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Morphological Operators for
Image and Video Compression

Philippe Salembier, Patrick Brigger, Josep R. Casas and Montse Pardas

Abstract— This paper deals with the use of some morp-
hological tools for image and video coding. Mathematical
morphology can be considered as a shape-oriented approach
to signal processing and some of its features make it very
useful for compression. Rather than describing a coding al-
gorithm, the purpose of this paper is to describe some morp-
hological tools that have recently proved to be attractive for
compression. Four sets of morphological transformations are
presented: connected operators, the region growing version
of the watershed, the geodesic skeleton and a morphologi-
cal interpolation technique. Their implementation will be
discussed and we will show how they can be used for image
and video segmentation, for contour coding and for texture
coding.

I. INTRODUCTION

MAGE and video compression techniques generally rely

on the results of the information theory. In this fra-
mework, compression is achieved by a decorrelation of the
signal followed by quantization and entropy coding of the
information to transmit. Decorrelation is obtained by using
either predictive (DPCM, motion compensation) or trans-
form (DCT, wavelets) techniques. For very high compres-
sion, there is an increasing interest in second generation
image compression techniques [14]. These techniques also
eliminate the redundant information but in addition try
to take advantage of the properties of the human visual
system. In particular, region-based compression methods
describe the images or the sequences in terms of a set of
regions, that is a partition, and of some information for
each region to be used by the receiver to reconstruct the
image. This approach leads to contour/texture representa-
tions of the images. These techniques have been applied to
the coding of still images [14], [13]. For sequences, region-
based schemes have been developed in particular in [24],
28], [45], [18].

In a region-based coding approach, the geometrical cha-
racteristics of the signal play an important role. For ins-
tance, the definition of the partition involves a segmenta-
tion which should ideally extract objects of the image or
of the sequence. Obviously, objects are not only charac-
terized by the correlation of their pixels but also by some
geometrical properties. Another example is the coding of
the partition. In this case, the information to transmit is
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purely geometrical. Finally, for very high compression of
the texture information, only the most meaningful part of
the signal can be transmitted. This meaningful part may
be geometrically defined: let us mention as examples, the
minima and maxima of the signal, the lines of maximum
and minimum curvature, etc. All these examples show that
there may be a need for geometrical tools for image com-
pression.

Classical linear signal processing tools are not well sui-
ted for a geometrical approach and other tools coming from
nonlinear signal processing or from computer vision may be
attractive for this purpose. Mathematical morphology [36],
[37] has been developed as a geometrical approach to signal
processing and our objective in this paper is to describe and
discuss the usefulness of morphological tools in the context
of image compression. The use of morphological tools for
coding is becoming a very active field of research [35], [22],
[31], [3], [27], [12], [7]. Rather than describing a complete
coding / decoding scheme, this paper focuses on four morp-
hological tools which have recently been defined and that
have proved to be useful for compression (the reader is re-
ferred to [31], [35] for the description of complete coding
algorithms). Moreover, these tools were selected because
they cover the most important parts of a coding scheme.
We will successively deal with the following morphological
tools:

o Connected operators [39], [34]. This class of operators
solves the problem of image simplification while pre-
serving the contour information. The contour preser-
vation property of connected operators is much better
than that of linear, median, rank order and classical
morphological filters. They can be used for a large
number of purposes in a coding scheme but they are
specially useful for segmentation.

o Region growing version of the watershed [21], [26], [32].
The watershed transformation is the classical morpho-
logical tool for segmentation [23]. However, it is ge-
nerally applied on the gradient of the image. The use
of the gradient results in a loss of information which
is not acceptable for coding specially for moving se-
quences. The region growing version of the watershed
solves this problem. Moreover, it allows the introduc-
tion of complex criteria such as the contour complexity
within the segmentation process.

o Geodesic skeleton [3]. Morphological skeletons have al-
ready been used for the coding of binary images [15],
[12]. However, the coding of partitions is a different
issue because the information to code cannot be de-
composed into a set of objects and its complement,
that is the background. Since a contour belongs to at
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Fig. 1. Three steps of a coding process

least two different regions, the description of each re-
gion by its skeleton results in a coding process where
each contour is coded twice. The geodesic skeleton sol-
ves this problem and results in a more efficient coding.

o Morphological interpolation [40], [5], [33]. Geometrical
interpolation techniques based on the notion of geo-
desic distance are very efficient tools to interpolate on
non regular grids. They can be used in combination
with several image models to develop various texture
coding strategies.

The organization of this paper is as follows: the next sec-
tion introduces the various processing steps that are useful
for coding applications, in particular segmentation, contour
coding and texture coding. Section III presents the notion
of connected operators and their application to segmenta-
tion. Section IV is devoted to the region growing version
of the watershed and its use for segmentation in the fra-
mework of a coding application. Geodesic skeletons will be
defined and applied to contour coding in section V. Morp-
hological interpolation will be presented in section VI and
several texture coding strategies will be proposed. Finally,
section VII concludes the paper.

II. STRUCTURE OF THE CODING PROCESS

This section describes some of the most important co-
ding steps of a compression algorithm. The goal is not to
propose a particular scheme but to discuss some structures
and to define processing blocks where the morphological
tools described in the sequel may be used.

On the upper level, one may consider that any coding al-
gorithm involves three major steps represented on Fig. 1:
partition definition, partition coding and texture coding. In
the case of a block-based coding scheme, the partition defi-
nition corresponds simply to the division of the image into
blocks and the partition coding can be removed because the
receiver can restore this partition without any transmitted
information. In the case of a region-based coding approach,
the partition definition is the segmentation which extracts
homogeneous regions. The homogeneity criterion can deal
with information such as the gray level values or the mo-
tion. The shapes of the resulting regions are arbitrary.
They have to be transmitted to the receiver by the parti-
tion coding. In all cases, the texture is transmitted once
the partition is known. Note that this approach is valid
for both still image and sequence coding. In the case of
sequence coding, the partition and texture information is
generally transmitted by using motion compensation. Let
us describe more precisely some of the blocks involved in
the three processing steps.

A. Iterative segmentation

A fairly general segmentation structure is represented in
Fig. 2 [27], [35]. It is an iterative segmentation struc-
ture which can be used for intra-frame or inter-frame seg-
mentation. As can be seen in the upper part of Fig. 2,
the segmentation is performed in several steps. Each step
produces a new segmentation result (Partition N) starting
from a previous estimate of the segmentation (Partition
N-1).

