.052

B. Efficiency in multi-camera environments

A limiting problem when working in multi-camera envi-
ronments is the cost associated to the addition of each new
camera. Typically, algorithms exploiting multi-view data can
grow linearly, e.g. in volumetric reconstruction techniques,
or even quadratically, e.g. in image-based approaches where
multiple cross-validations between camera views take place,
with the number of available cameras.

However, the proposed reconstruction strategy benefits from
the fact that the ratio between silhouette contour and total
number of pixels remains practically constant with respect to
the number of available cameras when these are placed at
similar distances from the objects of interest. Even better, the
ratio between silhouette contour pixels (in image space) and
occupied volume (in 3D space) increases with the addition of
each new camera. Thus, even if the cost of a projection test
grows linearly with the number of views, the probability that a
3D point is a surface point also grows for each additional view,
partly balancing this effect. As shown by this experiment, the
result is that the proposed reconstruction strategy is well suited
to large multi-camera settings.

Fig. 8 shows, in dashed lines, the extrapolated computation
time from the first five views up to the whole range of
available views (linear time). As shown, the measured time
clearly grows at a smaller rate for subsequent views. In
Fig. 9, the reconstructed surfaces for one time instant of
each sequence with increasing numbers of input views are
shown. The marginal increase of detail in the resulting surface
becomes smaller, and so does the marginal cost of adding each
additional view. This reflects the expected efficiency of the
proposed reconstruction strategy.

The modeling of the local distribution of surface points for
the fast propagation stage has proven successful at reducing
the search space and the corresponding computing time. This
results in a reduced marginal cost when introducing additional
cameras for finer reconstructions. Although a naive implemen-
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Fig. 9. The leftmost column shows surfaces reconstructed from only
5 viewpoints of each sequence. Towards the right, surfaces obtained with
increasing number of views. The rightmost column shows the surfaces
reconstructed from the whole multi-view set for each sequence.

tation of the the scouting stage assumes a very uninformative
initial model of the distribution of surface samples, we have
also shown how the two proposed alternatives (dynamic and
multi-resolution) produce tighter distribution models, which
further reduce the computing time.

VI. APPLICATION

We focus on a Free-Viewpoint Video (FVV) application,
where the contents of interest of multi-view video sequences
(the dynamic foreground) are streamed to a rendering applica-
tion implemented in OpenGL, which sends triangles and color
arrays to the standard rendering pipeline. The triangles corre-
spond to the meshes obtained from the meshing algorithm,
whereas the color arrays correspond to the vertices’ colors.
No projective texturing is required, thanks to the density of
the surface representation. Whereas image-based rendering
approaches [1] propose methods optimized for speed in FVV
rendering, we focus here on methods for reconstruction, which
provide a unique 3D representation of the dynamic contents
of the multi-view scene. Besides rendering, scene analysis
(including tracking [14] and pose estimation) can also be
performed on this alternative representation.1

We validate the proposed method by qualitatively comparing
the reconstruction performance to that of two state-of-the-art
methods, Exact Polyhedral Visual Hull (EPVH) [9] and Patch-
based Multi-View Stereo (PMVS2) [11], which are typically
used in wide-baseline setups (by extracting foreground sil-
houettes) and small-baseline ones (with optional silhouettes),

1With a MATLAB implementation of [1] running at ∼5 fps we obtain
no visible differences with our method (both obtain visual-hull estimates). A
GPU implementation would be a possible alternative for FVV.

respectively. The selection of methods responds to the fact
that EPVH provides projection-accurate estimates of the visual
hull (when silhouettes are error-free) and PMVS2 is used at the
core of contemporary approaches for large-scale reconstruction
[31] and has a high rank in the Middlebury benchmark [32],
particularly for sparse rings (16 views). Fig. 10 shows how
the proposed method produces a more visually appealing
surface geometry than the one obtained with EPVH, which
is geometrically exact but does not compensate discretization-
derived artifacts. Post-processing is rather difficult to apply on
the EPVH surfaces, due to the irregular shape and size of the
mesh triangles, besides textures must be separately transmitted
or projected from the original images.

Multi-View Stereo (MVS) methods, e.g. PMVS2, are not
tailored to scenarios with very wide-baseline setups, and
usually require a high amount of texture to be present in
the input images. Thus, our method also compares favorably
to this approach in our target scenarios, although we must
remark that our approach would not be suitable for setups
where background subtraction is not possible. MVS is also
capable of reconstructing concavities, which are impossible to
recover by only imposing silhouette consistency.2 In terms of
computation time, PMVS2 required 28 minutes per frame (on
a Intel Xeon 3 GHz CPU), whereas our algorithm is capable
of extracting a denser set of surface points at a frame rate
∼4 fps. In our current OpenCL version, the implementation
details of which are not included, we achieve real-time, with
speed-ups between 4× and 8×.

