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Abstract—This paper discusses an image processing archi-
tecture and tools to address the problem of ship detection in
Synthetic Aperture Radar (SAR) images. The detection strategy
relies on a tree-based representation of images, here a Maxtree,
and graph signal processing tools. Radiometric as well as geo-
metric attributes are evaluated and associated to the Maxtree
nodes. They form graph attribute signals which are processed
with graph filters. The goal of this filtering step is to exploit
the correlation existing between attribute values on neighboring
tree nodes. Considering that trees are specific graphs where
the connectivity towards ancestors and descendants may have
a different meaning, we analyze several linear, nonlinear and
morphological filtering strategies. Beside Graph filters, two new
filtering notions emerge from this analysis: Tree and Branch
filters. Finally, we discuss a ship detection architecture that
involves graph signal filters and machine learning tools. This
architecture demonstrates the interest of applying graph signal
processing tools on tree-based representation of images and of
going beyond classical Graph filters. The resulting approach
significantly outperforms state of the art algorithms.

Finally, a Matlab toolbox allowing users to experiment with
the tools discussed in this paper on Maxtree or Mintree has been
created and made public.

Index Terms—Branch filter, graph filter, graph signal process-
ing, machine learning, Maxtree, ship detection, support vector
machine (SVM), synthetic-aperture radar (SAR), tree filter.

I. INTRODUCTION

Ocean and sea monitoring by means of Earth observation
data includes many activities and applications supporting dif-
ferent needs: sustainable fishing, marine ecosystems protec-
tion, natural resources extraction, commerce and trade, etc...
Undoubtedly, they are related as, for instance, marine fisheries
around the world remain seriously threatened from fishing
overcapacity. Marine ecosystems are polluted by activities
related to the increase of maritime traffic. In the latest report
of the state of the world’s fisheries and aquaculture, the Food
and Agriculture Organization of the United Nations (FAO)
reported that 87% of the world fishing stocks, for which
assessment information is available, is either fully exploited
(57%) or overexploited (30%), and only 13% is not fully
exploited. In many occasions, overexploitation is conducted by
illegal fishing involving small to medium size boats. Regarding
maritime traffic, the world fleet of cargo-carrying vessels
has increased from 77.500 vessels in 2008 to some 100.000
vessels in 2018 comprising a total capacity of more than 2.100
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million dwt (deadweight tonnage). Consequently, maritime
traffic governance, pollution control of maritime environments,
monitoring of efficient and sustainable fishing or of illegal
fishing activities require reliable ship monitoring tools.

Synthetic Aperture Radar (SAR) has largely demonstrated
in the past its capability to provide all-time all-weather data
over large areas with a high spatial resolution. In the context
of electronic systems, the high level of sophistication and
autonomy of SAR systems is such that radar-based machine vi-
sion with SAR imaging heavily relies on machine intelligence.
Nowadays, SAR capabilities are enhanced by a decrease in the
revisit time from the SAR sensor constellations. As a result,
ship detection tools based on SAR data have multiplied in
the last decade. The importance of this type of applications is
also supported by the commercial sector, as according to [1],
the commercial remote sensing data market is dominated
by optical data which represents 84% of that market. In
recent years, SAR data has not experienced the same growth
as optical data except for maritime surveillance including
ship monitoring. Finally, maritime surveillance is expected to
undergo a significant increase in the forthcoming years. For
example, in the framework of the Copernicus program [2],
maritime surveillance is expected to undergo an average annual
growth rate of Copernicus benefits of 43% up to 2020.

Concerning the specific ship detection application based on
SAR data, it has to be mentioned that as images refer to the
radar return, they exhibit a very large dynamic range, often up
to 60 dB and are moreover corrupted by the so-called speckle
noise. As a result, many classical image processing techniques
have limited performances in this context.

Generally, SAR ship detection algorithms are based on a
CFAR (Constant False Alarm Rate) approach. Nevertheless,
the performances of a traditional CFAR technique decrease
with high spatial resolution SAR data, as the clutter probability
density function (pdf) presents a large variability and ships
may have complex forms. This results in a high probability of
false alarm. In order to improve the detection of ships, many
researchers have developed CFAR approaches that locally
adapt to the intensity pdf considering Gaussian, Gamma or
more complex distributions. In [3], a Lognormal Mixture
Model is proposed to tackle the sea clutter pdf variability.
Nevertheless, more recently, techniques trying to take into
account the data spatial correlation have been proposed. In
[4], the authors propose a bilateral filter to include the spatial
distribution of the SAR data. In [5], the data correlation is
exploited and, in [6], the concept of superpixel is considered
to assure a local homogeneous clutter. Among the CFAR
techniques, the SUMO technique [7] is a pixel-based approach
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developed during the last 15 years under the aegis of the
European Commission. Other approaches have also pursued a
better characterization of the ship signal considering different
ship features [8] or Haar-like features [9]. More recently, some
authors have explored the idea to represent ships by ellipses
[10]. Other approaches have also exploited the synthesis of
independent lower-resolution SAR images or looks [11], [12],
as only the ship signal maintains the correlation between the
different looks. With respect to the evaluation of the detection
performances, in some cases, AIS (Automatic Identification
System) is considered, when available, as ground truth [13].
In this paper, the authors conclude that the detection per-
formances depend on the SAR system, being the Radarsat-2
system in ScanSAR mode the one providing the best results.
The technique proposed in this manuscript, based on the
Maxtree representation, presents the advantage of avoiding the
explicit need to define a given pdf for the sea clutter. Moreover,
it also takes into account the data spatial relations and the
ship geometrical characteristics. In this sense, this technique
is able to combine different detection approaches considered
separately in the past. Furthermore, as will be explained in
the sequel, the approach avoids the use of any speckle filter
and is therefore able to preserve the spatial resolution of the
data. Finally, it also involves the use of a machine learning
algorithm and therefore combines artificial intelligence ideas
with SAR imaging systems.

As previously mentioned, we are interested in processing
strategies that rely on tree-based representations of images.
These representations provide a hierarchical description where
nodes represent regions. As a result, they allow the detection
to be based on both radiometric and geometric attributes. We
believe that this feature together with the hierarchical aspect
of the representation are important for many object detection
tasks and in particular for ship detection. Most of the time,
the first step of these strategies is to create a tree such as
a Maxtree or Mintree [14], [15] (also known as Component
Tree [16]), a Tree of Shapes [17] (also known as the Inclusion
Tree [18]), a Binary Partition Tree [19] or an a-Tree [20]. In
the past, they have been used in numerous applications such as
object detection [21], [22], [23], attribute filtering [24], [15],
[25], segmentation [19], [26], [27], texture analysis and image
content retrieval [28], remote sensing [29], [30], [31] and visu-
alization [32]. In the context of object detection, once the tree
is constructed, most classical approaches compute radiometric
and/or geometric attributes for each region represented by tree
nodes and assign the resulting attribute values to these nodes.
Then, the nodes and attribute values are individually analyzed
and a statement about the presence of the object of interest is
made. Instead of analyzing these attribute values individually,
one contribution of this paper is to highlight that attribute
values on neighboring nodes are correlated and that there is a
potential interest in exploiting this correlation. The reason of
this correlation is that the tree structure represents an inclusion
relationship between regions: the region corresponding to a
child node is included in the region corresponding to a parent
node. As a result, the attribute values for child and parent
nodes are related. To our knowledge, no studies have been
reported on how to deal with this correlation.