In the case of intra-frame segmentation, the Original N
represents one of several versions of the frame to segment
(for example the original image at various levels of resolu-
tion). Each step of the iterative segmentation will improve
the partition by introducing new regions and possibly by
improving the contour position of known regions. As can
be seen, the iterative segmentation corresponds to a hie-
rarchical segmentation approach [31], [18]. For inter-frame
segmentation, the Original N represents the frame at time
N. In this case, the iterative segmentation structure will
segment the frame N based on the knowledge of the parti-
tion at time N-1. This approach leads to a time-recursive
segmentation where each step modifies the partition in or-
der to follow the time evolution of past regions and, pos-
sibly, to introduce new regions [27]. Let us briefly describe
the various steps used for the iterative segmentation (see
Fig. 2):

o Projection: The projection block takes the previous
segmentation result (Partition N-1) and computes an
estimate of the segmentation of the Original N wit-
hout introducing new regions. In intra-frame mode, if
the resolution of the image has been modified, the pro-
jection will more precisely define the contour position.
By contrast, if Original N does not depend on N, that
is if all the segmentation steps work on the full resolu-
tion image, the projection step can be reduced to the
identity. In inter-frame mode, the projection defines
the time evolution of the regions defined at time N-1.
It is a temporal linking of the regions.

e Coding & Residue Computation: After pro-
jection, missing regions that are visually important
should be introduced. To this goal, the effect of the
coding process (partition and texture) should be esti-
mated and the regions that are not well coded should
be extracted. One solution consists in actually coding
the image (Coding block) and in computing the diffe-
rence between the coded image and the original (Re-
sidue block). The result is called the residue frame.
It concentrates all the information about the regions
that are not well coded with the current partition. To
introduce new regions, the residue is segmented by the
three following steps.

o Simplification: In this step, the residue is simpli-
fied to make it easier to segment. The simplification
controls the nature and amount of information that
is kept for segmentation, that is the characteristics of
the new regions to be introduced. Different simplifica-
tion filters can be used depending on the segmentation
criterion.
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o Feature extraction: The goal of this step is to de-

tect the presence of homogeneous regions, that is to i
assess the local homogeneity. The feature extraction Contour Contour
output can be a set of markers identifying the interior Memory Compensation

of the regions that will be segmented. In practice, a
marker is a connected component of the image with a
specific gray level value indicating the number of the
region. The marker defines the set of pixels which su-
rely belong to the region and, in general, it defines the
major part of the region interior. Note that the feature
extraction technique depends on the segmentation cri-
terion and therefore on the simplification filter.

e Decision: After feature extraction, the number and
the interior of the regions to be segmented are known.
However, a large number of pixels are not assigned
to any region. These pixels correspond to uncertainty
areas mainly concentrated around the contours of the
regions. Assigning these pixels to a given region can
be viewed as a decision process that precisely defines
the partition. This decision process only deals with
the new regions and it has to be constrained to take
into account the partition that was defined by the pro-
jection step.

In section III, we will show how mathematical morpho-
logy can be used in this segmentation process. We will see
in particular that connected operators are extremely useful
for simplification and feature extraction [31], [32] and that
the region growing version of the watershed is very attrac-
tive for both the projection and the decision [27], [26].

B. Contour coding

Fig. 3 illustrates the transmission of the partition infor-
mation by the classical motion predictive technique: based
on the previous partition image stored in the contour me-
mory and on the motion information, a predicted partition
is created by the contour compensation block. Its difference
with the current partition defined by the segmentation is
computed. Since we are dealing with partitions, the dif-
ference operator has to be considered as a set difference.
The difference, called contour error, is simplified, coded
and transmitted to the receiver. Note that the coding of
a still image or of an intra-frame can be considered as a
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Fig. 3. Structure of the contour coding
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Fig. 4. Structure of the texture coding

special case where no compensation is performed.

Morphological tools can be used at least at two diffe-
rent levels of this structure. First, they can be used as
simplification tools to remove small prediction errors that
may result expensive in terms of coding but are not vi-
sually important. Connected operators are well suited for
this purpose. Second, the partition errors that have to be
transmitted after compensation can be represented either
by their contours or by their shape. In the second case,
geodesic skeletons are very efficient tools to code this kind
of information [3].

C. Texture coding

Once the partition has been restored (either transmitted
or computed) in the receiver, the texture or color informa-
tion has to be coded. One of the most popular strategy fo-
llows the motion predictive technique illustrated in Fig. 4:
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TABLE 1
MORPHOLOGICAL TOOLS AND THEIR USE FOR CODING

Connected region growing Geodesic Morphological
operators watershed skeleton interpolation

Projection Yes

Simplification Yes

Feature extrac. Yes

Decision Yes

Contour coding Yes Yes

Texture coding Yes

based on the previous texture image stored in the tezture
memory and on the motion information, a compensated
texture image is created by the texture compensation block
and its difference with the original texture frame is com-
puted. The difference, called texture error, is coded and
transmitted to the receiver. The final image is created by
adding the compensated texture and the coded error. As
before, this scheme is also valid for still images if no com-
pensation is performed. Moreover, depending on the par-
tition definition, the approach is adequate for block-based
as well as region-based coding. In section VI, the useful-
ness of morphological interpolation for texture coding will
be presented and illustrated.

Table I summarizes the various blocks that have been
described and indicates where the morphological tools des-
cribed in the sequel can be used.

III. CONNECTED OPERATORS AND SEGMENTATION

A. Classical linear and non linear tools for image simplifi-
cation

In the context of segmentation, image simplification is
generally used to eliminate the noise and to remove part
of the signal which is of no interest for the segmentation
process. The most classical simplification tool in signal
processing is a linear low pass filter. However, it is well
known that this filter blurs edges and does not preserve
the contour information. For a segmentation application,
it is of course of prime importance to preserve the contour
information. The problem of finding a simplification tool
able to preserve the contour is a very active field of rese-
arch. Many nonlinear filters such as median, rank-order
and morphological filters have been proposed. However,
even if these filters give good results for 1D signals, their
performances deteriorate strongly for 2D signals. Most of
the time, the results are strongly influenced by the choice
of the window of the filter. In the following section, we
will show why connected operators can solve the problem
of simplification and contour preservation [39], [34].

B. Connected operators

The first connected operator reported in the literature
is known as opening by reconstruction. It appeared ex-
perimentally for binary images in the work of [11]. Initi-
ally, it consisted in eroding a binary image by a connec-
ted structuring element and in reconstructing all connec-
ted components that had not been totally removed by the
erosion. It was called opening because it is an increasing,
anti-extensive and idempotent process. It therefore posses-
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Fig. 5. Structure of a binary connected operator

ses the three fundamental properties of an algebraic ope-
ning. Moreover, it was called by reconstruction because it
involves a reconstruction process of the connected compo-
nents that have not been totally removed by the erosion.
On this very simple example, one can see that the binary
opening by reconstruction has the fundamental property of
simplifying the signal while preserving the contour infor-
mation. Indeed, the connected components of the binary
image are either totally eliminated (the simplification ef-
fect) or perfectly preserved (the contour preservation).

The original idea of binary opening by reconstruction re-
lies on a separation of an analysis process and of a decision
process as illustrated in Fig 5. The simplification is ba-
sically a binary decision process stating which connected
components have to be preserved and which have to be
removed. In the original example of [11], the selection is
done by the computation of an erosion, however, it can be
extended to a large number of criteria such as the area, the
Ferret diameter, etc.

In [39], [34], the concept of binary connected operators is
formally defined as follows: first, a connectivity has to be
defined. In practice, the definition of the connectivity redu-
ces to the definition of a local neighborhood system descri-
bing the connections between adjacent pixels. The classical
choices involve 4, 6 or 8 connectivity. Once the connecti-
vity has been selected, the notion of connected operators
can be defined as follows:

Binary connected operators: a binary operator ¢ is said
to be connected when for any binary image X, the sym-
metrical difference X \ ¢(X) is exclusively composed of
connected components of X or its complement X°©.