In Fig. 11, two possible uses of our free-viewpoint viewer
are shown. On the left image we have captured an instant
of the dancer sequence rendered from a novel viewpoint
using a virtual background. On the right, we re-project a
reconstructed surface from a scene from [8] onto one of
the original viewpoints and overlay it with the corresponding
original background.3 A clear advantage of this representation
is that, by transmitting the static background just once per
video sequence and updating the 3D surfaces every frame, we
can retrieve all views in every frame up to a certain level of
accuracy.

2For reference, using the Middlebury datasets (which contain large concav-
ities) and metrics, the scores of our method for runtimes below 1s with the
sparse ring datasets are 4.49 mm and 68.5% for Temple and 3.27 mm and
60.9% for Dino. Note our method does not introduce photo-consistency and
is therefore not suitable for this MVS comparison.

3Further free-viewpoint-video examples and binaries can be found under
https://imatge.upc.edu/web/?q=node/1456.

Fig. 11. Left: novel viewpoint of an instant of a scene captured by 8 cameras
with virtual background. Right: composition of a surface reconstructed from
16 views projected onto an original viewpoint with original background.
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Fig. 10. Reconstructed surface of a frame in a multi-view sequence with 16 views. From left to right: geometry obtained with EPVH [9]; PMVS2 [11]
concatenated with BPA [27]; proposed method; per-vertex colored surfaces from PMVS2+BPA; and proposed method.

A. Required density of surface points

One question that arises is: Which is the required density
of surface points to obtain an accurate representation? We
compare the average PSNR of the re-projection of the re-
constructed surfaces onto the most challenging (worst PSNR)
view against the number of surface points per pixel. In our
experiments, the worst PSNR corresponds to the view with the
largest number of FG pixels. After normalizing, we obtain the
curves in Fig. 12. As observed, a number of surface samples of
around twice the number of pixels occupied by the FG objects
in the most limiting view seems to be a safe, yet economical,
choice for representing scenes with good quality. This rule
of thumb reflects that the method is performing at its best
when a density of around one surface point per pixel is taken
(assuming revolution symmetry for 3D objects).

Table VI shows how the proposed representation is suitable
for streaming multi-view video for distributed applications. We
compare the amount of data required to represent multi-view
sequences with an image-based manner (either as individual
frames or exploiting temporal redundancies in lossless video
sequences) and with our approach. The bandwidth (storage
resources) for transmitting (storing) multi-view video with
static background can be notably reduced with our method
by introducing a controlled amount of losses. In the table, FG
CTM stands for compression of reconstructed colored meshes
using OpenCTM [33], which compresses mesh data in a factor
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Fig. 12. Relative PSNR (with respect to the maximum) as a function of the
ratio between the number of surface samples and the number of foreground
pixels in the view where they take most pixels.

of about 10. PSNR figures in the worst view are still well
above 45 dB. We are not attempting to use our method for
coding, but rather introducing it as a powerful mechanism
to obtain an alternative representation for distributed real-
time applications where analysis and rendering functions run
simultaneously. Our method does not only convey the vi-
sual information of the original images within a margin of
controlled losses, but also augments this by providing a 3D
estimate of the dynamic part of the scene using a suitable
representation at the cost of a reasonable computation time.

VII. CONCLUSIONS

An alternative representation method for multi-view video
is proposed, based on a robust and efficient algorithm for
reconstructing silhouette-consistent surfaces that exploits both
spatial (Markov-Chain model) and temporal correlations. The
main advantage of this reconstruction strategy is that, al-
though it initially generates a sparse surface sampling with
a low efficiency at the scouting stage (rejection sampling),
an efficient propagation strategy provides a fast dense final
sampling. Two improvements exploiting multi-resolution and
temporal correlation have been proposed, which clearly in-
crease the scouting efficiency. The proposed algorithm is GPU-
friendly, since all processes can be parallelized. Although the
implementation details are not the focus of this paper, the
algorithm has also been ported to OpenCL, providing real-
time reconstruction for interactive free-viewpoint video. The
speed-up is in the range 4× to 8×, but there is room for
improvements. For the future work, we plan to generalize the
proposed approach, introducing visibility estimates for each
view, to obtain photo-consistent surfaces. We also plan to
introduce regularization by exploiting the hierarchy of surface
samples during propagation.

TABLE VI
3D SURFACES AS A REPRESENTATION FOR STREAMING

Format Compress
dancer children martial
8 views 16 views 16 views

Images PNG 808 MB 12 GB 27.2 GB
H.264 LS 352 MB 4.6 GB 4.3 GB

Surface
FG Raw 756 MB 2.4 GB 12.1 GB
FG CTM 76 MB 242 MB 1.2 GB
(PSNR) 50.72 dB 70.85 dB 48.40 dB
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