
Correspondence matching in unorganized 3D point clouds
using Convolutional Neural Networks

Pujol-Miró, Albaa, Casas, Josep R.a, Ruiz-Hidalgo, Javiera

aUniversitat Politècnica de Catalunya, Jordi Girona 1-3, Barcelona 08034, Spain

Abstract

This document presents a novel method based in Convolutional Neural Net-
works (CNN) to obtain correspondence matchings between sets of keypoints
of several unorganized 3D point cloud captures, independently of the sen-
sor used. The proposed technique extends a state-of-the-art method for
correspondence matching in standard 2D images to sets of unorganized 3D
point clouds. The strategy consists in projecting the 3D neighborhood of
the keypoint onto an RGBD patch, and the classification of patch pairs us-
ing CNNs. The objective evaluation of the proposed 3D point matching
based in CNNs outperforms existing 3D feature descriptors, especially when
intensity or color data is available.

Keywords: matching; point cloud; convolutional neural networks

∗Corresponding author: Tel.: +34-934-011-627
Email address: alba.pujol@upc.edu (Pujol-Miró, Alba)

Preprint submitted to Image and Vision Computing April 9, 2019

1. Introduction

Correspondence matching allows to establish which parts of one image
correspond to which parts of another image. This information is widely
used to perform data fusion from different sensors in order to obtain an
enriched representation of scene observations. Use cases are, for instance,
the matching of stereo cameras to obtain depth information, the combination
of data from several camera types (visible light, infrared, x-ray...) into a
single source, or the computation of optical flow (local displacement between
frames) in a video sequence.

The present work focuses on feature matching algorithms in a different
domain: unorganized 3D point clouds, popular nowadays with several types
of 3D sensors. Range sensors like Kinect or Asus Xtion use an infrared
sensor to acquire, for each pixel, the distance from the object to the camera.
This data can be combined with the RGB information to obtain an RGBD
image of the scene. In these sensors, the 3D points are organized into a
lattice. Other sensors, like LiDAR scanners, provide a spherical image with
the radial distance to the capture point. There are also line scanners, which
scan the scene line-by-line and provide streams of depth information.

When data from several sensor types is combined, the information can no
longer be represented in a single regular lattice. The data from the multiple
sensors is rather combined in a non-ordered (or unorganized) 3D point cloud
with intensity or color information for each point.

Our work aims to obtain a reliable method to match several keypoints
between two unorganized 3D point clouds exploiting both photometry and
geometry. Current techniques consist in computing a feature vector using
local and global information on the neighborhood of the query and target
points. Comparing these two vectors, the keypoints can be classified as
matches or non-matches. Several methods are available to obtain these
feature vectors for 2D and 3D scenarios, but recent contributions in the
case of 2D images [19] propose to classify image patches centered on the
keypoints by means of Convolutional Neural Networks (CNNs) instead of
using a descriptor.

The work presented in this document aims to extend deep learning tech-
niques to match relevant keypoints in the 3D domain. To do so, a two-stage
algorithm is proposed. As shown in Figure 1, first the 3D neighborhood
around a potential keypoint is projected into the 2D domain, and then the
image patches obtained are classified using CNN’s.

In the next section, we introduce a brief review of state-of-the-art for
3D correspondence matching. Then, we describe the proposed procedure in

2

CNN-Based classification

Output score

3D -> 2D projection3D -> 2D projection

Input data

Two-stage algorithm

Keypoint
detection

PointCloud #2

Keypoint #B
Point

neighborhood

Patch #B

Keypoint
detection

PointCloud #1

Keypoint #A
Point

neighborhood

Patch #A

Figure 1: The proposed pipeline is divided in two parts: Projection of the neighborhood
of a query point into a 2D patch, and classification of these patches related to keypoints
as matches/non-matches using CNNs

section 3, and evaluate its performance against existing methods in section 4.
Finally, our conclusions are drawn in section 5.

3

2. State of the art

Correspondence matching is a widely developed field in computer vision.
The goal of this procedure can be stated as follows: given two points on two
different captures of the same scene, establish if they correspond to the same
point in the scene. Classical matching methods establish correspondences
by extracting characteristics of the local neighborhood of the keypoints and
comparing them. Thus, on most applications, the decision about which
points will be query points is also an important factor to take into account.
Although the procedure is out of the scope of this work, the selection of
which points will be queried may have an effect on the performance of the
algorithm.

The most relevant characteristics in a keypoint detector are the speci-
ficity, defined as the capability to differentiate the point from other key-
points on different sources, and the repeatability, defined as the ability to
accurately detect the keypoint on all the sources. The specificity depends
on which features are observed on the correspondence matching steps, but
general characteristics requirements should be fulfilled in most cases. For
instance, areas with high textures or sharp contours are favored over flat
surfaces, where the location of keypoints cannot be established accurately.

We will use Intrinsic Shape Signatures (ISS) [20] as keypoint detector.
The review in [16] shows that ISS provide the highest repeatability on most
datasets. In addition, the detected points have good performance when
matched using state-of-the-art 3D descriptors, as shown in [3].

Once the keypoints are established, classical correspondence matching
methods consist in computing a feature vector on each keypoint and per-
forming a distance-based matching [3]. One of the best performing algo-
rithms is Rotational Projection Statistics (RoPS) [4]. RoPS projects the
point neighborhood into various rotated patches in several planes, and ex-
tracts statistics about the projection. Another algorithm with good perfor-
mance is Point Fea- ture Histogram (PFH) [10]. PFH computes a histogram
describing the local geometry around a query point.