A proper framework to deal with this attribute correlation in
a tree is what has been recently called graph signal processing.
Graph signals [33], [34], [35] are collections of data that live
on a graph structure. In this paper, the data are radiometric
or geometric attributes that have been evaluated on regions
represented by the tree nodes and that are assigned to their
respective nodes. They form a particular graph signal that we
call graph attribute signal. A natural choice to deal with the
attribute correlation could be to use graph signal processing
tools such as linear Graph filters as those defined in [36],
[37], [38] or morphological Graph filters [39]. However, these
tools were defined for arbitrary graphs. In this paper, we
are interested in trees which are specific graphs essentially
representing hierarchies. In particular, the notion of connec-
tivity towards ancestors and descendants may have a different
meaning. We therefore propose processing tools that may
take advantage of this distinction. As a result, the notions
of Tree filter and Branch filter will be defined and discussed
and their difference with Graph filter highlighted. Linear,
nonlinear (median filter) and morphological (erosion, dilation,
opening, closing and reconstruction) filters will be defined in
both the Tree and Branch filtering contexts. Concerning tree
attribute signal processing, an interesting proposal related to
our work is made in [40]. It consists of processing a tree-
based representation of images, a Maxtree, with a connected
operator [25] that also relies on a Maxtree. However, the
interest in [40] is essentially to extract the attribute extrema
and not to study nor to propose processing strategies to deal
with the attribute correlation in the tree structure.

Finally, we will present an architecture able to detect ships
in SAR images relying on Maxtree representation and Graph
signal processing adapted to these representations. Several
Graph, Tree and Branch filters will be evaluated in this context.
Tree opening and Branch mean filters will be shown to be
particularly attractive. The experimental evaluation will also
highlight the interest of going beyond graph filtering in the
context of trees. Beside Tree opening and Branch mean filters,
the detection scheme also involves a morphological Tophat
relying on a Tree reconstruction process and an extinction filter
to process the node likelihood values. Finally, the resulting
ship detection will be compared to four state of the art
techniques providing a significant improvement in detection
performances.

The paper is organized as follows: Section II highlights
the main processing architecture proposed for ship detection.
Section III discusses how the Maxtree representation can be
processed and how the results can be visualized. Many of these
tools are used in Section IV for ship detection in SAR images.
Finally, conclusions are reported in Section V.

II. OBJECT DETECTION ON TREE-BASED REPRESENTATION
OF IMAGES

The tree-based object detection scheme we consider in this
paper is illustrated in Fig. 1. It is a fairly generic scheme that
can be used for many detection tasks but we will focus here
on ship detection. The first step consists of computing a tree
representation of the image, here a Maxtree [14], [15], [16].
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Fig. 1. Processing strategy for object detection.
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A Maxtree describes the entire set of connected components
resulting from the threshold decomposition of upper level sets.
The resulting connected components are ordered by inclusion
and structured in a tree. The tree leaves represent the image
maxima and the root node the entire image support. A Maxtree
can then be viewed as a multiscale description of the image
maxima. This property makes them very attractive for ship
detection given that ships appear as bright areas in SAR
images. Note that the Maxtree is used here purely as an
image representation which describes the original SAR image
without any preprocessing. In this representation, the ship
detection task is formulated as the search for tree nodes that
correspond to ship instances.

To perform this search once the tree is computed, several
attributes are extracted from the image. They can deal with
radiometric as well as geometric information. This access to
geometric information is the second main motivation to use
the Maxtree representation. The attributes are measured on the
sets of pixels represented by the tree nodes and are assigned
to their corresponding nodes creating graph attribute signals.
Most object detection algorithms for tree-based representation
of images analyze these attribute values individually for each
node and make a prediction on the presence of the object
of interest on the region of support corresponding to a tree
node [22], [41]. However, as the tree represents inclusion
relationships between regions, the attribute values between
consecutive nodes along the tree branches are correlated.
Taking advantage of this correlation is a key point of the
strategy presented here and motivates the development of
tools that consider the attributes populating the tree as graph
attribute signals and process them to increase the detection
robustness.

The scheme illustrated in Fig. 1 involves an aggregation
step that takes into account the complete set of attributes and
estimates the likelihood of each node to represent an instance
of the object of interest, a ship. Several strategies can be
used for this aggregation and, as suggested in [22], [41], one
of the most efficient approaches relies on machine learning
techniques. For example, if one has access to a training dataset,
a supervised classifier can be trained to estimate the object
class probability. For the final decision, a straightforward
approach can consider this likelihood as the final output and
simply binarize it. However, as this likelihood populates the
tree, it can itself be considered as a graph attribute signal which
exhibits some correlation between consecutive nodes. As a
result, the graph likelihood signal can be further processed to
increase the robustness of the final decision.

Section III discusses the Maxtree representation, the cre-
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Fig. 2. Maxtree representation of images: a) Original image, b) corresponding
Maxtree, ¢) 2D Branch representation and d) 3D Branch representation.

ation of graph attribute signals for ship detection and the graph
filtering tools needed to process these signals.

III. MAXTREE REPRESENTATION AND PROCESSING
A. Maxtree representation and visualization

A Maxtree represents all the binary connected components
that can be extracted from an image by thresholding at all
possible gray level values and it structures them by inclu-
sion. More precisely, each tree node represents a connected
component of the space that is extracted by the following
thresholding process: for a given threshold 7', consider the
set of pixels X that have a gray-level value larger than or
equal to 7" and the set of pixels Yr that have a gray-level
value equal to 7. The tree nodes represent the connected
components C' of X7 such that C N'Y # (. Note that a
connected component obtained at a given threshold is included
in another one obtained at a lower threshold. The links between
the tree nodes represent this inclusion relationship between
the connected components of X7. Many algorithms have been
proposed to compute Maxtrees. A review can be found in [42].

Fig. 2 illustrates the tree creation with a simple 8x8 image.
The leaves of the Maxtree represent the image maxima. As
the original image (Fig. 2.a) has 8 local maxima (assum-
ing 4 connectivity), the corresponding Maxtree has 8 leaves
(Fig. 2.b). The root node represents the entire image support
(that is the connected component corresponding to the lowest
possible threshold). The remaining nodes represent different
connected components obtained at different thresholds. Fi-
nally, in Fig. 2.b, the gray levels used to display the nodes
correspond to the threshold values that have generated the
connected components.
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The graphical representation of the tree, as shown in
Fig. 2.b, is useful to visualize the structure of small trees.
However, it is impractical to represent trees corresponding
to images of reasonable size nor to analyze the evolution of
graph attribute signals. An alternative representation that we
have found useful in many situations is what we call Branch
representation shown in Fig. 2.c. It is a gray level image in
which the horizontal axis indexes the individual tree branches
and the vertical axis corresponds to the distance of each node
from the root. In the example of Fig. 2, the Maxtree has 8
leaves, therefore 8 branches, and the longest branch has length
6. Therefore, the Branch representation is an 8x6 image. The
gray level value of pixel (é,5) in the Branch representation
corresponds to the attribute value (here the gray level) of the
node that belongs to branch ¢ and is at distance j from the
root. Note that, as many nodes belong to multiple branches,
they are duplicated in the Branch representation. For example,
the root node belongs to all branches. This is the reason why
the gray level value associated to the bottom line of the Branch
representation is the same for all pixels. As the attribute values
may drastically change between one branch to the next one, it
is often useful to visualize the Branch representation as a 3D
surface, as shown in Fig. 2.d.