This is exactly the case of the binary opening by recons-
truction which acts only by preserving or removing con-
nected components. The extension of the notion of binary
connected operators to gray level connected operators re-
lies on the concept of partition [39], [34]. Note that, the
extension cannot be done directly because the connectivity
has no equivalent in the case of gray level functions. Let
us recall that a partition of the space E is a set of con-
nected components {A4;} which are disjoint and the union
of which is the entire space. Each A; is called a partition
class. Moreover, a partition {A4;} is said to be finer than
another partition {B;} if any pair of points belonging to
the same class A; also belongs to a unique partition class
Bj. Consider now a binary image and define its associated
partition as the partition made of the connected compo-
nents of the binary sets and of their complements. The
definition of connected operators can be expressed with as-
sociated partitions:

Binary connected operators via partition: A binary ope-
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rator ¢ is connected if and only if, for any binary image
X, the associated partition of (X) is less fine than the
associated partition of X.

The concept of gray level connected operators can be
introduced if we define a partition associated to a function.
To this end, the use of flat zones was proposed in [39], [34].
The set of flat zones of a gray level function f is the set
of the largest connected components of the space where
f is constant (note that a flat zone can be reduced to a
single point). It can be demonstrated [39] that the set of
flat zones of a function constitutes a partition of the space.
This partition is called the partition of flat zones of a gray
level function. It leads to the following formal definition:

Gray level connected operators: An operator ¥ acting on
gray level images is connected if, for any function f, the
partition of flat zones of ¥(f) is less fine than the partition
of flat zones of f.

There are several ways of creating gray level connected
operators. The simplest one consists in extending a binary
connected operator. Indeed, as shown in [16], [37], [10],
any binary operator can generate a gray level operator by
threshold decomposition and stacking. This procedure is
illustrated in Fig. 6. The threshold decomposition genera-
tes one binary image X, for each possible gray level value
A, that is 2V binary images if the gray levels are quantized
with N bits. Note that each binary image X, is associated
to a specific gray level A\. Each binary image is processed by
a binary connected operator . Finally, the stacking con-
sists in reconstructing a gray level image g = ¥(f) from
the set of binary images ¥(X)):

g="9(f)= Slip( M ¥(Xw) (1)

Note that if the binary connected operator v is increasing,
the stacking can be simplified:

g=¥(f)= Sl;p(iﬁ(Xx)) (2)
Following this procedure, it can be shown [39], [34] that
the resulting gray level operator ¥ is a connected operator
because the partition of flat zones of f is always finer than
the partition of flat zones of ¥(f). The processing struc-
ture illustrated in Fig. 6 explains why gray level connected

operators simplify while preserving the contour informa-
tion. Indeed, as in the case of binary connected operators,
a binary decision process states whether a flat zone has to
be preserved or removed. Moreover the decision process is
separated from the reconstruction process.

C. Ezamples of connected operators

As examples of gray level connected operators, let us
describe the gray level opening by reconstruction, the area
opening and the h-maz operator.

o Gray level opening by reconstruction: As discussed pre-
viously, this filter consists in preserving all connected
components (after threshold decomposition) that are
not totally removed by a binary erosion by a structu-
ring element of size h. The gray level output image is
restored by stacking. This opening has a size-oriented
simplification effect: it removes the bright image com-
ponents that are smaller than the structuring element.
By duality, a closing by reconstruction can be defined.
Its simplification is similar to that of the opening but
on dark components.

o Gray level area opening [43]: This filter is similar to
the previous one except that it preserves the connected
components that have a number of pixels larger than a
limit h. It is also an opening which has a size-oriented
simplification effect, but the notion of size is different
from the one used in the opening by reconstruction.
By duality an area closing can be defined.

e h — max operator: This operator differs from the pre-
vious ones only by the way it preserves the connected
components after threshold decomposition. The crite-
rion here is to preserve a connected component of the
binary image X, if and only if this connected com-
ponent hits one connected component of the binary
image X4+p. This is an example where the criterion
involves two binary images obtained at two different
threshold values. The simplification effect of this ope-
rator is contrast-oriented in the sense that it eliminates
image components with a contrast lower than h. Note
that, the h — max is an operator and not a morpho-
logical filter because it is not idempotent. By duality,
the h — min operator can be defined.
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Fig. 7. Example of simplification and feature extraction with gray level connected operators. First row: original image, simplification by an
opening by reconstruction followed by a closing by reconstruction, size-oriented feature extraction. Second row: original, simplification

by a h — max operator, positive contrast feature extraction

The definition of the previous connected operators has
been done by using the scheme of Fig. 6. However, in prac-
tice, it is not necessary to use the threshold decomposition
and the stacking to build a gray level connected operator.

D. Implementation of the reconstruction process

The main bottleneck in the implementation of a gray
level connected operator is the reconstruction process. In-
deed, the selection step is generally more easy to compute.
For instance, in the case of the opening by reconstruction,
the selection is performed by a simple gray level erosion. In
the case of the h — max operator, it relies on a simple sub-
traction of a constant value h from the original signal. The
selection step produces what is generally called a marker
image (because it indicates the connected components of
the original signal that should be preserved).

Assume that the original and marker images are known
and that we want to compute the reconstruction of the
original image starting from the marker image. The most
efficient reconstruction algorithm relies on the definition
of a clever scanning of the image and are implemented by
First-in-First-out (FIFO) queues. A review of the most po-
pular reconstruction algorithms can be found in [44]. Here,
let us describe a simple but efficient one:

The basic idea of the algorithm is to start from the regi-
onal maxima of the marker image and to propagate them
under the original image (this reconstruction is known as
a positive reconstruction and by duality a negative recons-
truction can be defined). The algorithm works in two steps.
The first one corresponds to the initialization of the queue
and the second one performs the propagation.

o The initialization consists in putting in the queue the
location of pixels that are on the boundary of the regi-
onal maxima of the marker image. Regional maxima
are the set of connected components where the image
has a constant gray level value and such that every

pixel in the neighborhood of the regional maxima has
strictly a lower value. Algorithms to compute regional
maxima can be found in [42].

o The propagation extracts the first pixel z from the
queue (note that x is a pixel of the marker image).
Then, it assigns to each of its neighbors y, that have
a strictly lower gray level value than z, the minimum
between the gray level value of z and the gray level
value of the pixel of the original image at the same lo-
cation than y. Finally, the pixel y is introduced in the
queue. This propagation process has to be carried on
until idempotence. This propagation process is very
efficient because the image pixels are processed only
once.

E. Application of connected operators for segmentation

Connected operators are very useful for segmentation
in particular in the framework of coding. Indeed, for co-
ding applications, the segmentation should be constrained
and should extract only the most important regions of the
images. Opening (closing) by reconstruction or h — max
(h — min) respectively eliminates small or low contrasted
regions. They allow a representation of the image by its
regions of large size or of high contrast which generally
correspond to visually important image components. Mo-
reover, they are suitable for simplification because they re-
move part of the information while preserving the contour
information of the remaining image components. Both ope-
rators are illustrated by Fig. 7. The upper row shows
a size-oriented simplification by an opening by reconstruc-
tion followed by a closing by reconstruction, whereas the
lower row illustrates a contrast-oriented simplification by a
h — mazx operator.

As discussed previously, these operators interact with
the signal through the notion of flat zones. This property
makes connected operators also very attractive for feature
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extraction. Indeed, in the case of size-oriented segmen-
tation, the feature extraction has to detect large flat zo-
nes. This can be done by labeling all large flat zones af-
ter simplification by a connected operator. In the case of
contrast-oriented segmentation, a similar technique can be
used. Consider a simplification with a h — maz operator,
the flat zones of high contrast can be identified by taking all
flat zones after simplification where the difference between
the original image and the simplified one is equal to h at
least in one point [30]. The images on the right side of
Fig. 7 illustrate the feature extraction. In these examples,
markers are represented in white whereas uncertainty areas
are in black.