For a comprehensive evaluation of the proposed algorithm, other descrip-
tors are used in the benchmarking we present. Spin Images [5] compute a
histogram representing the point distribution in the neighborhood of a cen-
ter point. Intensity Spin Images [6] use the same idea but representing the
distribution of intensity in the surroundings. Rotation-Invariant Feature
Transform (RIFT) [6] takes some concepts from the 2D descriptor SIFT.
This descriptor constructs histograms from neighborhoods of increasing cir-
cular radius. Signature of Histograms of Orientations (SHOT) [14] encodes

4

information about the topology within a spherical neighborhood. SHOT-
Color [15] is an improved version that also uses color information to increase
the performance.

Recent developments exploit Convolutional Neural Networks (CNN’s)
to perform a matching between two keypoints. Zagoruyko [19] presents a
method to establish correspondences by querying if two keypoints match
based on their surrounding pixels on the image. For each query keypoint, a
64x64 image patch is extracted. Then, these patches are classified using a
CNN that provides a score indicating how similar the patches are.

However, unorganized point clouds can not be directly analyzed using a
CNN, since no lattice structure is available. Recent developments presented
in [8, 9] propose a method to segment unorganized point clouds using Neural
Networks. The method consists in applying a transformation that makes the
input invariant to the point order.

In our case, the proposed strategy consists in obtaining a local lattice
structure around the query keypoints, analogously to the image patches
in [19], using a technique similar to the RoPS computation [4]. The local
lattice structure allows obtaining an RGBD representation of the surround-
ing patches that can be classified using existing 2D CNNs.

5

3. Methodology

In this section a method to establish correspondence between two sets
of 3D data is explained. Given one 3D point in one capture and another
3D point in another capture this method is focused on establishing if these
two points are from the same point in the 3D scene. The procedure used to
obtain this correspondence is to extract information about the surrounding
of each point and then use Convolutional Neural Networks to classify the
points in matches or non-matches.

Figure 1 shows the two main steps of the proposed procedure. In the
first step, for each query keypoint, an RGBD image patch representing its
surroundings is extracted. The second step consists in the classification of
the obtained RGBD patches using a convolutional neural network structure.
The networks used are based on the ones presented in [19].

3.1. Transform point clouds to image patches

The first step of this procedure consists on mapping the surroundings
of a keypoint into an RGBD image. A 3D point cloud of a scene can be
seen as a sampling of the 3D surfaces that are contained in the scene. If
the sampling is done from a single viewpoint (for example, a single static
Kinect or LiDAR sensor), then the scene can be projected into a 3D domain
without losing any information. However, if the available point cloud is a
combination of captures from several locations, when projected onto a single
plane points from several surfaces will be overlapped.

When matching keypoints, however, the interest area is reduced to a
small neighborhood of the query point. In this case, only the points –
and thus, the surfaces– close to the query point are relevant. In this close
neighborhood the likelihood of not finding an arbitrary projection plane
which does not have overlapped points from several surfaces is minimized.

Additionally, another factor has to be taken into account. In a point
cloud, the density of the points may change on the scene. For example,
on a Kinect camera the point density decreases with the distance of the
sensor to the camera. The proposed projection technique should obtain a
similar projection independently of the point density on the query point
neighborhood.

Taking into account these two factors the following projection strategy
is presented. First of all, a small neighborhood Xk is acquired for each
keypoint k using a KD-tree with a fixed radius r as shown in Equation 1,
where Xk are the point coordinates and Ik their corresponding intensity
values.

6

Xk = { ~xk1, · · · , ~xkN} , Ik = {ik1, · · · , ikN} (1)

The obtained neighborhood is centered by computing the centroid ~xk
and subtracting it from the query points Xk, obtaining Xk as shown in
Equation 2.

~xk =
1

N

N∑
i=1

~xki

Xk = Xk − ~xk =
{
~xk1, · · · , ~xkN

}
(2)

Using PCA, the principal components of the neighborhood Pk = [~pkx, ~pky, ~pkz],
ordered by decreasing eigenvalue, are obtained. These vectors define the op-
timal projection plane to minimize the overlapping between points, being
the plane with normal vector ~pkz.

This projection provides a transformation that is invariant to the camera
viewpoint and to the point density of the area. In most cases the PCA
projection gives a strong plane vector, but the rotation within the plane
is not well-defined. To obtain a better performance the orientation of the
patches is normalized to a common direction.

To define a common orientation between all the patches the intensity
values of the points contained in the neighborhood are used. The direction
of maximum intensity ~ηk is computed using the location information Xk and
the intensity information Ik, as shown in Equation 3.

~ηk =

N∑
i=1

~xki · iki (3)

This information allows the definition of a new base P ′
k = [~p′kx,

~p′ky,
~p′kz].

This base has the same third vector as the original base, but the vectors in
the plane are defined based on the direction of maximum intensity ~ηk, as
shown in Equation 4. The vector ~p′kx is computed as the projection of ~ηk in

the plane defined by ~pkz, and ~p′ky as the vector orthogonal to ~p′kx and ~pkz

~p′kx = ~ηk − 〈 ~ηk, ~pkz〉 · ~pkz
~p′ky = ~p′kz × ~p′kx (4)

~p′kz = ~pkz

7

With this new base, the points Xk are transformed into the base P ′
k,

obtaining X ′
k. This projection provides a representation invariant to the

camera location and with a common orientation on all the query neighbor-
hoods.