Fig. 3.a shows a typical image (3701x1651 pixels) which
was obtained with the Radarsat-2 system over the Gulf of
Guinea, western Africa. For visualization purpose, the loga-
rithm of the actual gray level values is shown. A small excerpt
(200x200 pixels) of this image with 3 ships is presented in
Fig. 3.b. This excerpt will be used for many illustrations in
the following sections. The ships appear as areas of high
mean gray level values, with an elongated shape that could
be approximated by an ellipse. The presence of speckle
noise, inherent to SAR images, may hinder the detection. The
Maxtree of this small excerpt involves 17.601 nodes distributed
among 3.831 branches. As a result, a graphical representation
as the one shown in Fig. 2.b is not appropriate. Fig. 3.c
shows an alternative graphical representation of the tree with a
scalable force directed placement (sfdp) algorithm [43] which
efficiently deals with large graphs and which is available in the
Graphviz software package [44]. The node gray level values
correspond to the gray levels of the image on the left. Note
that many nodes and branches overlap in the drawing. The
root node is in the center and an approximate idea of the tree
structure can be inferred from this representation. However,
the evolution of attribute signals is rather difficult to analyze.
Therefore, the Branch representation (Fig. 2.c & 2.d) will be
used to visualize attribute signals in the sequel.

Once created, the Maxtree is populated with attributes that
may indicate the presence of ships. We will use three attributes
to characterize the binary connected components C associated
to the Maxtree nodes: 1) The mean gray level value of the
pixels belonging to C, 2) the eccentricity of the ellipse £ that
has the same second-moments as C', and 3) the area ratio
which is the relation between the area of C and that of £. The
intuition behind these attributes is that ships are represented

The eccentricity is defined here as the ratio of the distance between the
two foci of the ellipse and its major axis length.

b) 200x200 excerpt

¢) Maxtree

Fig. 3. Example of a) original image (logarithm of gray levels) of the Gulf
of Guinea, b) 200x200 excerpt with three ships, ¢) Maxtree representation of
the excerpt (Graphviz sfdp layout).
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Fig. 4. Mean gray level attribute (branch representation) for the Maxtree
corresponding to the image of Fig. 3.b.

by elongated ellipses of high mean gray level values. So we
are looking for bright areas with a high eccentricity and high
area ratio (so that the shape of C is similar to an ellipse).
Fig. 4 presents the mean gray level attribute on the Maxtree
of Fig. 3.b (Branch representation). The Maxtree involves 3831
different branches and the longest branch length is 1063. The
Branch representation is therefore an image of size 3831x1063.
The presence of three branches on which the mean gray
levels reach extremely high values close to the leaves can
be observed on Fig. 4. The mean gray level attribute does
not exhibit random variations and probably does not require
any further processing. However, many attributes are not so
clean and smooth. Let us consider the eccentricity attribute
shown in Fig. 5. We can clearly observe the correlation in
the attribute signal as values on neighboring nodes are most
of the time related. But we can also see random fluctuations
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Fig. 5. Eccentricity attribute (branch representation) for the Maxtree corre-
sponding to the image of Fig. 3.b.

along the tree branches in particular for sections close to the
leaves. Random fluctuations that only affect locally very few
nodes represent a challenge for the detection algorithm. They
should be considered as noise and removed to increase the
robustness of the detection. This kind of graph attribute signals
motivates the creation of filtering tools as the one presented
in the following section.

B. Maxtree filtering

1) Graph filter: Graph signal filtering [39], [45], [46], [47]
is generally considered as an extension of signal or image
filtering. A popular approach to define them relies on the
notion of Graph shift [45] which can be considered as the
equivalent of the classical time shift or delay. In the graph
setting, it consists of replacing the signal values at a given node
by a linear combination of values at its one-hop neighbors,
which are specified by the adjacency matrix. Linear Transla-
tion Invariant filters are polynomials in the adjacency matrix.
As a result, elementary linear Graph filters replace the signal
value at a node with a weighted linear combination of values
of its K-hop neighboring nodes. A similar approach is used
for morphological filter: A flat erosion (dilation) replaces the
signal value at a node with the minimum (maximum) of values
of its K-hop neighboring nodes. As usual in mathematical
morphology, opening and closing are defined as combinations
of erosion and dilation.

As an illustration, consider the example of Fig. 6.a. It
corresponds to the Maxtree of the image of Fig. 2.a. It
has been populated with attribute values chosen to illustrate
various filtering approaches. Note that the attribute values are
represented here by the gray levels used to display the nodes.
Dark nodes represent low attribute values whereas bright
nodes correspond to high attribute values. Assume we want
to apply a graph median filter [47] of size 2 to remove small
fluctuations of the graph signal. The size of the median filter
specifies which neighbors have to be included in the median
computation. Here, size 2 means that all 2-hop neighbors,
i.e. all nodes that are at a distance lower or equal to 2 from
the current node have to be taken into account’. This is the

2In order to interpret the results of Fig.6, note that when the median filter
involves an even number of samples, the output is computed as the average
of the two middle values.

a) Attribute

i«»

c¢) Tree filtering d) Branch filtering

Fig. 6. Example of attribute (a) and the three types of filtering: Graph (b),
Tree (c) and Branch (d). In all cases, a median filter of size 2 is used.

classical Graph filter illustrated in Fig. 6.b. Isolated attribute
variations as the ones observed on nodes 3, /2 and /7 are then
removed by the filtering.

For arbitrary graphs, beside the values of the adjacency ma-
trix, no strong distinction among neighbors is generally made.
But trees are specific graphs representing hierarchies. Tree
nodes have descendants and ancestors and the connectivity
towards each one of them may play different roles, particularly
in the context of object detection.

2) Tree filter: Let us analyze node /0. In the context of
the longest branch composed of nodes 1, 2, 10, 15, 19, 20,
the bright attribute value of node /0 can be considered as a
small size fluctuation that should be removed by the median
filter. However, with the graph median filter, the filtered value
is determined by the values of node /0 itself, its descendant at
distance 2: nodes 15, 16,19, its ancestors: nodes 2, / and also
the descendants of node 2, that are nodes 4, 8, 9. In total, we
have 9 values, 5 bright values and 4 dark ones. As a result,
the filter output is bright. Note that many bright values come
from nodes that do not belong to the same branch as node
10. If we want the filtering process to be more guided by
the branch structure of the tree, we may prevent descendant
nodes of the ancestors to influence the computation of the
output value. This is the idea of the Tree filter in which the
neighborhood of a node is exclusively composed of all its
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descendants and all its ancestors that are at distance lower
or equal to a given value. By comparison with Graph filters,
the K-hop neighborhood in Tree filters is not defined by
iteration of the adjacency matrix. The filtering process relies
on two different shift operations: one shift towards ancestors
and one towards descendants. Once the set of K-hop neighbors
are defined by the two shift operations, linear filters, median
filters, erosion and dilation can be defined with rules similar
to the ones used for Graph filters. As usual, Tree opening
(Tree closing) are defined as the composition of Tree erosion
(dilation) followed by Tree dilation (erosion). They possess
the algebraic properties of any opening (closing): increasing,
idempotent and anti-extensive (extensive).

In the illustration of Fig. 6, consider the case of the Tree
median of size 2 applied on node [0, the neighborhood is
defined by node 10, its descendants 15, 16, 19 and ancestors
2, 1. In particular, nodes 4, 8 9 which were involved in the
2-hop graph neighborhood are not considered anymore. The
corresponding filtering results are shown in Fig. 6.c. As can
be seen, the filtered value of node 10 is strongly influenced
by this change of strategy.

3) Branch filter: The third filtering approach deals with
effects related to the disparity of node numbers in the different
branches. A typical example can be seen in the root (/). Three
main sets of branches are emanating from the root. Two of
them (the one passing through nodes 3 and 6) involve mainly
dark nodes. However, the filtered value of node I is largely
dominated by node 2 and its descendants (nodes 10, 4, §,
9). Here, the key point is that the descendants of node 2 are
much more numerous than the descendants of nodes 3 and 6.
A possible way to deal with this issue is to use a Branch filter.

