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Abstract. In recent years, the use of multimedia content has expe-
rienced an exponential growth. In this context, the need of new im-
age/video sequence representation is becoming a necessity for many ap-
plications. This paper deals with the structuring of video shots in terms
of various foreground key-regions and a background mosaic. Each key-
region represents different foreground objects that appear through the
entire sequence in a similar manner the mosaic image represents the
background information of the complete sequence. We focus on the in-
terest of morphological tools such as connected operators or watersheds
to perform the shot analysis and the computation of the key-regions and
the mosaic. It will be shown that morphological tools are particularly at-
tractive to improve the robustness of the various steps of the algorithm.

1 Introduction

Images and video sequences modeling is experiencing important developments.
Part of this evolution is due to the need to support a large number of new mul-
timedia services. Traditionally, digital images were represented as rectangular
arrays of pixels and digital video was seen as a flow of frames. New multimedia
applications can rely on indexing or content-based coding that allow a represen-
tation that is more structured and hopefully closer to the real word.

The most straightforward way of representing video shots is to consider them
as a set of contiguous frames. An alternative approach is to represent them by a
subset of representative frames called key-frames. A more sophisticated approach
for shot representation involves the analysis of the spatio-temporal content of
the video shot. In [5] and [7], for instance, the representation of a video shot is
composed of a set of layers representing the background information and vari-
ous foreground layers. An attractive background representation relies on mosaic
images [5,1]. Mosaics are panoramic views of the background components that
are visible during the shot [5,7]. Mobile foreground objects can then be superim-
posed to the mosaic representation. In the sequel, these foreground objects will
be represented by key-regions. A typical example of shot representation based on
background mosaic and key-regions is shown in Fig. 1. The background mosaic
is presented in Fig. 1.a and two key-regions are shown in Fig. 1.b and 1.c. Each
key-region is represented here by an appearance image Ak

kr, a contour image Ck
kr

and a texture image T k
kr, where kr stands for key-region and k the key-region

number. The meaning and computation of these images will be presented in this
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Fig. 1. Video shot representation with a background mosaic a) and two key-
regions b) and c). Key-regions are represented from left to right by an appearance
image Akr, a contour image Ckr and a texture image Tkr.

paper. Note that the motion trajectories of the key-regions are also drawn (as
white lines) on the background mosaic.

The extraction of foreground regions in video sequences is an active research
topic. Classical approaches [5,7] mainly rely on motion information. However,
pure motion-based algorithms fail when shots present rapidly changing back-
grounds, when foreground objects present little motion with respect to the cam-
era or when foreground objects have a low contrast with respect to the back-
ground. The shot representation technique proposed in this paper builds, in a
first step, a background mosaic and then uses this mosaic to extract key-regions.
Beside the explanation of the complete algorithm, the main focus of this paper
is to highlight the use of morphological tools such as connected operators [4] and
watersheds to improve the robustness of the algorithm [2,6].

This paper is organized as follows. Section 2 gives an overview of the proposed
algorithm. Section 3 presents the use of motion-oriented connected operators
for outliers detection in the mosaic creation algorithm. Section 4 explains the
foreground segmentation algorithm and section 5 the creation of key-regions. The
representation and modeling of key-regions are discussed in section 6. Finally,
conclusions are drawn on section 7.

2 Overview of the algorithm
The algorithm is highlighted in Fig. 2 and involves three steps. The first one
is the background mosaic computation (top blocks of Fig. 2). The second step
extracts the shape of each key-region at each time instant (middle blocks) and
the last step combines the information obtained at each time instant and builds
the key-region models (bottom blocks). Next sections will describe each step.

The background mosaic computation follows a classical approach [1]. The
first step is to compute the dominant motion between successive input images,
I(t) and I(t−1). The dominant motion, m(t), is assumed to represent the camera
motion and is used to warp the original frames in the same coordinate system.
The warped images are blended to produce the mosaic image, Imos. In order to
be robust, the blending should only take into account pixels belonging to the
background. As a result, before the warping and blending step, outliers that
do not follow the dominant motion are identified. They are represented by an
outliers mask Mout(t). In section 3, we will show how morphological connected
operators efficiently allow the identification of outliers.
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Fig. 2. Overview of the algorithm. Blocks in gray represent steps where morpho-
logical tools are used (only the major input and output signals are represented).