The next step is to obtain an RGBD image from these oriented points.
This image is obtained by projecting the transformed point set into a regular
N×N lattice. This lattice is defined within the range of the projected points,
from min{X ′

k} to max{X ′
k} for the x and y axis.

To obtain the RGB information Each 3D point is projected into a cell,
assigning their RGB value to the cell. If more than one point is assigned to
the same cell, their values are averaged.

For the projection of the depth channel, we follow a similar procedure.
In this case, the value dik assigned to the depth channel projection for each
point in Xk is computed as the distance between the point and the projection

plane (defined by the principal vector ~p′kz): dik = 〈 ~xik, ~p′kz〉. If more than
one point is assigned to the same cluster on the lattice, the final value is the
average of the distance of the assigned points.

To summarize, the acquisition of an RGBD patch for each query point
of an unorganized 3-D point cloud can be done following these steps, shown
in Figure 2.

1. For each given query point, obtain a subset of the point cloud given by
the points which are within distance r of the query point (Figure 2.a)

2. Compute the PCA decomposition Pk of the point subset (Figure 2.b).

3. Compute the direction of maximum intensity ~ηk to make the transfor-
mation invariant to rotation (Figure 2.c).

4. Rotate the base Pk to have the projection of ~ηk as the main plane
vector (Figure 2.d).

5. Define a lattice in the projection plane of size N × N . This lattice
should be scaled to the range of the projected points (Figure 2.e).

6. Project the points into the lattice. For each cluster, if more than one
point is assigned their RGB values are averaged. The depth value is
defined as the distance of each point to the projection plane. In a
same manner, if more than one point is assigned their depth values
are averaged (Figure 2.f).

7. The final result is an RGBD image which is independent to the point
density of the underlying surface and has a defined orientation (Fig-
ure 2.g).

8

a) b)
d)

c).

e)

f)

g)

Figure 2: Schematic of the computation of an RGBD image from a 3D point cloud key-
point: a) Underlying structure and sampled points, b) PCA decomposition, c) Direction
of maximum intensity, d) Rotation of the PCA vectors to match the direction of maximum
intensity, e) Projection lattice (4x4), f) Projection of the points to the lattice, g) Obtained
RGB (top) and depth (bottom) images

3.2. Classification using CNN

Once the RGBD patches are obtained, we classify the patches in matches
and non-matches in a second step. We consider the CNN’s proposed in [19]
for scoring the similarity between patches.

The data used in [19] consists in a ground truth of true and false matches
of 64 × 64 patches with the same content orientation. To construct this
dataset, keypoints have been detected on several images and a distance
threshold established to determine if they are matching. A balanced dataset
(same number of matches and non-matches) is constructed for the training
process. The training data consist on 64 × 64 image patches which have
been rotated to have the same orientation between matches.

The data obtained in the previous step is very similar: image patches of
the keypoint surroundings invariant to rotation. However, there are three
key differences: the represented data, the size of the image and the shape of
the patch.

In our case, the obtained data is not only the RGB information, but also
the depth information. Therefore, to take advantage of this new information
the network structures will be modified to allow the inclusion of this data
type.

Another key difference is the image size. The images used in [19] are
64×64. The images obtained by a traditional camera have much higher pixel
counts that the number of valid points that can be obtained using state-of-
the-art range sensors. Therefore, if the lattice is sized to 64 × 64, with
small neighborhoods there will be not enough points in the neighborhood
to fill the lattice and there will be random blank spaces in the interior,
which affects negatively the performance. One possible solution is to increase
the neighborhood radius. However, this solution has the negative effect

9

Neighborhood
size

Lattice size- +

-

+

Figure 3: Illustrative representation of the effects of patch size and neighborhood query
radius. In each case, the left image corresponds to the intensity information, whereas the
right image corresponds to the depth information.

of including more surroundings that might not be relevant to the scene.
Another possible solution, selected in this work, is to use smaller lattice
sizes and then up-sample the data before feeding it to the network.

The third relevant difference is the information contained in the patch.
Since the neighborhood is acquired thresholding with an euclidean distance
from the query point, the resulting image contains a circle-shaped patch
with black corners.

To better illustrate the effects explained above, Figure 3 provides four
illustrative examples of the obtained patch for various neighborhood and
lattice sizes. As it can be seen, the three differences mentioned above are
present. First of all, each patch has associated a depth information (right)
for each RGB information (left). Another relevant factor is the image size.
As it can be seen, increasing the lattice size without gathering more points
(top right) produces undesirable artifacts on the image, produced by blank
clusters inside the main area. It can also be observed that lowering the
patch size produces a blurred image due to several points being averaged
in the same cluster (bottom left). Finally, it can also be observed that the
patch has a roundish shape, produced by the query of the points using a
ball distance.

Having into account this information, the following structures are pro-
posed. It should be noted that on all the network structures instead of
using the RGB channels a single intensity channel is used, leaving us with
two possible channels, intensity and depth. Additional information for the
presented networks can be seen in Figure 4.

2ch-intensity Network structure using only intensity information. The two
N ×N single-channel images (intensity only) from each keypoint are

10

concatenated into the third dimension producing a two-channel image
N ×N × 2. This two-channel patch scaled to 64× 64× 2. A network
with 3 convolutional layers is used. This network finishes with a fully
connected layer and sigmoid layer that normalizes the output of the
fully connected layer between 0 –non-match– and 1 –full match.