It is a two steps filtering approach: In the first step, called
estimation step, all branches passing through the current node
to be filtered are extracted. Considering node / as an example,
if a filter of size 2 has to be used, 6 individual branches
are involved: they all start at node / and respectively ends
at nodes 10, 4, 8 9, 5 and 2. Note that if the node to be
filtered is not the root node, the individual branches would
also involve its ancestors. Once the branches are extracted, 1D
filters are individually applied on each of them. This estimation
step produces several values that have to be aggregated in
the second step. This filtering strategy has some similarity
to the decomposition of 2D separable filters into two 1D
filtering steps. This filtering framework is rich and many
combinations of estimation and aggregation steps can be done.
The corresponding study goes beyond the scope of this paper.
Here we have focused on four basic filters described in Table I.
Moreover, we have defined the Branch opening (closing) as
the composition of a Branch erosion (dilation) followed by
a Branch dilation (erosion). Note that an interesting filtering
strategy may consist of using 1D opening or 1D closing as
estimation step and then an aggregation step based on Mean,
Median, Min or Max (note that not all combinations produce
opening or closing in the algebraic sense). We leave this study
for future work.

As illustration of the Branch median filter, the filtering
results can be observed in Fig. 6.d and compared to the Graph
and Tree filters results. Note how the value at node / is less

Filter Estimation | Aggregation

Branch Mean 1D Mean Mean

Branch Median 1D Median Median

Branch Erosion 1D Erosion Min

Branch Dilation | 1D Dilation | Max
TABLE I

DEFINITION OF THE ESTIMATION AND THE AGGREGATION STEPS FOR
ELEMENTARY BRANCH FILTERS

dominated by the high number of descendants of node 2.

In general, the three filtering approaches are different, but
in some cases, the distinction disappears. Let us mention two
examples:

o The Graph and Tree filters are equivalent for all filters
of size one. The distinction appears for filters involving
neighbors that are beyond 1-hop neighbors.

o If Branch erosion and dilation are defined as in Table I,
in the case of flat structuring elements, they consist of
computing respectively the minimum and the maximum
of the input samples in a given neighborhood. As the
neighborhood is the same for Tree and Branch filters,
Branch erosion (dilation) and Tree erosion (dilation) are
equivalent. This equivalence translates to their composi-
tion such as Branch/Tree opening and closing.

Fig. 7 illustrates the median filter of size 25 applied on
the eccentricity attribute of Fig. 5. It can be observed how
the filter has smoothed some of the attribute variations. The
difference between the three filtering approaches is clearly
noticeable for nodes that are at distance between 400 and 600
from the root node. In particular, in the cases of the Graph
and the Tree filtering approaches, it can be observed that the
eccentricity attribute values remain very high for these nodes
although they were not so high in the unfiltered data. This
phenomenon is caused by the disparity of node numbers in the
different branches in particular for sections close to the leaves.
By contrast, the Branch filtering approach produces a smooth
version of the signal with much less bias for the nodes at
distance 400-600 from the root node. In Section IV-B, several
Graph, Branch and Tree filters will be objectively compared
in the context of the ship detection application.

C. Morphological reconstruction on Maxtree

Morphological reconstruction is a classical image process-
ing tool used to reconstruct extrema and create connected
operators (See [25] and the references herein). It can also
be applied on graph signals and defined through conditional
dilations. The connectivity of the reconstruction is defined
through an elementary structuring element Cg of size one.
This structuring element includes all nodes that are at distance
one from the current node. If f and g are graph signals
(respectively called the “reference” and “marker” signal), the
anti-extensive graph reconstruction pé(g| f) of g under f is
given by:

9k =
pHglf) =

where go = g < f and d¢, is the Graph dilation with Cg.

dcg(gr—1) A\ f and

limg 00 g

)
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Fig. 7. Eccentricity attribute filtering with the three types of median filters
(branch representation). Top: Graph median filter, Center: Tree median filter,
Bottom: Branch median filter.

By duality, an extensive graph reconstruction pg (9f) of g
above f is given by:

Gk = ecg(gk—1)V f and
pr(glf) = limpoo gk

where go = g > f and ¢, is the Graph erosion with Cg.
Note that, as mentioned in Section III-B, erosion and
dilation of size one are equivalent in the Graph, Tree or Branch
approaches. Therefore, no distinction has to be made for the
Graph reconstruction. However, in practice, it may be useful to
treat differently the connectivities towards descendants and an-
cestors. To this end, two new elementary structuring elements
can be created: C'7,, and C7,. These structuring elements
include the current node and respectively all its children or
its parent. Substituting Cg in Eq. 1 and 2 by either C'r_ or
C7r,. creates two Tree reconstructions. The reconstruction is
from root to leaves with C'r,, and from leaves to root with

2)

Area Ratio
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from root

Branches
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0 . ’
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Fig. 8. Filtering of the Area Ratio Attribute with a reconstruction from the
root and a Tophat (branch representation). Top: Original Area Ratio Attribute,
Center: Reconstruction from the root, Bottom: Tophat (after Branch median
filtering).

C7r.. Depending on how the marker signal is defined, these
two reconstructions can produce very different results. As
classically done in mathematical morphology, reconstruction
can be used to create connected opening or closing [25]. Let
us show an example.

Fig. 8 presents an illustration of reconstruction involving the
area ratio attribute defined in Section III-A. It is the relation
between the area of the connected component represented by
the node and that of its best fitting ellipse. The original area
ratio attribute, Fig. 8, Top, is quite noisy. So, a Branch Median
filter of size 25 is applied. Furthermore, besides the noise,
it can also be observed that the attribute values are rather
high in sections of the tree branches containing the ships
(the same branches as the one highlighted in the mean gray
level attribute, see Fig. 4). Moreover, it is also very high for
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nodes close to the root. This is because the image support is
a square and the best fitting ellipse is a circle. The regions
corresponding to nodes close to the root are similar to the
square image support and their area is close to the area of the
best fitting circle. As the presence of this attribute maximum
near the root does not reflect the presence of a ship, it is
appropriate to remove it and this can be efficiently done with
a reconstruction process. The original attribute signal plays the
role of reference and the marker is a graph signal equal to zero
everywhere except on the root node where it is equal to one.
The results obtained after applying a Tree reconstruction from
root to leaves is shown in Fig. 8, Center. Note that, with this
specific marker, a Graph reconstruction would have produced
the same result. The Tree reconstruction is an opening and a
Tree Tophat is obtained by computing the difference between
the original signal and the reconstructed one. This is shown
in Fig. 8, Bottom. We see that the presence of ships is more
clearly observable in the cleaned attribute signal.

D. Maxtree extrema

Regional maxima (minima) are flat zones (largest connected
component of constant value) whose gray level value is higher
(lower) than the surrounding flat zones. The distinction we
have made in previous sections concerning the connectivity
towards ancestors and descendants could be applied to the defi-
nition of extrema. It would lead to nodes that are considered as
extrema or not depending on whether they are analyzed in the
context of specific branches. It is unclear how this distinction
could be useful in practice. As a result, we only consider the
classical graph connectivity in which each node is connected
to all its neighbors at distance one. In the context of trees, this
includes all the children and the parent nodes.

Classical algorithms used to identify extrema in images
can be easily adapted to graph and tree structures, but a
more powerful way to deal with extrema is to follow the
suggestion of [40]: use a Maxtree, a Mintree or a Tree of
Shape to describe the extrema of a tree-based representation of
images. This idea is illustrated in Fig. 9. The original Maxtree,
Treel, is shown in Fig. 9.a. It has been populated with an
attribute signal which exhibits three maxima. The attribute
signal itself can be described by a second Maxtree, Tree2,
presented in Fig. 9.b. The Maxtree construction is the same
as the one classically used for images. The only difference is
that the graph connectivity is used here. In Fig. 9, we have
indicated the correspondence between the leaves of Tree2 and
the attribute signal maxima in Treel. In Section II-C, we
have mentioned that morphological reconstruction is one of
the classical ways to build connected operators. An alternative
strategy is to apply a pruning on a tree-based representation of
signal. We briefly recall this approach in the following section.