The second step extracts, for each key-region k at time t, a key-region mask
Mk

kr(t). This extraction starts by the mosaic alignment. Its goal is to produce an
estimation of the background information, Ib(t), at time t. Taking into account
the dominant motion, the relevant part of the mosaic is un-warped to be com-
pared to the current image I(t). A foreground mask, Mfor(t), is computed by
comparing the original image I(t) with the background estimation Ib(t). A wa-
tershed algorithm (section 4) is used for this step. The foreground mask Mfor(t)
is an estimation of the key-regions at time t. However, this estimation is not
very reliable because it is obtained on the basis of the observation of a single
time instant. To improve the robustness of the analysis, the last step combines
the contour information of the foreground masks extracted at each past time
instant and selects the most reliable sections that have been observed to create
the mask of the key-region, Mk

kr(t). A watershed algorithm can be also used to
combine a set of contours taking into account their reliability (section 5).

Finally, the last step of the algorithm takes into account the key-region masks,
Mk

kr(t), as well as the original image, I(t), to update the key-region models
(see section 6 for more details). In the following sections, we explain the use of
morphological tools for the outliers estimation (section 3), the foreground mask
estimation (section 4) and the key-region mask estimation (section 5).

3 Outliers estimation with connected operators

Morphological connected operators are used to detect and remove outliers that
do not follow the dominant mosaic motion in the mosaic creation step. Gray level
connected operators are operators that act by merging elementary regions called
flat zones [4]. They cannot create new contours or modify the position of existing
boundaries between regions and, therefore, have very good contour preservation
properties. Several approaches can be used to create connected operators. We
will use the one discussed in [3]. The strategy consists in creating a region-based
tree representation of the image and to apply a pruning strategy on the tree to
simplify the image (in this case, without the outliers).
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The tree representation is called Max-tree and is oriented towards signal
maxima. Each nodeNi in the tree represents a connected component of the space
that is extracted by the following thresholding process: for a given threshold
value T , consider the set of pixels X that have a gray level value larger than T
and the set of pixels Y that have a gray level value equal to T :

X = {x, such that f(x) ≥ T} and Y = {x, such that f(x) = T} (1)

The nodes Ni represent the connected components of X such that X
⋂

Y 6= ∅.
The filtering strategy consists in pruning the tree and in reconstructing the

image from the resulting pruned tree. The simplification is governed by a crite-
rion which may involve simple notions such as size, contrast or more complex
ones such as texture, motion or even semantic criteria. Here, the detection of
outliers is based on a motion criterion. For all input frames, the corresponding
max-tree is created. A recursive version of the mean displaced frame difference is
computed for all nodes of the trees using the dominant mosaic motion m(t) [3].
Nodes of the tree that do not follow the given motion produce a high displaced
difference and should be removed. The criterion is not increasing: there is no
constraint stating that if a node has to be removed, its children have also to
be removed. Therefore, a dynamic programming strategy based on the Viterbi
algorithm is used. We refer the reader to [3] for a complete description of the
max-tree creation and the morphological filtering involved.

b) Motion filtering

d) Dual filtering

c) Bright outliers

e) Dark outliers

f) Outliers maska) Original frame

Connected
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Dual
Connected
Operator

Thres

Thres

Combin

Fig. 3. Estimation of outliers with connected operators

Fig. 3 shows an example of outliers estimation. Connected operators remove
maxima of the image that do not follow the dominant mosaic motion. Fig. 3.b
and 3.c show an original frame and the output of the connected filter. The filter
has removed the bright components of the outliers (the girl and the car) and has
preserved the background information. Comparison between the original and
filtered frames gives the mask corresponding to bright outliers. The estimation
of dark outliers can be done using the dual connected operator. The dual operator
ψ∗ is defined by: ψ∗(f) = −ψ(−f) and has the same effects as ψ but on minima.
Fig. 3.e and 3.f show the filtered output and the mask corresponding to dark
outliers. The final outliers mask is shown in Fig. 3.g.

On the other hand, classical mosaic creation algorithms try to remove outliers
by defining a map assigning to each pixel a value representing whether it belongs
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to the foreground or to the background. The classical value assigned to each pixel
of the weight map image is:

w(t)[x] =
c

c + |I(t)[x]− I(t− 1)[x−m(t)[x]]|2 (2)

Fig. 4. Comparison of mosaic creation without a) and with b) connected oper-
ators.

Fig. 4 compares the classical solution with the one proposed using connected
operators. The classical approach does not allow the elimination of outliers that
occupy a significant portion of the image (as the girl). A dark shadow is clearly
visible in the lower right part of the mosaic of Fig. 4. Moreover, the partial
elimination of outliers has a strong effect on the successive warping and blending
steps: strong geometrical deformations appear on the lower right part of Fig. 4.a.