2ch-depth This network uses the same structure as before, but in this
case the single-channel image used per keypoint contains the depth
information instead of the intensity information. The structure also
scales the input image to 64 × 64 × 2, has 3 convolutional layers and
also outputs a confidence value.

2ch-2stream This network is a combination of the two networks presented
before. It consists on a two-stream network, one for the intensity and
one for the depth information. The streams have the same structure
presented before and are joined on the final fully connected and sig-
moid layers. This network also outputs a single confidence value.

This network structures are derived from the network structures pre-
sented in [19], used with intensity patches. The structures that provide best
results in their test case are the ones that input the patches as a two-channel
image, closely followed by the central-surround approach. This approach
consists on dividing the network in two streams. One stream is feed with
the central part of the patches as a two-channel image, whereas the other
stream is feed with a downsampled version of the same patches, also in a
two-channel image. Both streams have the same structure but do not share
any parameters. Having into account the round shapes of the patches used
in this work, it has been considered that using the central-surround system
will not provide a significant advantage given the large blank areas around
the circle patch.

Therefore, our first test uses the two channel network with only the
intensity information. The second straightforward test consists in using the
same network structure, but only with the depth channel as input. Then, in
order to take advantage of the intensity and depth information jointly, a new
network structure is presented. As stated in [1], mixing intensity and depth
channels in the same input gets worse results than providing the different
channels as input on separate network streams. Therefore, the proposed
structure has two streams with the same structure as the ‘2ch’ network,
and concatenates the features on the fully connected layer, without sharing
parameters.

11

Upsampling (64x64)

Conv (2->96, k=7, s=3)

ReLU

MaxPool (k=2, s=2)

Conv (96->192, k=5)

ReLU

MaxPool (k=2, s=2)

Conv (192->256, k=3)

ReLU

FC (256->1)

Upsampling (64x64)

Conv (2->96, k=7, s=3)

ReLU

MaxPool (k=2, s=2)

Conv (96->192, k=5)

ReLU

MaxPool (k=2, s=2)

Conv (192->256, k=3)

ReLU

FC (256->1)

Upsampling (64x64)

Conv (2->96, k=7, s=3)

ReLU

MaxPool (k=2, s=2)

Conv (96->192, k=5)

ReLU

MaxPool (k=2, s=2)

Conv (192->256, k=3)

ReLU

FC (512->1)

Upsampling (64x64)

Conv (2->96, k=7, s=3)

ReLU

MaxPool (k=2, s=2)

Conv (96->192, k=5)

ReLU

MaxPool (k=2, s=2)

Conv (192->256, k=3)

ReLU

a) 2ch-intens b) 2ch-depth c) 2ch-2stream

Sigmoid Sigmoid Sigmoid

Figure 4: Network structures used: a) U(64) - C(2->96,k=7,s=3) - ReLU - P(k=2,s=2) -
C(96->192, k=5, s=1) - ReLU - P(k=2,s=2) - C(192->256, k=3, s=1) - ReLU - F(256->1)
- Sigmoid, b) same structure as a) but input with depth images. c) Two branches U(64)
- C(2->96,k=7,s=3) - ReLU - P(k=2,s=2) - C(96->192, k=5, s=1) - ReLU - P(k=2,s=2)
- C(192->256, k=3, s=1) - ReLU, joined with F(512->1) - Sigmoid, Notation : U(N)
is the initial up-sampling to size N × N C(i− > n, k=k, s=s) is a convolutional layer
with i input channels, n filters of spatial size k × k applied with stride s, P(k=k, s=s)
is a max-pooling layer of size k × k applied with stride s, and F(i− > n) denotes a fully
connected linear layer with i input units and n output units.

12

4. Experiments

In this chapter a comprehensive evaluation of the proposed method is
presented. First of all, the datasets and measures used to evaluate this work
are presented. Several datasets with different characteristics are used to ob-
tain a wide benchmark of the performance of the method an the effect of the
training dataset on the final performance. This method is also benchmarked
against several state-of-the-art hand crafted descriptors.

In addition to the final performance, a study on the method parameters
is presented. The effects of the radius size, the patch size and the network
structure will also be studied on the training and validation tests.

The code used to perform the development and the results obtained is
available from our webpage1.

4.1. Datasets

The procedure proposed in the previous section aims to, given two key-
points from different captures and their surroundings, establish if these two
keypoints are from the location in the scene. Therefore, the training and
testing dataset should contain information about matching keypoints and
their surroundings.

For 2D images, there are datasets available, such as [18], that providing a
set of patches together with the information about which patches correspond
to the same scene point.

For 3D data, no such dataset is readily available. Therefore, we have
selected several 3D datasets with multiple captures of the same scene (ei-
ther multi-viewpoint or scenes with camera motion), which have the camera
location available for each capture. For the ground-truth labeling, we de-
tect several keypoints on different captures, and then label the matching
points in the other captures with the help of the known camera location
parameters.

A factor that will be relevant during the development of these experi-
ments is the point cloud resolution. The point cloud resolution is defined as
the average distance between neighboring points in a point cloud. To com-
pute this value on a capture, each point is matched with its nearest point
and the distance is computed. The average of this distance between each
point of the capture defines the point cloud resolution.