E. Maxtree pruning

Pruning of Maxtree, Mintree, Tree of Shapes or Binary
Partition Tree has classically been used to simplify the rep-
resentation itself or to create connected operators [14], [24],
[26], [32]. This idea is illustrated in Fig. 9.c for Tree2, which
is the Maxtree describing the attribute signal of Treel. The
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d) Restitution of Tree1

€) Pruned Tree2 with pruned Tree2

Fig. 9. Maxtree representation of the maxima of a Maxtree. a): Original
Maxtree, b) Maxtree representing the maxima of the original Maxtree, c)
pruned version of the Maxtree of Fig. 9.b with an area criterion, d) Restitution
of the original Maxtree values with the pruned Maxtree of Fig. 9.c.

pruning consists in measuring a new attribute, the area in this
example, and in removing all nodes of Tree2 that have an area
smaller than a given threshold, equal to two in this example.
The nodes 2, 3 and 6 of Tree2 have an area smaller or equal to
two (they represent connected components of Treel with two
or less nodes), therefore they have to be removed. The area
is an increasing criterion so removing the nodes that do not
meet the criterion directly defines a pruning. If the criterion is
not increasing, several strategies have been proposed and more
details about this issue can be found in [25] and its references.

Finally, the pruned Maxtree can be used to create a filtered
version of the attribute signal of Treel. Similarly to what is
done for images, the nodes of Treel that were assigned to the
pruned nodes of Tree2 are now assigned to their first non-
pruned ancestor. In the example of Fig. 9, this means that
nodes 5, 11 and 12 of Treel are now assigned to the root node
of the pruned version of Tree2. In the tree restitution step
shown in Fig. 9.d, the attribute value of nodes 5,11 and 12
of Treel are now restituted with the same attribute value as
the root node of Tree2. This is a connected operator, an area
opening, applied on Treel.

Before discussing how these ideas can be applied to ship
detection, let us mention that we have created and published
a Matlab Toolbox [48] involving most of the tools presented
in this section allowing interested researchers to easily exper-
iment with Graph signal processing on Maxtree or Mintree.

IV. SHIP DETECTION IN SAR IMAGES

The tools discussed in Section III can be used for many
applications. In this paper, we are interested in their application
to the problem of ship detection in SAR images. In the
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a) b)

c)

Fig. 10. Example of original images (logarithm of gray levels) of a) Norway (Radarsat-2, Wide Fine Resolution mode), b), ¢) and d) Gibraltar (Radarsat-2,

ScanSAR Wide Beam mode)

following, the proposed strategy used for this task is presented
and its performance evaluated.

A. Attribute definition and processing on Maxtree

The detection strategy follows the scheme of Fig. 1. The
Maxtree is initially created from the original image without
any prior speckle filtering, preserving thus the original spatial
resolution. To reduce the memory usage and the computational
complexity, the tree may be simplified by removing all nodes
that are either too small or too large to represent a ship. We
refer to this step as area pruning. For example, taking into
account the image resolution, all nodes involving less than
20 pixels may be removed from the Maxtrees. This leads to
an average reduction of 60% in the number of tree nodes
taking into account the images we process for this application.
Moreover, considering the sizes of the world largest ships and
the image resolution, non-root nodes of size larger than 7.000
pixels may be considered as not relevant for ship detection
and could also be removed. This leads to a further reduction
of 10% of the tree sizes.

After the tree simplification, the three features used as
illustration in Section III are computed: 1) The mean gray
level value of the pixels belonging to each node C, 2) the
eccentricity of the ellipse £ that has the same second-moment
as C, and 3) the area ratio which is the relation between the
area of C and that of £. Note that, as the tree may have been
simplified by removing the nodes that are too small or too
large to correspond to ships, the detection algorithm actually
relies on four attributes.

The mean gray level attribute signal is left unprocessed.
But as discussed in Section III-C, the area ratio attribute
signal exhibits high values for nodes corresponding to the
ships but also for the nodes close to the root. To remove the
values related to the nodes that are close to the root, a Tree
reconstruction from root to leaves is applied and then used to
compute a Tophat.

The following step is to use one of the filters discussed in
Section III-B on the eccentricity and on the area ratio attribute
signals. The goal of this filtering step is to smooth the attribute
signals and remove noisy fluctuations to improve the detection
robustness. In Section III, Graph, Tree and Branch median
filters were used for illustration purposes but Section IV-B
will objectively compare the Graph, Tree and Branch versions
of the mean, the median, the opening and the closing filters.

The next step is to aggregate the processed features and
estimate the likelihood of each node to represent a ship.

In [41], this aggregation is done following a marginal approach
that considers all attributes as independent. We propose here to
aggregate the attributes and to transform them into an estimate
of the likelihood of ship presence through a multidimensional
supervised machine learning technique. To this end, a Support
Vector Machine (SVM) working as a binary classifier (ship
class / non-ship class) is used on individual nodes. We refer
to this step as the Node classification problem in the sequel.

To train and test the SVM, a node database was created.
The database was extracted from two large images taken by
Radarsat-2. Both images were acquired in the Wide Fine
Resolution mode. The first image can be seen in Fig. 3.a.
It was acquired on March 18th 2013 and corresponds to the
Gulf of Guinea, with a spatial resolution of 5.2m in range and
7.7m in Azimuth and an incidence angle about 42 degrees.
The size of image is 1651x3701 pixels. The second image
is presented in Fig. 10.a and was acquired in March 19th
2014. It corresponds to the coast of Norway, where the spatial
resolution is 3.1m in Azimuth and 4.6m in range, presenting
an average incidence angle on 25 degrees. In this case, the
image size is 3141x 1979 pixels. As it can be observed, both
images present similar spatial resolution. 50 images of size
100x100 pixels containing a variety of ships, sea and land
areas were extracted from the two large original images. To
define the ground truth, we manually defined the ideal ellipses
indicating the presence of ships and subjectively matching the
ships contour. Then, we computed the Maxtree representation
of the 50 images. In order to define the ground truth at the
level of the tree nodes, we considered positive sample for the
ship class, the Maxtree nodes with an overlap of at least 40%
with the ideal ellipses. Negative samples were defined as nodes
with no overlap with any ideal ellipses. Note that nodes with an
overlap with ideal ellipses in-between 0% and 40% were not
considered in the node database. Following this procedure, we
ended up with 4.000 ship nodes and 70.000 of non-ship ones.
Then, each class of the complete node dataset was divided into
training, validation and test sets with a proportion of 60%, 20%
and 20% respectively. The validation set was used to optimize
the size of the filters.

Once trained, the SVM is used to populate the Maxtree
nodes with a new attribute that is the ship class likelihood.
The resulting likelihood attribute signal is shown in Fig. 11
(top). It corresponds to the same image as the one used in
Section III to illustrate the processing tools. Note however that
the support of the branch visualization is not exactly the same.
In particular the length and number of the branches have been
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Fig. 11. Likelihood estimation (branch representation). Top: Original likeli-
hood, Bottom: Processed likelihood.

drastically reduced because of the tree simplification based on
the area pruning. The original number of branches (maximum
branch length) was 3.831 (1.063) and is reduced to 241 (442)
after size simplification.

The likelihood shown in the upper part of Fig. 11 clearly
reveals the presence of three ships in three branches. This
could be considered as the final detection result. However, it
may be useful to consider this likelihood as a graph signal
and further process it to remove spurious maxima that may
hinder the detection in difficult cases. Although the results in
the upper part of Fig. 11 are quite clean, we may observe
more than three maxima. Some small maxima are visible on
the middle branch beside the main large one.