IV. WATERSHEDS AND SEGMENTATION
A. Classical morphological approach to segmentation

The classical approach to segmentation [23] is to perform
a feature extraction (generally called a marker extraction)
and to use the watershed algorithm on the gradient of the
image to segment. The watershed defines a catchment ba-
sin for each gradient minimum that has been identified by
the marker extraction. This approach is not suitable for
coding applications. Indeed, the use of the gradient re-
sults in a loss of information because if the original signal
involves transitions, its morphological gradients are either
biased (gradient by erosion g~ = f — €' (f) or by dilation
gt = 6(f) — f) or thick (g = §(f) — €'(f)) L. In the
case of still images, this phenomenon is not extremely an-
noying. However, in the case of moving images, the use
of the gradient results in a much larger loss of information
[32]. Indeed, in the temporal direction, the thickness of the
gradient depends on the motion of the objects and can be-
come very large. Therefore, the use of the gradient should
be avoided and the watershed algorithm has to be modified
to work directly on the signal and not on its gradient.

B. The region growing version of the watershed

The idea of using the watershed algorithm directly on the
signal to segment was proposed in [21] to deal with color
images and modified in [32] to improve the algorithm preci-
sion. The resulting watershed algorithm is a region growing
algorithm in the sense that it starts from the markers that
identify the interior of the regions and extends them until
they occupy all the available space.

Efficient implementations of watershed algorithms re-
quire a clever scanning of the images defined by hierarchical
queues. A hierarchical queue is a set of FIFO queues with
different priorities. The elements processed by the queue
are pixel positions (the queue is used to define the scan-
ning). This structure allows the representation of a double
ordering: pixels are put into one of the queues depending
on a given priority. The first pixel to be pulled out of the
queue is the first one which has entered the queue of hig-
hest priority. Then, successively, all pixels in the queue of
highest priority are extracted. Finally, if the queue of hig-

151 and €' stand for the dilation and the erosion of size one, that
is the smallest size on the digital grid
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Fig. 8. Implementation of the watershed algorithm with a hierarchi-
cal queue

hest priority is empty, the next pixel to be extracted is the
first pixel of the first non empty queue. Now, the region
growing version of the watershed can be simply implemen-
ted with these queues. The algorithm works in two distinct
steps: queue initialization and region growing:

o The initialization consists in putting the location of
all pixels corresponding to the regions’ interior in the
queue of highest priority. The highest priority queue is
used because the priority corresponds to the certainty
with which a pixel belongs to a given region.

o The region growing consists in extracting a pixel from
the queue: if the pixel does not yet belong to a re-
gion, we know, because of the filling procedure, that it
has at least one neighboring region. Therefore, a dis-
tance between the current pixel and each neighboring
region is computed. The pixel is assigned to the region
corresponding to the smallest distance. Then, if the
current pixel has some neighbors that do not belong to
any region, these neighbors are put in the queue with
a priority defined as their distance to the region of the
current pixel. As can be seen, any pixel that is put in
the queue has at least one neighboring region. This is
why it is possible to make a decision concerning this
pixel when it will come out of the queue. The region
growing procedure is illustrated in Fig. 8 in the case of
2D images. Note that this algorithm can be used for
sequences viewed as 3D signals. The only difference is
the definition of the neighborhood system.

An important parameter of the algorithm is the distance
function. Ideally, this distance estimates the certainty with
which the pixel belongs to a region. However, for coding
applications, it is useful to include in the distance a con-
tour complexity criterion in order to limit the contour co-
ding cost. We propose to define the distance as a weighted
sum of the gray level difference between the pixel gray level
value z and the mean of the region R and a term propor-
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Fig. 9.

Example of decision with the region growing version of the watershed. First row: original image, markers, decision with a = 1.0.

Second row: decision with a = 0.7, decision with a = 0.4, decision with @ = 0.0.

TABLE II
COST OF CONTOUR CODING AS A FUNCTION OF «

« 1.0 0.7 0.4 0.0
bits for contour | 11816 | 10400 | 8200 | 4616

tional to the length increment of the region contour AJR.
The increment of the region contour can be locally compu-
ted by considering the number of contour points that are
added/removed each time a pixel is assigned to a specific
region. The distance function is therefore defined by:

dz,R) = a(z— (Y 9)/Q_1)+(1-a)AdR  (3)

YyER yER

Note that if the distance (or priority) is defined as the
gray level z (that is if d(z, R) = z), the algorithm is the
classical watershed working on the gradient [23].

C. Application to decision and projection

Fig. 9 illustrates the use of the region growing version
of the watershed algorithm for the decision process of the
segmentation. This figure shows an original image, a set, of
markers and four segmentation results depending on the a
parameter used to compute the distance. When « is equal
to one, the distance only depends on the gray level infor-
mation of the images and the resulting contours can be
complicated and therefore expensive to code. By contrast,
if a is equal to zero, the segmentation does not take into
account the gray levels of the image, it only extends the
makers to minimize the contour complexity. Note that in
this example, a size-oriented marker extraction was done.
As aresult only large regions are segmented and some small
details are not extracted (the mouth, part of the eyes, etc).
To extract these details, a contrast-oriented segmentation
can be used. In order to judge the influence of the « pa-
rameter, the regions have been filled with the mean value

of the original image and the corresponding partitions have
been coded using the modified chain code technique propo-
sed in [17] and Table II gives the number of bits necessary
to code the partitions. As can be seen, the use of an a
value of 0.7 allows a reduction of 10-15 % in the number of
bits with hardly visible modifications of the partition.

The projection step described in section II can also be
computed by the watershed algorithm. The only modifica-
tion is to consider the signals as 3D signals. The process
is illustrated by Fig. 10. Denote F;_; and F; the frames
at time t — 1 and ¢. Assume that the segmentation at time
t — 1, S¢—1, is known. The projection objective is to esti-
mate the segmentation, S, at time ¢ without introducing
new regions. For this purpose, two 3D signals are cons-
tructed. Frames F;_; and F; are grouped together to form
a temporal block F of size 2 in the time direction. Simi-
larly, the frame S;_; is grouped with an empty frame S,
representing an entire frame of uncertainty. The resulting
3D signal denoted S is considered as the set of markers
that should be used to segment the signal F. Each pixel of
the uncertainty area (that is of frame S,) is assigned to a
region of frame S;_1 based on the distance criterion des-
cribed previously. In 3D, the contour complexity criterion
controls the temporal stability of the contours.

Fig. 11 presents an example of a complete inter-frame
segmentation. The first row shows 3 original images from
the sequence “foreman”. The second row shows the seg-
mentation which is obtained using only the projection step.
That is, the regions of the first image are extended into
the new frames, but no new regions are introduced. This
segmentation is coded here simply with the mean value
of every region and the residue with the original frame is
computed. From this residue, contrasted regions can be
extracted. The result after this extraction of new regions,
coded with a second order polynomial is shown in the third
row. Only one new region corresponding to the mouth has
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Fig. 10. Projection using the watershed algorithm

appeared in the third frame. This region could not be pro-
duced from the previous image. Finally, in the fourth row
we have represented the final partition with different gray
levels for each region. The new region can be identified
since it is represented by the brightest gray level value.

V. GEODESIC SKELETON AND CONTOUR CODING
A. Contour-oriented coding of contour errors

Partition coding techniques can be classified into
contour- or shape-oriented approaches. The first set of
techniques represents the partition by describing its con-
tours, whereas the second one deals with the shape of the
regions.