1https://imatge.upc.edu/web/resources/correspondence-matching-unorganized-3d-
point-clouds-using-convolutional-neural-networks

13

This parameter is useful to be able to not be dependent on the size of
the distance of the capture and the resolution of the sensor. In this work,
for each sequence a global resolution is captured, averaging the point cloud
resolution of each frame into a single value, called the dataset resolution.

To obtain the location-labeled captures some datasets reviewed in [2]
have been used. Two sequences –freiburg1/desk and freiburg1/teddy–
from the Freiburg RGBD dataset [13] and two sequences from the CoRBS
Dataset [17] –corbs/desk and corbs/e.cabinet– have been used. Addi-
tionally, a depth-only sequence from the Microsoft 7 scenes dataset [12]
–m7scenes/fire– has been used.

For train and validation only the sequence freiburg1/desk has been
used. This sequence contains a capture of a handheld Kinect 1 camera
moving around a common office desktop desk.

For test and validation four different sequences have been used. Sequence
freiburg1/teddy contains a capture of a teddy bear recorded in a similar
fashion than freiburg1/desk. corbs/desk also contains a capture of an
office desk, but in this case is recorded using a Kinect 2 camera. Sequence
corbs/e.cabinet is the most different capture from freiburg1/desk: con-
tains a different scene –an electrical cabinet– and is captured using a different
sensor – Kinect 2 rather tan Kinect 1. Finally, the sequence m7scenes/fire
contains a capture of a fire extinguisher. This sequence do not have color
information, sincethe registration between the depth and the intensity data
is not available in the Microsoft 7 scenes dataset.

The freiburg1/desk dataset is divided into training and validation
split. The first 416 images are used for training, and the remaining 179
are used for validation. This implies that the matches between images on
the train split and images on the validation split are discarded to avoid
having repeated patches on the train and validation split.

Additional information about the datasets used can be found in Table 1.
Additionally, a visual representation of the scene shown in each dataset can
be seen in Figure 5.

4.2. Measures

In this project a balanced binary classification project is evaluated. The
output of this method is a confidence value between 0 –non-match– and 1
–full match. The thresholding of this confidence value to obtain two sets of
matches and non-matches is left outside the scope of this document, since the
thresholding value is application-dependent: if the application can handle a
high number of false positives the threshold will be lower.

14

Dataset Sensor Frames Resolution Kpts/frame T.matches Color Train Test

freiburg1/desk Kinect 1 595 2.29e-3 m 279 327039 x x
freiburg1/teddy Kinect 1 301 2.29e-3 m 1102 438860 x x
corbs/desk Kinect 2 100 6.58e-3 m 1206 98130 x x
corbs/e.cabinet Kinect 2 100 5.47e-3 m 901 52007 x x
m7scenes/fire Kinect 1 400 2.65e-3 m 390 450072 x

Table 1: Datasets used for evaluation: frames used, average keypoints per frame found in
each dataset and total number of true matches are stated. For evaluation purposes, an
equal number of false matches are randomly selected from the non-matching pairs.

(a) freiburg1/desk (b) freiburg1/teddy (c) corbs/desk

(d) corbs/e.cabinet (e) m7scenes/fire

Figure 5: Visual examples of the scene shown in each dataset

15

gamma 21 gamma 32 min neigh salient rad non max rad normal rad border rad

0.975 0.975 5 0.15 0.05 0.0.01 0.0025

Table 2: Parameters used for the ISS detector. These parameters have been tuned from
the default parameters assuming a cloud resolution of 2.5e-3.

Reference [3] evaluates 3D local feature descriptors with Precision-Recall
curve and the AUC measure. AUC is stated to have better performance
when the positive and negative datasets are balanced. Therefore, the mea-
sures selected for the evaluation are the ROC curve for the graphical results
and the AUC for the numerical results.

To perform this evaluation, for each frame in each dataset a set of key-
points is detected. As stated in Section 2, for the detection of keypoints
we use Intrinsic Shape Signatures (ISS) [20]. The high repeatability shown
in [16] allows to detect a substantial amount of matched keypoints and have
a large dataset of matched keypoints using only a few frames. The same
ISS detector parameters, shown in Table 2, are used on all the datasets to
perform the detection. Since in this context the performance of the keypoint
detector is not evaluated, the parameters have not been fine-tuned.

To obtain the ground truth of matching and non-matching pairs, for each
sequence all the possible combinations between keypoints of different frames
are taken into account. Since the keypoint location is a non-discrete value,
a certain distance threshold must be allowed between keypoint locations to
consider them a match or a non-match. In this case, the selected threshold is
2∗dataset resolution, which allows to take into account the errors obtained
in the capture and the point density.

To obtain a balanced dataset, for each pair of matched keypoints, a
random pair of non-matching keypoints is selected on the same capture
pair.

4.3. Descriptor benchmark

The performance of the proposed patch matching algorithm is evalu-
ated against some of the most relevant state-of-the-art algorithms according
to [3]. The descriptors tested are Spin Images [5], Intensity Spin Images [6],
RIFT [6], SHOT [14], SHOTColor [15], Fast Point Feature Histogram [10]
and RoPS [4], as stated in Section 2. The selected implementation for the
stated descriptors is available from the Point Cloud Library (PCL)[11].