Several processing strategies are possible but an efficient op-
tion relies on the Maxtree pruning discussed in Section III-E.
As the goal here is to remove some of the maxima of the
likelihood attribute signal, the first step is to compute its
Maxtree representation. This step is illustrated in the upper
part of Fig. 12. In this figure, Treel represents the original
Maxtree populated with the likelihood attribute signal. It
corresponds to the sfdp layout of the branch representation
shown in the top of Fig 11. Tree2 (Fig. 12.b) is the Maxtree
representation of the likelihood populating Treel. We have
indicated in the figure the correspondence between three leaves
of Tree2 and three maxima of the likelihood attribute signal
on Treel. Note that the correspondence of the remaining two
leaves and maxima is not drawn to maintain the figure clarity.

The complete removal of Tree! maxima corresponds to the
pruning of entire terminal branches of Tree2. Here, terminal

/

a) Tree1: Original likelihood Maxtree

b) Tree2: Maxtree of Tree1

c) Pruned Tree2

d) Restitution of Tree1
with pruned Tree2

Fig. 12. Overview of the detection process (Maxtrees are represented with the
stdp layout of Graphviz). a) Treel: Original Maxtree with likelihood attribute,
b) Tree2: Maxtree of Treel with the correspondence of some maxima. c)
Pruned Tree2 with a Contrast Extinction opening, d) Restitution of the
processed likelihood on Treel

branches refer to complete sets of nodes going from a leaf
node to a branch bifurcation. In the case of Tree2, we may
want to remove all terminal branches of low contrast, i.e.
sets of nodes such that the difference in likelihood values
between a leaf node and a bifurcation node is lower than
a given threshold. Following the suggestions made in [27],
using different threshold values for this pruning would lead
to hierarchical ship detection. Alternatively, we may want to
remove terminal branches of small area, that are terminal
branches for which the area at a bifurcation point is lower
than a threshold. This type of attribute is known as extinction
attribute [49]. For an increasing attribute, the extinction value
of a tree node is the maximal attribute value such that the
terminal branch it belongs to still exists after the pruning.
Extinction attributes can be efficiently computed on structures
such as Maxtree [50] and essentially allow pruning of trees
at nodes where a bifurcation exists. The tree resulting from
an area extinction pruning is shown in Fig. 12.c. It perfectly
preserves the three wide maxima and removes the presence
of the remaining maxima. Finally, the simplified likelihood
values can be restituted in the original Treel (See Fig. 12.d
for the sfdp layout and the lower part Fig. 11 for the branch
visualization). The presence of three ships is perfectly high-
lighted by many nodes along three branches that have a high
probability of being in the ship class.

The final output of the algorithm should be to state whether
a ship is present or not at a particular image location. This last
step is called here the Ship classification task (which has not
to be confused with the node classification task previously
discussed). The idea is to keep all nodes with a ship class
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Fig. 13. Example of ship detection results (Radarsat-2, Wide Fine Resolution
mode). The gray levels of the images have been adjusted to allow a clear view
of the ship. Detections are indicated by red ellipses.

probability higher than a high value (e.g. 80%). Each of these
nodes is modeled by its best fitting ellipse £. Along each
branch including the nodes with high probability, many nodes
have a ship-class probability higher than 80%. Each node is
associated with an ellipse and the set of ellipses of nodes
belonging to the same branch and having high ship class
probability overlaps. However, in practice, only one ellipse
per branch has to be kept. To this end, for each branch, we
compute the median ellipse of the set of overlapping ellipses.
This median ellipse is considered as the final output. Some
detection examples are illustrated in Fig. 13. Note that with
this strategy, we are able not only to detect the presence of a
ship but also its orientation and, to some extent, its size.

In terms of evaluation, the Ship classification task will be
evaluated on the database composed of the 50 images already
used for the Node classification task. As previously mentioned,
the ground truth in terms of ship was specified by manually
defining the ideal ellipses.

Before presenting the performances of the algorithm, let
us come back to the statement made at the beginning of this
section following which no speckle filter is used. We believe
that this is an important point as it allows us to preserve the
image resolution which is essential for the detection of small
objects as ships in SAR images. The speckle noise is often
modeled as a multiplicative noise. It generates positive and
negative fluctuations around the pixel noise-free value. In the
Maxtree, the positive fluctuations are represented as sets of
nodes forming small branches. The negative fluctuations are
not represented on their own by specific nodes. They appear
in nodes combined with other pixels of the same gray level
value. It is the SVM node classification step that handles the
presence of the speckle noise. To be more precise, the SVM
learns to distinguish between nodes representing ship instances
and all other types of nodes including nodes representing
the sea clutter, nodes representing positive fluctuations of
the speckle noise, nodes combining pixels corresponding to
negative fluctuations of the speckle noise with other pixels,
nodes corresponding to ground areas, etc.

Set Precision | Recall | F-Score
Training 0.853 0.875 0.864
Validation 0.840 0.868 0.853
Test 0.828 0.892 0.858
TABLE 11

NODE CLASSIFICATION RESULTS WITHOUT FILTERING

B. Evaluation

This section discusses the objective evaluation of the tools
presented in previous sections and also assesses the ship
detection performances. The proposed algorithm involves two
classification steps: one dealing with nodes and the final
one dealing with ship. Let us start by evaluating the node
classification step.

1) Node Classification: In the context of the node clas-
sification, an SVM with a Gaussian kernel is trained. As
classically done for binary classification, the performance of
the algorithm is assessed with the Precision, P, and Recall,
R, parameters as well as the Fg.ore = 2PR/(P + R).

Let us start by providing the reference classification results
obtained with a system where no area pruning is done and
no filter is used on the attribute signals. The only processing
which is done is the Tree Tophat applied on the area ratio
(to remove the high values of the attribute on nodes close to
the root). Table II gives the Precision, Recall and F-Score of
the node classification for the Training, Validation and Test
sets. As the values are very similar for the three sets, we
may conclude that there is no overtraining or overfitting of
the SVM.

The next step is to evaluate the interest of applying a filter
on the area ratio and the eccentricity attribute signals. Table III
provides the results for the Graph, Tree and Branch versions of
the mean, the median, the opening and the closing filters. Note
that we do no evaluate erosions nor dilations as they would not
preserve the position of the transitions in the attribute signals.
Moreover, the results for the Tree opening and closing are
the same as the ones for the Branch opening and closing. As
discussed in Section III-B, these can be viewed as alternative
implementations of the same filter. The F-Score evaluated
on the test set can be considered as the final estimation of
the system performances. Therefore, in Table III, we have
highlighted in bold font the best F-Score results on the test
set (values above 0.930). They correspond to the Tree/Branch
opening and the Branch mean filters. Note in particular how
these values are significantly higher than the one obtained with
the reference system that does not involve any filter (Table II).
Based on these results, we have selected the Tree/Branch
opening for the remaining experiments presented in this paper.
This experiment allows us to draw two conclusions: first, the
use of filters applied on graph signals actually improves the
node classification performances. Second, in the context of
tree, there is an interest in going beyond Graph filters as the
best results are provided by Tree or Branch filters.