The most popular contour-oriented coding techniques
are the derivative chain code, the polygonal approximation
and the geometrical curve approximation. The advantage
of the derivative chain code algorithm is that it can ef-
ficiently and losslessly code connected contour arcs. The
main drawback lies in the coding of the starting point of
the contour arc. The two other techniques are lossy and
their performances depend on the application. They are in
particular difficult to use efficiently if the accepted loss in
contour position is very low.

In the case of contour coding by motion compensation,
the information to transmit is the prediction error. This
kind of signal is generally made of a large number of small
regions resulting in large number of isolated contours. In
this case, the cost of the starting points is high and techni-
ques such as the derivative chain code become less efficient.
In the following, we will introduce a morphological tool for
shape-oriented contour coding. It allows a flexible contour
representation which is efficient in the case of many sepa-
rated contour arcs or of contours with few details.

B. Geodesic skeleton

A solid theory for the Euclidean skeleton has been es-
tablished in [19]. The skeleton 7(X) of an open set X is
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defined as the locus of the maximal open ball ép included
in X. Each maximal ball is characterized by its center x
and its radius p. The mapping x — p, z € 7(X) is called
the quench function of #(X). In [38], the theory is develo-
ped into an algebraic and a topographic branch. Reference
[38] refers to the first one by Lantuéjoul’s formula:

r(X) = [ (X) = (I (X)\ 7' (X))

p>0 p>0

(4)

where €(X) is an erosion of size p, and v'(X) stands for
the opening of size one. The topological branch is relevant
when preservation of connectivity is necessary. This occurs
mainly in applications dealing with the topological study
of objects (how many objects, how many holes, how many
branches). In image coding, the goal is to represent ob-
jects with the lowest number of bits and the connectivity
preservation is not mandatory. According to [38], for such
application, it is necessary to find a skeleton decomposition
requiring the three following points:

1. existence and unicity of r(X) for a set X

2. equivalence between the set X and the reconstructed

set X' from its skeleton representation

3. an explicit formula to compute the skeleton
Furthermore, it is important that the explicit formula men-
tioned in point #ii) produces a skeleton with as few points
as possible to obtain a high compression of the contour in-
formation. In this section, the skeleton decomposition for
contour coding will be the topic of our discussion. It will
be possible to apply the results for the coding of contour
residues.

The skeleton has been employed for coding of binary
images [15]. It was shown that the skeleton decomposi-
tion using Eq. 4 contains redundant points which are not
necessary for a perfect reconstruction. The skeleton, howe-
ver, has never been applied to coding of segmented images
containing several regions. The reason is perhaps that a
direct application of Eq. 4 results in a redundant coding
of contours. As a matter of fact, every contour belongs to
two different neighboring regions and will be represented
by the skeleton of each of the regions. Another drawback
of Eq. 4 is that it is an iterative process which takes a long
computation time.

The geodesic skeleton based on distance transformations:

Reference [20] presents and develops some results esta-
blished in [19], leading to a new definition for the skeleton
on the digital grid. It characterizes the skeleton points as
a particular set on the distance function and leads to an
extremely fast algorithm. In the following, we will give a
short summary.

Given a set X, the distance function p at a point = of X
is defined as:

=d(z,X¢) = inf d(z,
px (z) = d(z, X) Jof (z,y)

(5)

It can be easily seen, that there exists always at least one
point o on the boundary of X such that d(z,yo) = px (z).
Starting from a point x, we call upstream of z, the set of
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Fig. 11.

Example of projection and decision with the region growing version of the watershed. First row: original frames, second row:

projection results, third row: coded image after projection and introduction of new regions, fourth row: final segmentation.

points y satisfying the relationship

p(y) = p(z) + d(z,y) (6)

If the upstream of z consists of just x itself, then x is a
skeleton point. It leads to the following definition:

Definition: The skeleton is the set of points without ot-
her upstream than themselves.

According to this definition, for each point z, all points
y € X have to be checked to know whether an upstream
of x exists, in which case z is not a skeleton point. Howe-
ver, in the digital case, it is sufficient to only consider all
neighbors of x, which are defined by the graph used for the
distance computation in Eq. 5 and Eq. 6 [2]. Frequently,
the chess-board mask is used (=3x3 square). From the ske-
leton definition, which produces exactly the same skeleton
as in Eq. 4, the geodesic skeleton can be derived. The idea
is to exclude contours which are already known in the dis-
tance computation in Eq. 5. This means that the point yg
is restricted to some specific boundary points of X. If we
denote by Z the area which is already coded, we define a
new reference by:

K=2UX (7)

Ordinary skeleton Geodesic skeleton
0000000 0000000
0111110 0111110
o 1EEBE1 00000 01222100000
01 EHEE | NN l<«X 01 2F2111110la—X
o1 1 11 1Mo o12F2222210
00000000000 012 333210
Eﬂ EE 2 3
a7, a7,

W Skeleton points

Fig. 12. Comparison between ordinary and geodesic skeletons based
on distance functions

which will be used in the distance computation and yields:

pK(iL‘):d(:l),Kc): lgf(d(l',y) VyEE, reX
y

(8)

The skeleton is again the points without other upstream

than themselves and is denoted rg(X). An illustrative

example is given in Fig. 12, where the ordinary and the ge-

odesic skeleton are shown for a region where another region
below it has already been coded.

As shown in [15], the skeleton contains redundant points.

It is also the case for the geodesic skeleton. These points

can be removed while still allowing a lossless reconstruc-

tion. For their detection, the same approach as [15] is fo-
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Ordinary skeleton Geodesic skeleton

0000000 0000000
0111110 0111110
o1EF2B100000 01222100000
o1 E2B1 11 MoleX o1 2B21 1111 0lea—X
ort11111Mi1Mo 01232222210
00000000000 01233333210

3

UL N —

:

7,

W Skeleton points

Fig. 13. Comparison between ordinary and geodesic skeletons wit-
hout redundant points

llowed.

1. A redundancy matrix is computed. For every pixel,
the number of structuring elements that cover it are
counted.

2. All skeleton points that cover an area that is alre-
ady completely covered by other maximal structuring
elements are removed.

This procedure requires dilation of each skeleton point by
the corresponding quench function (pt. 1), and scanning
of each dilated region for the presence of pixels coming
from other skeleton points (pt. 2), which is extremely time
consuming. Therefore, a particular dilation procedure for
the skeleton points based on hierarchical queues is propo-
sed, which allows a much faster implementation than when
ordinary dilation techniques are used. The dilation proce-
dure will be explained in the next subsection. Examples of
skeletons without redundant points are shown in Fig. 13.

In [2], we demonstrate that the geodesic skeleton always
contains an equal number or less skeleton points than the
ordinary skeleton. Experimental results confirm that a re-
duction of 50% of skeleton points is obtained in average for
a segmented image [3]. The distance function can be very
efficiently implemented in only two image scans and a third
image scan is necessary to detect all points without other
upstream than themselves in the distance function.

Fast reconstruction of the skeleton subset:

In almost all image coding applications, the decoder
should work in real time. This requirement implies a struc-
ture which is simple and efficient. The geodesic skeleton
allows an exact reconstruction of the decomposed region
by the following procedure:

X = U{a: €rg(X):

05 ()} 9)

where 67(") denotes geodesic dilation with respect to Z

and of size pr () [44], [31].