4.4. Image patches

The first part of the proposed pipeline computes image patches from
3D keypoint neighborhoods. As stated in the previous section, creating the

16

8x8 16x16 32x32 64x64

16x

32x

64x

128x

Figure 6: Representation of patches of several neighborhood sizes (rows) and lattice sizes
(columns). In each case, the left image corresponds to the intensity information, whereas
the right image corresponds to the depth information.

patch consists in obtaining a set of neighboring points using a KD-Tree, and
then projecting these points into a 2D lattice.

In this procedure two main parameters can be tuned: the neighborhood
size and the lattice size. The size of the K-neighborhood has been set ac-
cording to the resolution parameter in Table 1. Several

Figure 6 shows a visual example of the constructed patches from the
freiburg1/desk dataset using a 8×8, 16×16, 32×32 and 64×64 patch. For
each patch size, several neighborhood sizes are taken into account: 16×,32×,
64× and 128×. This neighborhood sizes are the maximum distance in the
terms of the dataset resolution (16× the dataset resolution, etc.).

When input to the network, these patches are upsampled to 64×64, the
same patch size used in [19]. Figure 6 also shows that the rotation applied
to the points before the projection in order to normalize in the direction of
maximum intensity change (Equations 3– 4 in Section 3) effectively makes
the patches invariant to rotation.

Whilst smaller lattices with large neighbor radius produce a blurry im-
age of the surroundings, too large lattices with small neighbor radius provide
patches with holes that will hinder the evaluation. A trade-off between lat-
tice size and neighborhood size can be observed. For each neighborhood
radius, there is a patch size that provides the sharpest image without hav-

17

ing blank spaces inside the patch. For example, for a neighborhood radius
32× the dataset resolution the clearest patch size is 16 × 16, whereas for
a neighborhood radius 64× the dataset resolution the clearest patch size is
32× 32.

Each network structure will be trained with the presented combinations
of patch size and neighborhood radius.

4.5. Training parameters

The parameters used to train the network are the same for all network
configurations. In all cases, the dataset used in the training step has been
freiburg1/desk, with 70% of the matches (228.927 true pairs and 228.927
false pairs) in the training split and 30% of the matches (98.112 true pairs
and 98.112 false pairs) in the validation split. The network has been trained
for 90 epochs, with a learning rate of 0.1, a momentum of 0.9, a weight decay
of 0.0004 and a batch size of 256 pairs. The validation split is used to stop
the training and select the epoch with best AUC measure. The software
framework used is PyTorch [7].

4.6. Performance

The system has been trained using three different network structures:
2ch-intens, 2ch-depth and 2stream, as explained in the previous section.
Each network structure has been trained with 4 different patch sizes: 8× 8,
16 × 16, 32 × 32 and 64 × 64; and 4 different patch resolutions: 16×,32×,
64× and 128× the dataset resolution.

Table 3 shows the evaluation using the AUC of the different structures
with the different patch sizes and resolutions on the validation split on the
dataset freiburg1/desk.

In these tests, the best performing network is 2ch-2stream, closely fol-
lowed by 2ch-intens. The 2ch-2stream structure combines intensity and
depth information, whereas 2ch-intensity uses only the intensity informa-
tion and 2ch-depth uses only the depth information.

Comparing the performance of the 2ch-intensity and 2ch-depth net-
works it can be seen that the intensity information is more relevant for the
patch matching than the depth information. However, when both data are
combined in the 2ch-2stream network the performance is slightly increased.

Observing all the network structures globally it can be seen a correlation
between the patches seen in Figure 6 and the performance of the different
configurations. It can be observed that the best performing combinations of
patch size and neighborhood radius are the ones that provide a sharp image
and include a relevant amount of information of the surroundings.

18

Radius
Size

8 16 32 64

16× 0,956 0,961 0,956 0,931

32× 0,964 0,970 0,969 0,961

64× 0,972 0,978 0,977 0,977

128× 0,962 0,976 0,976 0,975

(a) 2ch-intensity

Radius
Size

8 16 32 64

16× 0,861 0,899 0,906 0,906

32× 0,909 0,931 0,925 0,926

64× 0,934 0,948 0,946 0,946

128× 0,916 0,923 0,933 0,933

(b) 2ch-depth

Radius
Size

8 16 32 64

16× 0,960 0,964 0,961 0,944

32× 0,971 0,973 0,972 0,965

64× 0,976 0,981 0,980 0,978

128× 0,965 0,976 0,975 0,976

(c) 2ch-2stream

Table 3: AUC for different patch sizes, k-neighbor radius and network configurations on
freiburg1/desk dataset (validation split). The best value for each network structure is
highlighted in bold face.

19

However, having a high neighborhood radius is not always beneficial:
when the neighborhood radius is too large, it gathers surroundings of the
keypoint that are not relevant to the local neighborhood. These points have
high variability between captures and hinder the results of the algorithm.

A combination of patch size and radius has been selected for each net-
work. On all network configurations, the best radius is 64× the dataset
resolution. This radius gives enough context of the surrounding of the patch
without gathering non-relevant information of the neighborhood. The best
lattice size on all the datasets is 16 × 16. This lattice size allows to rep-
resent the data on the surroundings without losing important information
and without having blank spaces inside the patches.

Observing the Figure 6 it can be seen that with radius 64× the dataset
resolution the information contained in the patch have enough texture and
distinctive features to be able to match different keypoints. With radius 32×,
only a small surrounding is represented and it is not big enough to provide
relevant information. With radius 128×, the neighborhood includes points
that are too distant to the keypoint and do not feed relevant information of
the immediate surroundings.