The last question we address concerns the influence of the
Tophat and of the area pruning. The central part of Table IV
reports the results of the Tree/Branch opening with the Tree
Tophat on the area ratio and without the area pruning. Those
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[ I Graph filters I Tree filters I Branch filters |

Mean Precision | Recall | F-Score Precision | Recall | F-Score Precision | Recall | F-Score
Training 0.918 0.861 0.889 0.887 0.845 0.865 0.927 0.922 0.925
Validation 0.915 0.866 0.890 0.867 0.840 0.853 0.912 0.924 0918
Test 0.913 0.874 0.893 0.866 0.843 0.854 0.926 0.934 0.930

Median Precision | Recall | F-Score || Precision | Recall | F-Score || Precision | Recall | F-Score
Training 0.884 0.872 0.878 0.879 0.906 0.892 0.897 0.919 0.908
Validation 0.863 0.869 0.866 0.875 0.905 0.889 0.897 0.931 0914
Test 0.887 0.890 0.888 0.876 0.910 0.893 0.891 0.930 0.910

Opening Precision | Recall | F-Score Precision | Recall | F-Score Precision | Recall | F-Score
Training 0.905 0.881 0.893 0.924 0.943 0.933 0.924 0.943 0.933
Validation 0.906 0.874 0.890 0.922 0.946 0.934 0.922 0.956 0.934
Test 0.886 0.871 0.878 0.920 0.953 0.936 0.920 0.953 0.936

Closing Precision | Recall | F-Score || Precision | Recall | F-Score || Precision | Recall | F-Score
Training 0.844 0.861 0.872 0.897 0.908 0.902 0.897 0.908 0.902
Validation 0.887 0.871 0.879 0.890 0.927 0.908 0.890 0.927 0.908
Test 0.867 0.866 0.866 0.882 0.928 0.905 0.882 0.928 0.905

TABLE III

INFLUENCE OF ATTRIBUTE SIGNAL FILTERING ON THE NODE CLASSIFICATION RESULTS WITH SVM

Tree/Branch Opening
without Tree Tophat
without area pruning

Tree/Branch Opening
with Tree Tophat
without area pruning

Tree/Branch Opening
with Tree Tophat
with area pruning

Precision | Recall | F-Score Precision | Recall | F-Score Precision | Recall | F-Score
Training 0.908 0.926 0.917 0.924 0.943 0.933 0.991 0.986 0.988
Validation 0.904 0.929 0.916 0.922 0.946 0.934 0.993 0.990 0.991
Test 0.896 0.931 0.913 0.920 0.953 0.936 0.995 0.993 0.994
TABLE IV

NODE CLASSIFICATION RESULTS: INFLUENCE OF THE TREE TOPHAT AND THE AREA PRUNING (RADARSAT-2, WIDE FINE RESOLUTION MODE)

are the same results as the one given in Table III. On the left
side of Table IV, one can see the decrease in performances in
case the Tree Tophat is not used on the area ratio. Finally, on
the right side of the table, the results obtained when the area-
based tree pruning is done. The increase of performances in
both precision and recall reveals that the presence of false
positives and false negatives is still significant for nodes
corresponding to small areas. Therefore, the area pruning is
useful not only to decrease the tree complexity but also to
improve the classification results. As a conclusion, the final
node classification algorithm involves the area pruning, the
Tree Tophat, and the Tree/Branch opening. The resulting node
attribute values are used as descriptors by the SVM which in
turn estimates the node likelihood to represent a ship.

2) Ship classification: Once the node likelihood has been
estimated with the SVM, the last step of the algorithm is to
detect the presence of ships. To increase the robustness of this
last step, we have proposed to use an extinction filter applied
on the likelihood attribute signal.

To evaluate the ship detection performances, we considered
as true positive the cases where the final ellipse produced by
the algorithm estimating the presence of a ship had an overlap
of at least 40% with the ideal ellipse. Table V shows the ship
detection performances with and without the area extinction
filter. As can be seen, the area extinction filter provides a clear
improvement in terms of Precision. The final F-Score on the
ship detection task is very high.

Finally, we compare these results with four state of the art
techniques for ship detection in SAR images [11], [3], [12],
[51]. The algorithm proposed in [3] is a CFAR algorithm

Ship detection approach

[ Precision | Recall [ F-Score |

Proposed approach without area 0.878 1.000 0.935
extinction filter

Proposed approach with area 0.947 1.000 0.973
extinction filter

CFAR approach [3] 0.865 0.889 0.877
Wavelet-based approach [11] 0.857 0.923 0.889
GLRT approach [12] 0.872 0.944 0.907
Entropy-based dissimilarity [51] 0.800 1.000 0.889

TABLE V
FINAL SHIP DETECTION PERFORMANCES WITH AND WITHOUT THE AREA
EXTINCTION FILTER ON THE LIKELIHOOD ATTRIBUTE SIGNAL.
COMPARISON WITH STATE OF THE ART APPROACHES [11], [3], [12], [51]
(RADARSAT-2, WIDE FINE RESOLUTION MODE)

that essentially relies on gray level attribute. The approach
described in [11] relies on the Discrete Wavelet Transform and
deals with spatial pixel correlation at multiple resolutions. In
the case of [12], the strategy consists in detecting coherent
targets based on the generalized likelihood ratio test (GLRT)
initially developed in [52]. Finally, [51] proposes to measure
the local dissimilarity between ships and their neighborhood
by using a variance weighted information entropy measure.
The results are reported in Table V. Note that, as our algorithm
involves a pruning step removing all regions of areas smaller
than 20 pixels, the output of the state of the art algorithms [3],
[12], [51] was also post-processed by removing all detections
involving less than 20 pixels (it was not possible to do this
post-processing with [11] as the algorithm provides the loca-
tions of ship detections but not a binary mask of the detected
areas). With [12], [51], we have also noticed that a single
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ship could sometimes be represented by several connected
components. As a result, we have added a morphological
opening with a small structuring element in order to reconnect
these components. The size of the opening was chosen such
that it maximizes the F-score. The state of the art algorithms
perform rather well. Among them, the generalized likelihood
ratio test algorithm provides the best results. Finally, our
proposed algorithm provides a significantly higher F-score
than the four state of the art algorithms.

Once trained, the scheme proposed in this paper can be
used on any image that is similar to the ones used during the
training stage. However, if there is a strong mismatch between
the images to process and the ones used for the training, a
new training may be necessary. In any case, the results quality
reported here on high resolution images acquired by Radarsat-
2 in Wide Fine Resolution mode are not dependent on this
particular mode or sensor. To illustrate this point, we have
created a second database composed of images also acquired
by Radarsat-2 but on August 4th 2013 with the ScanSAR Wide
Beam mode. They can be seen in Fig. 10.b, 10.c and 10.d.
They correspond to the strait of Gibraltar. The resolution
of these images is of 50m both in Azimuth and range. It
is much lower than the ones obtained with the Wide Fine
Resolution mode. The incidence angle is between 20 and 49
degrees and the size of the resulting images is 17001100
pixels. We followed exactly the same procedure as the one
described for the Wide Fine Resolution case (50 images of
size 100x100 pixels containing a variety of ships, sea and
land areas were extracted. The ground truth was manually
defined. The node dataset was divided into training (60%),
validation (20%) and test (20%) sets). As the resolution of
these images is very different from the one corresponding to
the Wide Fine Resolution mode, the features characterizing the
geometry of the data have significantly different statistics. As
a result, a new training of the SVM for the node classification
was performed. In fact, any change of sensors or of acquisition
mode that implies significant changes in the radiometric or in
the geometrical characterization of the image content requires
a new SVM training. Note that, as the resolution of the image
is rather low compared to the ship size, we have not used any
size-oriented tree pruning removing nodes corresponding to
small areas. This is the only modification that was made to the
algorithm. The results of the node classification step are shown
in Table VI. We only reproduce here the results for the Branch
opening which was found to be the best in the Wide Fine
Resolution mode. The final ship detection results are given in
Table VII. As can be seen the F-Score for node as well as ship
detection are very good and the results are similar to the ones
previously reported for Wide Fine Resolution images. Finally,
some detection examples are illustrated in Fig. 14.