Thus, a simple reconstruction based on unions of dila-
tions is guaranteed. However, the reconstruction process
as defined in Eq. (9) is not efficient. The skeleton gua-
rantees that every inscribed disk covers at least one point
which is not covered by any other disk, but many points
will be covered by several disks. It implies that during
the reconstruction by dilation procedure, many points will
be processed several times. To avoid this and to provide
a more efficient dilation algorithm, we propose the use of
hierarchical queues. The image will be scanned only once
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Fig. 14. Reconstruction using hierarchical queues

to put all skeleton points into the queue and only points
involved in the dilation are processed.

Hierarchical queues have already been used for the wa-
tershed algorithm. Here, the priority of the queues is de-
fined by the size of the quench function. The following
reconstruction algorithm is proposed:

1. Put all skeleton points into a hierarchical queue at a

priority corresponding to their quench function.

2. Retrieve all points from the non-empty queue of hig-

hest priority and dilate them by one unit.

3. Put all new points in the queue of the next lower

priority.

4. Repeat points 2) - 3) until the hierarchical queue is

empty and the label reconstructed.

Fig. 14 illustrates an example of the reconstruction pro-
cedure. Fig. 14.a shows the original region. Its skeleton
decomposition is shown in Fig. 14.b. It consists of one
point with quench value three, one point with quench va-
lue two and two points with quench value one. The image
is initially scanned and the points put into the hierarchical
queue. Thus, on the highest hierarchical level, there is one
point. On level two, there is one point and, on level one,
there are two points, Fig. 14.c.

The process starts by extracting the first element out of
the queue, i.e. the skeleton subset point with quench value
three, and to dilate it by one unit, Fig. 14.c and Fig. 14.d.
If all neighbors are within the reference set, then eight new
points are created, each of which will have to be dilated by
size two and they are put into the queue at level two. The-
refore, the queue at level two now contains nine elements,
Fig. 14.e. If queue number three is empty, dilation is conti-
nued at level two. Each element of queue two is taken out
and dilated by one unit, Fig. 14.f. The neighbors which
have not yet been processed are put into queue at level
one. When queue two is empty, queue one will contain 26
elements at most, Fig. 14.g. They are extracted and dila-
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ted by one, Fig. 14.h. The iteration stops when queue one
is empty and the region reconstructed.

C. Application of geodesic skeleton for contour coding

In the following, we assume that the partition is coded
by motion compensation and that the geodesic skeleton re-
presentation is used to code the compensation error of the
regions. An exact definition of the reference set used in the
distance computation is required for an application of the
geodesic skeleton for contour error coding. The reference
set is the union of the regions that are known to the recei-
ver. At a given time instant, these regions are composed of
two sets: 1) motion compensated regions and 2) the already
coded compensation error. Therefore, Z = C'U P where C
are the coded regions and P is the predicted region from
the previous frame. The skeleton is then computed using
Eq. 8. It exhibits several properties:

1. The size of quench function is proportional to the re-

construction accuracy

2. The skeleton “knows” if a residue has to be added or

deleted from the prediction

3. The skeleton points have a tendency to move towards

known contours

Size of quench function: Points with small quench func-
tion correspond to small associated geodesic structuring
elements. Omitting skeleton points results in a contour
simplification proportional to the size of the quench func-
tion. However, the simplification is reversible since those
points can be added back.

Adding/Deleting prediction residues: Two different kind
of prediction residues are possible:

1. the residue has to be added to the prediction

2. the residue has to be deleted from the prediction

The skeleton decomposition automatically codes this in-
formation. Let us denote by X the region to be skeletoni-
zed, as in the previous section. By definition, rx(X) C X.
For residues to be added, X = P\ 15, where P denotes
the real, current region and P is the predicted region from
previous frames. Therefore, rx(X) ¢ P. Analogous, for
residues to be deleted, X = P\ P and rg(X) € P. Thus,
a simple inspection whether the skeleton point lies in the
predicted region indicates how the residue has to be recons-
tructed.

Spatial location of skeleton points: The quench function
and the spatial location of the skeleton points have to be
coded for transmission. The former can be entropy coded
directly. The latter can rely on run-length coding. Howe-
ver, because the skeleton points are sparsely distributed in
the image, the corresponding runs are extremely long. The
entropy of each run is either high or a run has to be broken
up into many shorter pieces.

A remedy to the problem is the fact that geodesic ske-
leton points have a tendency to move towards known con-
tours, as hinted by Fig. 12. This assumption is confir-
med by experimental results. In the graph of Fig. 15, the
distance of skeleton points to known contours is plotted.
Roughly 80% of all points are direct neighbors of known
contours. Therefore, the skeleton points of distance one are

100 T T T T T T T
3
a 80 W
-
0
Q 60 | Distance = 1 —— E
g Distance = 2 -+
P 40 Distance >= 3 -&-- B
T 2
ﬁ e . ST T T T s Beeaag
0 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
Frame number
Fig. 15. Evolution of the distance of skeleton points to known con-
tours.

TABLE III
BITSTREAM COMPARISON FOR CONTOUR INFORMATION OF QCIF
IMAGE SEQUENCES.

MissAmerica CarPhone Foreman
Chain Intra 20.4 kBits/s | 23.7 kBits/s | 22.5 kBits/s
Chain Residues 7.6 kBits/s | 13.9 kBits/s | 17.5 kBits/s
Skeleton Residues 6.2 kBits/s | 11.5 kBits/s | 17.8 kBits/s

included in the subset §'(P)\ P or P\ €' (P), according to
whether a residue has to be added or deleted. Run-length
coding should be performed only on this subset, resulting
in a great reduction of the average length of the runs. A
special symbol is introduced in the bitstream to indicate
that all points of distance one have been coded. Next, ske-
leton points at a distance of two are coded. They are all
situated on the subset §2(P) \ 6'(P) or ¢*(P) \ ¢2(P) and
runs are again defined on this subset. The remaining points
are coded the same way. This procedure allows a reduction
in bit rate of about 20%.

Other encoding strategies are possible. For example, the
skeleton points can be approximated by lines and curves
and then chain-coded. The technique gives interesting re-
sults in the case of redundant skeletons with mostly connec-
ted points [1], however, our experiments have shown that
coding of non-redundant skeletons provides better results.

D. Coding performances

Coding results are illustrated in Fig. 16. The prediction
errors are simplified by morphological filters and then co-
ded and reconstructed [2]. In Table III, results are given
for the bit requirements for the contour information over
150 frames. The skeleton is compared to the Chain Code
method, known as one of the best contour coding techni-
ques. Chain code is applied in two ways: In an intra-mode
on each frame individually without exploiting the temporal
correlation [17] and on the prediction errors the same way
as the skeleton [9], [35]. In the first case, a lossless coding
is performed, however at a much higher bit rate which does
not justify the marginal improvement in the image quality.
In the second case, chain code produces the same contour
quality as the skeleton, at a roughly 10 - 15% higher bit
rate in general. The reason being that there are many iso-
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TABLE IV
TOTAL BITSTREAM BY THE SKELETON DECOMPOSITION (QCIF
IMAGES, 150 FRAMES, 5 Hz FRAME-RATE).