Regarding the patch size with radius 64× we can see that both 16× 16
and 32 × 32 provide a good representation of the surroundings. Although
32×32 provides a sharper representation some small holes are showing in the
patch representation. This shows that the network is more sensitive to blank
points inside the patch than to blurry representations of the surroundings.
Therefore, the selection of the patch size has to be taken into account when
selecting a lattice size.

From the previous results, the network parameters selected for bench-
marking against the stated descriptors are radius 64× and patch size 16×16,
used on the network structures 2ch-intens, 2ch-depth and 2stream-8.
These networks are benchmarked using the freiburg1/teddy, corbs/desk,
corbs/e.cabinet and m7scenes/fire datasets. The results obtained are
included in Table 4 and Figure 7.

In Table 4 all the presented network structures outperform the exist-
ing 3D descriptors in the benchmark. The results are specially outstand-
ing when color information is available (freiburg1/teddy, corbs/desk,
corbs/e.cabinet datasets), but the proposed global methods also outper-
form the existing descriptors when only depth information is used (in the
network 2ch-depth).

20

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
po

si
ti

ve
 r

at
e

ROC curve on freiburg1teddy dataset

rift
shot
rops
shotc
fpfh
ispin
spin
2ch-intensity
2ch-depth
2ch-2stream

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
po

si
ti

ve
 r

at
e

ROC curve on corbsdesk dataset

rift
shot
rops
shotc
fpfh
ispin
spin
2ch-intensity
2ch-depth
2ch-2stream

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
po

si
ti

ve
 r

at
e

ROC curve on corbselectricalcabinet dataset

rift
shot
rops
shotc
fpfh
ispin
spin
2ch-intensity
2ch-depth
2ch-2stream

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
po

si
ti

ve
 r

at
e

ROC curve on m7scenesfire dataset

shot

rops

fpfh

spin

2ch-depth

Figure 7: ROC curves for the benchmark and tested descriptors on the different datasets.
Above (left to right): freiburg1/teddy and corbs/desk, below: corbs/e.cabinet and
m7scenes/fire.

Dataset RIFT SHOT SHOTC RoPS FPFH SI iSI 2ch-i 2ch-d 2ch-2str

freiburg1/teddy 0.51 0.60 0.68 0.74 0.74 0.66 0.51 0.96 0.84 0.96
corbs/desk 0.57 0.71 0.72 0.82 0.84 0.80 0.68 0.93 0.84 0.94
corbs/e.cabinet 0.54 0.73 0.73 0.86 0.87 0.78 0.56 0.94 0.88 0.95
m7scenes/fire – 0.63 – 0.80 0.66 0.65 – – 0.83 –

Table 4: AUC values for the 7 state of the art descriptors tested and the three network
structures presented. For each dataset, best global method is marked in bold and best
benchmarking descriptor underlined. For the sequence m7scenes/fire only those methods
that do not need intensity information have been evaluated.

21

Ground truth
true matches

Ground truth
false matchesOutput score

0.9791.000

0.973

0.465

0.336

0.000

0.999

0.001

Dataset: corbs/desk

Intensity image

Depth image

Kpt. frame A Kpt. frame B

Patch representation

Output score

Figure 8: Visual results. The patches are separated in ground-truth matches (left) and
ground truth non-matches (right). The matches are sorted in descending score order.
Patch size 8 × 8 is used for clarity.

22

4.7. Visual results
In addition to the numerical results, some visual results of the output of

the neural network are shown in Figure 8. The output obtained from the
network is a value indicating the confidence that two patches are matching
or non-matching. Score ranges for each dataset are provided.

We present the results in ascending score order (non-matching patches)
and descending score order (matching patches) for each dataset. Pairs of
patches are shown for intensity and/or depth, separated in matches (top)
and non-matches (bottom) according to the ground-truth. Therefore, patch
pairs easiest to classify by the network are shown on the left (true patches
with high score and false patches with low score). Patch pairs more difficult
to classify are located on the right (true patches with low score and false
patches with high score) for each dataset group.

Please note that the network offers very good performance to detect
similar or non-similar patches when enough structure is present, either using
intensity or depth information.

In Figure 8 some results obtained with the corbs/desk dataset are
shown. In this case, four matching points and four non-matching points
are randomly selected. In the image, the patches corresponding to the true
matches are shown in the left column and the images corresponding to the
non-matches are shown in the right column. The numerical score obtained
by the neural network for each pair shown. A high score indicates that the
two patches are similar, whereas a low score indicates that the two patches
are different. The patches are sorting in descending score order. Therefore,
the correctly classified matching patches are shown on the top left, whereas
the correctly classified non-matching patches are shown on the bottom right.

For each match or non-match four images are shown: the top row corre-
spond to the intensity image and the bottom row correspond to the depth
image. Column-wise, the images on the left column correspond to the infor-
mation for one keypoint and the images on the right column correspond to
the information of the other keypoint.

Observing the scores obtained on the true matches it can be seen that
high scores are given when the patches present distinctive structures on
the same spatial locations in the patch (third and fourth patch). However,
patches with distinctive features but not correctly oriented (first patch) ob-
tain a low score. This shows the importance of having a common orientation
in the patch set, and how errors in this computation hinder the performance
of the algorithm.

Regarding the false matches it can be seen that this method correctly
gives a low score to patches which do not share any features and have differ-

23

ent intensity and depth values (first patch). However, on flat patches with
similar intensity textures (fourth patch) it gives an higher score.