Compared to classical SAR-based ship detection algorithm,
the approach described in this paper presents some important
conceptual advantages. First of all, classical techniques are
usually based on the use of a speckle filter in order to
minimize the influence of this noise component. This filtering
step induces a loss of spatial resolution, which is critical
in the ship detection application, as the objects of interest
correspond to very small areas involving a very low number

[ I

Tree/Branch Opening [

Precision | Recall | F-Score
Training 0.994 0.986 0.990
Validation 0.994 0.987 0.991
Test 0.996 0.989 0.993
TABLE VI

NODE CLASSIFICATION RESULTS FOR THE STRAIGHT OF GIBRALTAR
IMAGES (RADARSAT-2, SCANSAR WIDE BEAM MODE)

[ Precision | Recall | F-Score |
[ 0968 [ 1.000 [ 0984 |

TABLE VII
FINAL SHIP DETECTION PERFORMANCES FOR THE STRAIGHT OF
GIBRALTAR IMAGES (RADARSAT-2, SCANSAR WIDE BEAM MODE)

Fig. 14. Example of ship detection results (Radarsat-2, ScanSAR Wide Beam
mode). The gray levels of the images have been adjusted to allow a clear view
of the ship. Detections are indicated by red ellipses.

of pixels. Instead, the proposed approach does not need any
preliminary filtering step and thus, avoids the loss of spatial
resolution and does not alter the ship shape. Moreover, the
proposed technique has an additional advantage which is that
the detection can be based not only on radiometric features, as
most conventional approaches, but also on geometric features.
Here eccentricity and the area ratio are two attributes that
characterize the geometry of the regions associated to the tree
nodes. Additionally, the use of graph filtering tools adapted to
the tree structure allows us to increase the detection robust-
ness. This improvement results from the exploitation of the
correlation existing among the attributes in neighboring nodes.
To support this last statement, we have run a final experiment
on the Radarsat-2 Wide Fine Resolution mode images that
consisted in removing the Tree/Branch opening as well as
the Tree Tophat involved in the node classification stage.
The ship classification step remained unchanged (in particular
involving the area extinction filters). This experiment revealed
that the F-score dropped from 0.973 (as shown in Table V) to
0.864. This highlights the importance of the graph filtering
associated to the node classification in the context of the
complete algorithm. Finally, another advantage of the proposed
technique is that it does not require to explicitly define a sea
clutter pdf nor to process differently sea and ground areas.
In terms of limitations, we may note that with the current
Matlab implementation we have used for the experiments, the
algorithm is not very CPU efficient. The Appendix provides
some information about the CPU workload we have observed
during the experiments and its distribution. It also includes
some hints on how to improve the CPU efficiency. A sec-
ond area of improvement could address the processing of
unfocused ship response caused by ship motion. Finally, as
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previously stated, our approach has not processed differently
sea and ground areas. We have not observed any significant
reduction of robustness in ground areas but if, in the context
of a specific application, one wishes to remove ground areas
from the processing, ground masks or coastal line detection
algorithms such as [53], [54], [55] could be used.

Finally, the results reported is this paper were obtained with
the Matlab Maxtree Processing toolbox [48]. This package
was designed to allow easy experimentation of most of tools
described in this paper.

V. CONCLUSION

This paper has discussed an image processing architecture
and a set of tools to address the problem of ship detection
in Synthetic Aperture Radar (SAR) images. The detection
strategy relies on a Maxtree representation of images and
graph signal processing tools. Radiometric as well as geomet-
ric attributes are evaluated and associated to the Maxtree nodes
forming graph attribute signals which are further processed to
take into account the correlation between neighboring attribute
values in the tree.

Considering that trees are specific graphs where the con-
nectivity towards ancestors and descendants may have a dif-
ferent meaning, we have analyzed several linear, nonlinear
and morphological filtering strategies. Beside Graph filters,
two new filtering notions have emerged: Tree and Branch
filters. The Graph filter approach relies on the classical graph
connectivity where no distinction is made between ancestors
and descendants. The Tree filter approach limits the neigh-
borhood to the descendants and the ancestors of the node
to be filtered and removes the influence of all remaining
descendants of the ancestors. As a result, the transfer of
information from one branch to another is limited. Finally,
the Branch filter controls the effects related to the disparity
of node numbers in the different branches. It is a two steps
filtering approach: In the estimation step, all branches passing
through the current node are filtered and produce several
values that are aggregated in the second step. Beside these
filters, morphological reconstruction and connected filters on
tree-based representation of image are also discussed.

The complete ship detection algorithm involves these graph
signal filters applied on the Maxtree representation. The pro-
cessed attribute values are used with machine learning tools
(SVM) to detect ships. The proposed algorithm demonstrates
the interest of applying graph signal processing tools on
tree-based representation of images and of going beyond
classical Graph filters. The resulting ship detection approach
significantly outperforms state of the art algorithms.

In terms of future work related to the ship detection appli-
cation, one may consider the use of deep learning techniques
avoiding the use of hand-crafted attributes. But this approach
would require a large database of SAR images suitable for
ship detection and its associated ground truth. As such a
database does not currently exist, its creation would be the
first challenge to be faced.

Note that the Graph processing tools have been applied in
this paper on Maxtree but they can be applied on any tree-
based representation of images including Mintree, Tree of

[ Processing step [ Time % |

[ Maxtree creation [ 0.24 |
Attribute computation
Area 0.55
Mean gray level 1.27
Ellipse estimation 64.47
Eccentricity 0.19
Area ratio 0.46
Attribute signal processing
Area pruning 2.16
Tree/branch opening on eccentricity 14.44
Tree/branch opening on Area ratio 14.49
Tree Tophat 0.39

[ SVM classification [ 0.09 |
Likelihood processing
Maxtree of Maxtree creation 0.97
Extinction filter 0.003
Median ellipse computation 0.02

TABLE VIII
CPU TIME DISTRIBUTION

Shapes [17], Binary Partition Tree [19] or a-Tree [20]. The use
of these trees and associated graph processing tools for other
applications than ship detection is an attractive topic. In term
of extension of our work, depending on the application, one
could extend the set of attributes used to train the classifier and
include for example texture attributes such as those described
in [56], [57] or even learned attributes as proposed in [58].

In the context of Branch filters, interesting research could
certainly be done on a complete study of combinations of
estimation and aggregations steps.

Finally, A Matlab Toolbox involving most of the tools
presented in the paper allowing interested researchers to eas-
ily experiment with graph signal processing on Maxtree or
Mintree has been made public [48].

APPENDIX

With the Matlab implementation we have used for the
experiments of this paper, the processing time of ship detection
on a 100x100 image is equal to 15s in average. The distribution
of this CPU time is described in Table VIII. As can be seen,
more that 64% of the time is devoted to the computation of
the best fitting ellipse of the Maxtree nodes. This step relies
on the Matlab regionprops command. Beside this step,
the Tree/Branch opening applied on both the eccentricity and
the area ratio attribute signal represents each about 14% of
workload. A proper C++ implementation and a research on
the best algorithms to perform these steps should provide a
more efficient algorithm.

Table IX describes the relative workload of the various
filters involved in the experiments. We have used as reference
the Graph mean filter of size 25. This table shows that, with the
current implementation, Tree filters are much more efficient in
terms of workload than Graph filters and that Branch filters
are slightly more efficient than Graph filters. Moreover, Mean,
Median, Erosion and Dilation need roughly the same CPU
time whereas Opening and Closing need twice as much time
as they involve a combination erosion and dilation.
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Graph Tree Branch
filter filter filter
Mean 1.00 0.36 0.87
Median 0.98 0.40 0.83
Opening 2.34 0.84 1.36
Closing 2.70 0.81 1.46
TABLE IX

RELATIVE CPU TIME FOR THE GRAPH, TREE AND BRANCH FILTERS. THE

GRAPH MEAN FILTER IS USED AS REFERENCES. ALL FILTERS HAVE
LENGTH 25.
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