4 Foreground mask estimation with watershed
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Fig. 5. Estimation of the foreground mask

The foreground mask extraction process is outlined in Fig. 5. Using the dom-
inant motion, the relevant part of the mosaic is un-warped to produce an esti-
mation of the background Ib(t) at time t, that can be compared to the current
image I(t). All the relevant information is concentrated in the image: I(t)−Ib(t).
The foreground mask, Mfor(t), is computed by using a watershed algorithm [6].
The watershed algorithm is applied on a gradient image and uses markers to
initiate the propagation process.

The gradient image should indicate the contours of the foreground mask. It is
mainly computed from the image gradient of I(t)− Ib(t). However, this gradient
highlights contours but also textured areas. To solve this drawback, the gradient
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is weighted (pixel by pixel) by a temporal gradient: G{I(t)− I(t− 1)}, where G
denotes the gradient operator:

G(t) = G{I(t)− Ib(t)} · (G{I(t)− I(t− 1)} ∨ G0) (3)

where ∨ denotes the maximum and G0 is used as lower-bound of the weighting
gradient so that the weight is not too low on static areas.

Markers are obtained by thresholding |I(t)− Ib(t)| and by erosion of the re-
sulting masks. Two different thresholds, tfor and tback, are used to extract fore-
ground and background makers. Assume that εs{·} denotes a binary erosion with
a structuring element, s. The foreground and background markers are defined
by Mfor(t) = εs {|I(t)− Ib(t)| > tfor} and Mback(t) = εs {|I(t)− Ib(t)| < tback}
respectively. The threshold values were empirically chosen to be tfor = 35,
tback = 10 and s an square structuring element whose length is 2 per cent
of the original image size. Results have shown these values to be very robust
even across different type of sequences. Foreground and background markers are
combined in a single image called Marker image in Fig. 5. In this image, the
dark (grey) areas correspond to foreground (background) markers.

Finally, the watershed is applied to the gradient image G(t) using the mark-
ers, Mfor(t) and Mback(t). A final step groups all connected regions into the
same connected masks and considers non-connected regions as different fore-
ground regions. The segmentation can be seen on the right side of Fig. 5 where
the girl has been successfully segmented from the background.

5 Key-region mask definition with watershed

The foreground mask Mfor(t) is an estimation of the key-regions at time t.
However, this estimation is not very reliable because it is obtained on the basis
of the observation of a single time instant. To improve the robustness of the
analysis, the key-region mask estimation step combines the contour information
of the foreground masks extracted at past time instants and selects the most
reliable sections to create the mask of the key-region k, Mk

kr(t).
The first step of the algorithm is to associate connected components of the

background mask Mfor(t) to key-regions that are already stored in the key-
region memory. A connected component of the foreground mask is assigned to
an existing key-region if it sufficiently overlaps with the last assigned foreground
mask of the corresponding key-region. This approach works well on common
scenes where changes between frames (at 25 or 30 fps) are usually small. If the
current foreground mask does not correspond to any known key-region, a new
key-region is created.

Once a connected component of the foreground mask is assigned to an exist-
ing key-region, it should be aligned to the same coordinate system. This align-
ment is performed by estimating the motion between the foreground mask and
the stored key-region. After alignment, let us denote by M̂for(t) and Î(t) the
motion compensated version of the foreground mask and the motion compen-
sated input image. These images can be seen on the left side of Fig. 6. Note
that, in this example, the contour of the foreground mask is not always reliable.
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Fig. 6. Creation of the key-region mask Mk
kr(t) taking into account the reliability

of the current foreground mask M̂for(t) and of past contour information Ck
kr(t−

1).

Our goal is to combine this contour information with the contour information
of the same key-region extracted at previous time instants taking into account
the reliability of contours in time. The update of the foreground shape starts
from the compensated foreground mask M̂for(t) and is performed as follows.
Assume that I is an image and M a mask, C{I, M} denotes an image equal to
zero except on the contours of M where it takes the values of I. The contour
reliability of the foreground mask M̂for(t) is obtained by:

Ĉfor(t) = C
{
G{Î(t)}, M̂for(t)

}
(4)

The pixels value of this contour image is a confidence measure of the con-
tours of the current foreground mask M̂for(t). Low values imply that the corre-
sponding contour does not correspond to contrasted edges. This can occur, for
instance, when the foreground occludes a background region of the same color.
High values on the contour measure correspond to strong edges on the original
image and therefore to reliable contours. Fig. 6 illustrates the use of the contour
image to correct possible segmentation errors in the foreground mask extraction
algorithm. In this example, the foreground mask extracted at frame 2039 of the
nhkvideo7 sequence of the MPEG-7 database is of poor quality due to a low
contrast between the girl and the background in that specific time instant.