On overall, it can be seen that this method offers a good performance
classifying the patches when enough texture and contour is available on the
images.

24

5. Conclusions

Correspondence matching between sets of keypoints is a highly relevant
technique for 2D/3D multi-sensor fusion. We aim at contributing a reliable
method to match keypoints for unorganized 3D point clouds, improving the
available state-of-the-art 3D descriptors.

In particular, we propose a procedure to perform pair matching of key-
points between several instances of 3D point clouds. The proposed ap-
proach takes advantage of recent developments on the usage of CNNs for
patch matching in 2D images. But unorganized 3D point clouds cannot be
directly analyzed using CNNs, since no lattice structure is available. To
overcome this limitation, we propose to obtain a local lattice by projecting
the K-NN neighbors of 3D keypoints onto 2D image patches. We feed the
network structure with these patches containing both intensity and geometry
(depth) information of the keypoint neighborhood. The network classifies
the 2D patches and provides a score indicating how similar the patches are,
so that we can derive a matching/non-matching classification for each pair
of the corresponding 3D keypoints.

The procedure has been evaluated in several datasets. Experimental
results have shown an excellent performance on all tests, improving the
results of existing 3D descriptors for keypoint matching. The proposed pro-
cedure exhibits a low dependence on the training dataset or the sensor type.
Therefore, we believe the proposed methodology can be used to perform
multi-modal/multi-sensor registration since no underlying lattice structure
is needed on the 3D point clouds.

25

6. Acknowledgements

This research was supported by the Spanish Ministry of Science and In-
novation via a doctoral grant to the first author (FPU2014), and developed
in the framework of project TEC2016-75976-R, financed by the Ministe-
rio de Economı́a, Industria y Competitividad and the European Regional
Development Fund (ERDF).

26

References

[1] Audebert, N., Le Saux, B., Lefèvrey, S., 2017. Fusion of heterogeneous
data in convolutional networks for urban semantic labeling, in: Urban
Remote Sensing Event (JURSE), 2017 Joint, IEEE. pp. 1–4.

[2] Firman, M., 2016. Rgbd datasets: Past, present and future, in: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 19–31.

[3] Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., Kwok, N.M.,
2016. A comprehensive performance evaluation of 3d local feature de-
scriptors. International Journal of Computer Vision 116, 66–89.

[4] Guo, Y., Sohel, F., Bennamoun, M., Lu, M., Wan, J., 2013. Rota-
tional projection statistics for 3d local surface description and object
recognition. International journal of computer vision 105, 63–86.

[5] Johnson, A., Hebert, M., 1998. Surface matching for object recognition
in complex 3-d scenes. to appear in. Image and Vision Computing .

[6] Lazebnik, S., Schmid, C., Ponce, J., 2005. A sparse texture representa-
tion using local affine regions. IEEE Transactions on Pattern Analysis
and Machine Intelligence 27, 1265–1278.

[7] PyTorch team, . PyTorch. http://pytorch.org/.

[8] Qi, C.R., Su, H., Mo, K., Guibas, L.J., 2016. Pointnet: Deep learning
on point sets for 3d classification and segmentation. arXiv preprint
arXiv:1612.00593 .

[9] Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017. Pointnet++: Deep hierar-
chical feature learning on point sets in a metric space. arXiv preprint
arXiv:1706.02413 .

[10] Rusu, R.B., Blodow, N., Beetz, M., 2009. Fast point feature histograms
(fpfh) for 3d registration, in: Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on, IEEE. pp. 3212–3217.

[11] Rusu, R.B., Cousins, S., 2011. 3D is here: Point cloud library (PCL), in:
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, IEEE. pp. 1–4.

27

[12] Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon,
A., 2013. Scene coordinate regression forests for camera relocalization
in rgb-d images, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2930–2937.

[13] Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D., 2012.
A benchmark for the evaluation of rgb-d slam systems, in: Proc. of the
International Conference on Intelligent Robot Systems (IROS).

[14] Tombari, F., Salti, S., Di Stefano, L., 2010. Unique signatures of his-
tograms for local surface description, in: European Conference on Com-
puter Vision, Springer. pp. 356–369.

[15] Tombari, F., Salti, S., Di Stefano, L., 2011. A combined texture-shape
descriptor for enhanced 3d feature matching, in: Image Processing
(ICIP), 2011 18th IEEE International Conference on, IEEE. pp. 809–
812.

[16] Tombari, F., Salti, S., Di Stefano, L., 2013. Performance evaluation of
3d keypoint detectors. International Journal of Computer Vision 102,
198–220.

[17] Wasenmuller, O., Meyer, M., Stricker, D., 2016. CoRBS: Compre-
hensive rgb-d benchmark for slam using kinect v2, in: IEEE Winter
Conference on Applications of Computer Vision (WACV), IEEE. p. .
URL: http://corbs.dfki.uni-kl.de/.

[18] Winder, S.A., Brown, M., 2007. Learning local image descriptors, in:
Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Con-
ference on, IEEE. pp. 1–8.

[19] Zagoruyko, S., Komodakis, N., 2015. Learning to compare image
patches via convolutional neural networks, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4353–
4361.

[20] Zhong, Y., 2009. Intrinsic shape signatures: A shape descriptor for
3d object recognition, in: Computer Vision Workshops (ICCV Work-
shops), 2009 IEEE 12th International Conference on, IEEE. pp. 689–
696.

28