MissAmerica CarPhone Foreman
Motion 1.1 kBits/s 1.4 kBits/s 2.1 kBits/s
Texture 15.3 kBits/s | 16.6 kBits/s | 19.9 kBits/s
Contour 6.2 kBits/s | 11.5 kBits/s | 17.8 kBits/s
TOTAL 22.6 kBits/s | 29.5 kBits/s | 40.0 kBits/s

T .
g N -
-.’- L;I cld

Fig. 16. Contour coding with geodesic skeleton: a) Prediction resi-
dues, b) Simplified residues, c¢) Skeleton points, d) Reconstructed
residues

lated and short contour arcs which are expensive to code,
because it is necessary to code the starting point and the
ending point of the chain. The skeleton copes better with
this kind of contour images. For the Foreman sequence,
long chains of contour estimation errors make that chain-
code and skeleton technique about equally performing. Re-
sults for the total bitstream requirements include bits for
motion information, texture information [35] and contour
information and are shown in Table IV.

VI. MORPHOLOGICAL INTERPOLATION AND TEXTURE
CODING

A. Classical approach to interpolation

Interpolative coding techniques [25] are based on the co-
ding and transmission of a subset of pixels of the original
image, so that, on the receiver side, the remaining pixels
have to be interpolated from the transmitted information
alone. The reconstructed image is approximated by conti-
nuous functions with some permissible error at the inter-
polated pixels.

Examples of the application of interpolative coding tech-
niques can be found in [4] and [29], where perceptual con-
siderations about the human visual system lead to a model
of the image for coding purposes based on the concept of
the “raw primal sketch”. In such model, the image is as-
sumed to be made mainly of areas of smoothly changing
intensity separated by discontinuities or edges. Under this
assumption, it is possible to obtain a reconstruction of the
original image only from the information of the geometric
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Fig. 17. Geodesic distance measure for the interpolation of pixel z

structure of the discontinuities and the amplitudes at the
edge pixels (sketch data).

In “sketch-based” coding methods, the selection of the
sketch data is the key issue for the coding process. For a
given interpolation strategy, it sets the trade-off between
the coding cost and the quality of the reconstructed image.
Furthermore, interpolation algorithms for the reconstruc-
tion of the image from sketch data present a main draw-
back: they are usually based on filtering processes? with
rather high computational load.

In this section, a morphological tool intended to solve
the two dimensional interpolation problem is presented. It
is based on geodesic dilation, resulting in a highly effici-
ent process compared to those that perform linear filtering
of the initial image. The proposed algorithm is general
in the sense that it is able to perform interpolation from
any set of given pixels. To illustrate this point, two diffe-
rent coding strategies will be shown that validate the use
of morphological interpolation as an efficient method for
texture coding, regardless of its use within a region-based
framework or in a block-based approach. A third strategy
specifically devoted to region-based schemes can be found
in [33].

B. Morphological interpolation

The target of the morphological interpolation algorithm
is to approximate the amplitudes of unknown pixels of the
image by fitting a surface on a subset of pixels of known
values, called initial pizels in the following. Such surface
is constrained to be maximally smooth between the known
pixels. The smoothness condition is stated in the sense that
pixel to pixel variations should be minimized. This would
lead to straight line interpolation between two initial values
for one-dimensional signals.

A suitable strategy for the 2D interpolation is to compute
at each point the average of the amplitudes of the initial
pixels weighted by the inverse of the distances to each of
them [40]. The nearest pixels have stronger influence than
the distant ones, and the interpolated amplitudes change
slowly in the areas in between. The distance measure is
taken as the geodesic distance within the set of unknown
pixels. The advantage of using the geodesic distance is
illustrated in Fig. 17. The set of initial pixels for the
interpolation is indicated by thick solid and dashed lines.
Let us suppose that the dashed line represents the upper
edge of a spatial transition and the solid line represents the

2In [4] and [29] these are iterative overrelaxation processes governed
by the heat diffusion equation
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Fig. 18. Geodesic propagation process from the set of initial pixels

lower edge of the transition. The influence of the amplitude
values of the upper edge (dashed line) at pixel z will be
given by the inverse of the geodesic distance ds,, which
is larger than the Euclidean distance ds.. Therefore, the
interpolated values at pixel z will be mainly influenced by
the initial pixels of the solid line. As a result, the use of the
geodesic distance allows the preservation of the transitions.

The interpolation strategy described above may be ef-
ficiently implemented by an iterative algorithm based on
morphological operators [5]. Each iteration of the algo-
rithm performs a geodesic propagation followed by a smo-
othing step. Instead of computing geodesic distances from
all the unknown pixels to every initial pixel, the amplitude
values of the initial pixels are propagated by geodesic di-
lation to fill the empty areas of the image and then, the
transitions appearing outside the set of initial pixels are
smoothed. Figure 18 shows some intermediate images cor-
responding to the first propagation process from the set of
initial pixels. When two or more propagation fronts origi-
nated from the initial pixels of different amplitudes meet,
the process stops and a false transition is created. Pixels
on both sides of the false transitions compose the set of
secondary pixels. A gray level value equal to the average
of the gray level values on both sides of the transition is
assigned to each secondary pixel. This is the smoothing
step.

Then, the second iteration is performed: the propaga-
tion step propagates the gray level values from the sets of
initial as well as secondary pixels. The propagation creates
new false transitions which define a new set of secondary
pixels where gray level values are smoothed. Note that this
new set, of secondary pixels generally does not include the
first set of secondary pixels. This process of 1) propaga-
tion of values from the initial and secondary pixels, and 2)
smoothing of the gray levels of the new secondary pixels,
is iterated until idempotence.

Fig. 19 shows the initial and interpolated images for the
second, fourth and eighth iteration of the interpolation al-
gorithm. The middle column gives the sets of initial and

Fig. 19. Three iterations (2nd, 4th and 8th) of the geodesic propaga-
tion process, middle column: initial and secondary pixels, right
column: propagation result.

TABLE V
EXECUTION TIMES OF MORPHOLOGICAL INTERPOLATION VS
INTERPOLATION BASED ON DIFFUSION EQUATIONS

Tinear diffusion
4583 5.
3980 it.

Interpolation
Execution time

multigrid diffusion
60,3 s.
equivalent to 376 it.

morphological
24 s
13 it.

No. of iterations

secondary pixels and the right column shows the propaga-
tion results. Observe the iterative smoothing of the false
transitions.

The two steps of the iterative morphological interpola-
tion process can be efficiently implemented. The geodesic
propagation is implemented by means of a FIFO queue.
First, the initial image is scanned in order to find all the
‘empty’ neighbors of the initial pixels (at geodesic distance
1). Each one of these pixels is given the gray level value of
its initial pixel neighbor and then its location is put into
the queue. If the pixel happens to have more than one
neighboring initial pixel, its amplitude is chosen randomly
among them. During the propagation, one pixel is extrac-
ted from the queue and its amplitude is propagated to all
its empty neighbors whose locations in turn are put in the
queue. The process stops when the queue is empty. There-
fore each pixel is treated only once to perform a complete
geodesic propagation.

As far as the smoothing step is concerned, the secondary
pixels are extracted by means of a morphological Laplacian
operator, which is defined as the difference between the
gradients by dilation and by erosion:

L(f)=g"(H =g~ (HH =)+ (f)—2f

This is a nonlinear approximation to the Laplace operator
in continuous space that was first studied in [41] for edge
detection. It is greater than zero at the lower edge of the
transitions and smaller than zero at the upper edge. In
flat surfaces or slanted planes without convexity changes,
it cancels out. Therefore the morphological Laplacian can
be used as a transition detector. Moreover, if it is divided
by two and added back to the result of the propagation,

(10)
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TABLE VI
COMPRESSION RATIO FOR THE EXAMPLE OF CODING BY MAXIMUM
AND MINIMUM POINTS

Tteration 1 10 | 25 50 75 | 100
No. of points 10 55 | 93 | 183 | 270 | 382
Compression 451 | 125 | 75 40 30 20

the pixels at the false transitions are smoothed.