The two images on the left side of Fig. 6 show the extracted foreground mask
M̂for(t) and the measure of contours reliability Ĉfor(t) (as in Equ. (4)). This
measure of the contour confidence on the current foreground mask is compared
with the same accumulated measures from the previous foreground masks as-
signed to the same key-region, Ck

kr(t − 1). This accumulated contour image is
part of the key-region model (see section 6). The corresponding accumulated
contours measure of the key-region is shown on the bottom image of Fig. 6.
The combination of the current contour Ĉfor(t) and the accumulated contours
Ck

kr(t− 1) is done by a maximum operation:
Ĉu(t) = aĈfor(t) ∨ (1− a)Ck

kr(t− 1) (5)
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The parameter a ∈ [0, 1] controls the memory of the allowed modifications
to the shape of extracted foreground masks. If a ' 0, previously segmented key-
region contours are trusted more than the current contours from the foreground
mask. In this case, errors in the foreground mask are easier to fix but tracking
non-rigid foreground regions becomes more difficult. On the other hand, if a ' 1,
non-rigid regions are easier to track but segmenting errors are also more difficult
to correct. In our case, a value of a = 0.5 has been used for all examples. Note
that resulting contour values of Ĉu(t) are only used locally as the gradient image
for the watershed of the key-region mask definition (see Figure 6) so the implied
lowered of the gradient when using a < 1 is not propagated on following frames.

The estimation of the final mask of the foreground region: Mk
kr(t) is done with

a watershed algorithm. The markers for this watershed consist of two points, one
inside the foreground mask and one outside (in the background). The output
of the watershed algorithm is the new foreground mask Mk

kr(t) where the most
reliable contour parts from the foreground mask and from the assigned key-region
have been used. The resulting mask is shown on the right side of Fig. 6. The
initial error in the foreground mask shape has been eliminated and replaced by
the most reliable contour observed in the past. In general, this procedure allows
the progressive improvement of the key-region contours on a frame by frame
basis taking into account the reliability of past extracted key-region contours.

6 Key-Region Modeling
The final step of the algorithm creates and updates a model for each key-region
observed in the scene (Key-region update block of Fig. 2). The key-region model
consists of a template of three images. An appearance image, a contours image
and a texture image. The appearance image Ak

kr(t) shows the frequency with
which a pixel has been estimated as belonging to key-region k. The contour image
Ck

kr(t) stores the confidence of the key-region contours and is used to modify the
input foreground masks in a frame basis as seen in the previous section. Finally,
the texture image T k

kr(t) represents the overall texture of the key-region.
If the key-region mask Mk

kr(t) = 1 denotes pixels that have been extracted
and assigned to key-region k at time t and, Ĉfor(t) is the contour confidence of
the extracted foreground mask (as in Equ. (4)). The equations that update each
template image are (pointwise operations are implied):

T
k
kr(t) =

Ak
kr(t− 1)T k

kr(t− 1) + Mk
kr(t)Î(t)

Ak
kr

(t)
C

k
kr(t) =

Ak
kr(t− 1)Ck

kr(t− 1) + Ĉfor(t)

Ak
kr

(t)

A
k
kr(t) = A

k
kr(t− 1) + M

k
kr(t) (6)

Fig. 7 shows the key-region template images from a scene where a person
walks in front of the camera. The appearance, contour and texture template
images contain information of the activity followed by the key-region. In this
case, higher body parts (body, chest) show no relative movement while lower
parts (legs) show a considerable amount of relative motion. This representation
is particularly attractive to analyze the activity of non-rigid regions.

Fig. 1 shows a complete shot representation of the nhkvideo7 sequence. The
background information is separated from the key-regions of the scene. In the
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Fig. 7. Modeling of key-region k with, from left to right, an appearance image
Ak

kr(t), a contour image Ck
kr(t) and a texture image T k

kr(t).

original sequence, the camera follows the walking girl while a car crosses the
road in the background. Two key-regions have been extracted corresponding to
the girl and the car. Fig. 1.b and 1.c show the corresponding template images of
the two key-regions. Superimposed to the final mosaic image, the relative motion
respect to the camera is drawn.

7 Conclusion
A method for representing and structuring video shots has been presented. A
robust outliers detection algorithm based on connected operators is used to esti-
mate and create a mosaic image of the background information of the scene. This
background information can then be used to extract representative foreground
key-regions that appear in the shot. The proposed approach uses a watershed
algorithm to extract the foreground mask on a frame by frame basis. These
foreground regions are refined using the reliability of previous extracted con-
tours and are progressively combined into key-region templates. At this step,
the watershed algorithm turned out to be again an attractive solution. Both
key-regions templates and mosaic image create a compact and useful represen-
tation of the content and of the activity of the scene allowing the possibility of
further representation, indexing and analysis of the shot.
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