The efficiency of the morphological interpolation algo-
rithm in terms of computational load is illustrated in Table
V. Comparative figures of execution time?® for this opera-
tion and for an interpolation by iterative overrelaxation
governed by the heat diffusion equation [4] are reported for
the example shown in figures 18 and 19. The interpolated
result is almost indistinguishable in both cases. Please,
notice the drastic reduction in the number of iterations ne-
eded for the morphological interpolation technique. Each
pixel of the image to interpolate is treated hundreds of
times less. Furthermore, each iteration of the morphologi-
cal interpolation does not require any multiplication, what
decreases the time of each individual iteration compared
to the linear filtering technique. This explains the reduced
execution time of the described nonlinear interpolation pro-
cess. Clearly, there is no need of multigrid techniques for
speeding up convergence when dealing with sparse sketch
data if the morphological interpolation algorithm is used.

C. Application of morphological interpolation for texture
coding

The application of morphological interpolation for tex-
ture coding relies on the selection of a set of initial pixels.
This set of pixels should at the same time allow a good res-
toration of the image by interpolation and lead to a com-
pact representation. In the following, two texture coding
strategies are presented. In the first one, the set of initial
pixels is composed of lines of maximum and minimum cur-
vatures whereas the second one involves the points of local
maximum and minimum.

Coding by mazimum and minimum curvature lines

The first example involves an image representation ba-
sed on networks of lines. Networks of lines are interesting
for coding because they can be efficiently coded using deri-
vative chain code techniques. The main difficulty consists
in selecting lines that can lead to a good restoration of the
image. A first idea may be to select the crest lines of ma-
ximum and minimum, that is the watershed of the image
and of its dual. However, some experiments have shown
that the resulting interpolated image lacks of transitions
and that much better results can be obtained by using the
lines of maximum and minimum curvatures. These lines
may characterize maxima and minima of the signal as well
as its transitions.

The maximum curvature lines are extracted in three
steps: first, the image is prefiltered by a dynamics filter [8]
which removes low contrasted components while preserving

3CPU times were computed on a Sun SPARC10 workstation
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Fig. 20. Morphological interpolation from lines of maximum and
minimum curvature. First row: original and prefiltered image.
Second row: lines of maximum (white) and minimum (black)
curvature, interpolated image (compression ratio 30).

the gray level shape of the remaining components (unlike
the h — max which does not preserve the gray level shape
of the signal but only its contour). Second, the morpho-
logical Laplacian is computed in order to achieve edge en-
hancement. Indeed, it can be shown that the morphologi-
cal Laplacian is an approximation of the second derivative,
so that the extrema of the Laplacian image correspond to
those of the signal second derivative. Third, the watershed
of the Laplacian extracts a network of lines identifying the
lines of maximum curvature. The dual process extract the
lines of minimum curvature.

This process is illustrated in Fig. 20. The upper row pre-
sents the original image and the prefiltering. The lower row
gives the network of maximum curvature lines (in white)
and of minimum curvature lines (in black). The position
of the networks’ pixels and the gray level values of these
pixels in the original image have to be coded and trans-
mitted to the receiver. Since the network is composed of
connected pixels, a derivative chain code is used to code
the pixels’ positions. The gray level values are coded by
polynomial approximation. More precisely, the network is
broken at each triple point (points with more than two
branches) and the gray level values of the resulting curves
are approximated by a second order polynomial. The re-
sulting three coefficients are quantized, entropy coded and
transmitted. At the receiver, the networks of lines with the
approximated gray levels are used as set, of initial pixels for
the interpolation. The restored image is presented on the
right side of the lower row of Fig. 20. As can be seen,
most of the important smooth variations as well as transi-
tions of the signal have been coded. The compression ratio
achieved with this strategy is equal to 30.

Coding by local mazimum and minimum points

The second example deals with an image representation
involving isolated points. Here, the objective is to select
the smallest number of points leading to a good restoration
of the image. One possible solution consists in using an
iterative selection process.

In the first iteration, the pixels of absolute maximum
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Fig. 21. Morphological interpolation from a set of isolated points. For each row: set of initial points, interpolated image, residue. The

compression ratios are 451, 125, 75, 40, 30 and 20.

and minimum amplitudes are selected. A first reconstruc-
tion by interpolation is performed and the residue with the
original frame is computed. From this residue, a second
set of maximum and minimum points are selected. They
are used together with the first set of pixels to compute
a second restoration. This process is iterated in order to
reach a sufficient quality of the restored image. Fig. 21
illustrates various iteration steps. The numbers of iterati-
ons are respectively of 1, 10, 25, 50 75 and 100. For each
iteration, the initial pixels, the interpolated image and the
residue are shown. It can be seen how isolated points are
progressively introduced and how the interpolated image
quality is improved.

The coding of the isolated points position is achieved
by an Elias code [6]. The gray levels are simply stored
in a buffer following a scanning order and entropy coded.
Table VI gives the number of isolated points together with
the compression ratio.

VII. CONCLUSIONS

In this paper, the usefulness of some morphological to-
ols for image and video compression has been presented
and discussed. Four sets of morphological transformati-
ons have been reviewed: connected operators, the region
growing version of the watershed, the geodesic skeleton and
a morphological interpolation technique.

o Connected operators solve the problem of image sim-
plification while preserving the contour information.
This very important feature relies on the separation
of a binary selection step and a reconstruction step.
The selection step decides whether or not a connected
component or a flat zone has to be preserved. The
reconstruction process defines the shape of the selec-
ted components. Several simplification criteria can be
obtained, the most popular ones being size-oriented or
contrast-oriented. These operators are also attractive
because they can be very efficiently implemented by
using FIFO queues. For coding applications, they are

useful for most of the simplification steps but speci-
ally for the segmentation. Moreover, the concept of
flat zones is very useful for the feature extraction step
of the segmentation.

e The region growing version of the watershed has two

main advantages. First, it allows the direct processing
of the signal to segment. The loss in contour precision
implied by the use of the gradient is avoided. Note
that, although this loss is limited to two pixels in the
case of still images, it can become very large for mo-
ving images. Second, this version of the watershed
allows the introduction of complex criteria taking into
account the gray level homogeneity as well as the con-
tour complexity, that is the contour coding cost. This
version of the watershed can also be very efficiently im-
plemented by hierarchical queues. For coding applica-
tions, this watershed algorithm is particularly suitable
for the precise contour definition (decision step) and
for the temporal linking of regions (projection step).

o The geodesic skeleton has been proposed to code the

contour prediction error within a motion compensated
coding strategy. It avoids to code twice each contour
and leads to a flexible representation of the contour
information. Here also, hierarchical queues turn out
to be very useful for the efficient implementation of
the technique.

o Finally, morphological interpolation is a very efficient

tool for interpolation on non regular grids. It allows
the restoration of an image from a reduced number of
points. Moreover, it gives a large amount of freedom in
the selection of the initial points. Two examples have
been shown to illustrate this feature: one involving
a network of lines and another using isolated points.
These texture coding strategies can be used within a
region-based or a block based approach. As before,
queues turned out to be crucial elements for the effici-
ent implementation of the algorithm.
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