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ABSTRACT. Purpose: The diagnosis and prognosis of breast cancer relies on histopathology
image analysis. In this context, proliferation markers, especially Ki67, are increas-
ingly important. The diagnosis using these markers is based on the quantification of
proliferation, which implies the counting of Ki67 positive and negative tumoral cells in
epithelial regions, thus excluding stromal cells. However, stromal cells are often very
difficult to distinguish from negative tumoral cells in Ki67 images and often lead to
errors when automatic analysis is used.

Approach: We study the use of automatic semantic segmentation based on con-
volutional neural networks (CNNs) to separate stromal and epithelial areas on Ki67
stained images. CNNs need to be accurately trained with extensive databases with
associated ground truth. As such databases are not publicly available, we propose
a method to produce them with minimal manual labelling effort. Inspired by the pro-
cedure used by pathologists, we have produced the database relying on knowledge
transfer from cytokeratin-19 images to Ki67 using an image-to-image (I2I) translation
network.

Results: The automatically produced stroma masks are manually corrected and
used to train a CNN that predicts very accurate stroma masks for unseen Ki67
images. An F -score value of 0.87 is achieved. Examples of effect on the KI67 score
show the importance of the stroma segmentation.

Conclusions: An I2I translation method has proved very useful for building ground-
truth labeling in a task where manual labeling is unfeasible. With reduced correction
effort, a dataset can be built to train neural networks for the difficult problem of sepa-
rating epithelial regions from stroma in stained images where separation is very hard
without additional information.
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1 Introduction
Breast cancer is the most common type of cancer for women worldwide, and early detection and
diagnosis are crucial for improving the survival rate. One of the primary methods for diagnosis is
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immunohistochemical (IHC) test of biopsies. In this context, pathologists first analyze the tissue
obtained through the common hematoxylin-eosin (H&E) staining to detect tumoral areas and
then apply additional stains for further classification of the tumor and for patient risk stratifi-
cation. To predict prognosis and therapeutic response, the quantification of cell proliferation
is usually required and can be assessed with the stain produced by the Ki67 biomarker.
Ki67 is a monoclonal antibody that detects a nuclear antigen associated with mitosis in mam-
malian cells and is used to compute the tumor proliferation index.1 This index is assessed by
counting the percentage of positively stained tumoral cells over all the malignant cells (positive
and negative). Usually, this involves manually counting between 500 and 1000 cells in three
randomly selected high-power fields. Another option used by pathologists is to estimate by eye-
balling the Ki67 Index, without formally counting. As expected, these methods, although very
labor-intensive, result in important variability and low reproducibility depending on the selected
zones and the used method.2

During the last decade, digital pathology is being deployed in an increasing number of path-
ology departments.3 Digital pathology involves high-resolution digital images (whole-slide
images or WSIs) obtained from biopsy samples captured with a scanning device. WSI can con-
tain up to 40 Gb of uncompressed data and can substitute traditional light microscopes. At the
same time, digital image analysis (DIA) techniques are emerging for automatic quantification of
the most common stains (H&E, Ki67, ER, PR, and HER2 for breast cancer). Although cell seg-
mentation and quantification results are usually quite accurate, in invasive breast cancer, tumor
cells, stromal cells, and lymphocytes may be intricately mixed. For this reason, accurate quan-
tification can only be achieved if pathologists outline the region of interest (ROI) excluding the
stroma. This is quite difficult, depending on the structure of the tissue, and in some cases even not
feasible without additional information supporting the distinction of epithelial regions from
stroma. Furthermore, even if the tumoral region is outlined, it often includes stromal cells,
as the outlining only provides external contours. In the particular case of Ki67, many authors
point out the stromal cells misclassification errors as the main cause of errors in automatic quan-
tification. Stromal cells are usually confused with negative Ki67 tumoral cells thus producing an
incorrect proliferation index.

Furthermore, tumor–stroma ratio or spatial arrangement of stromal cells in tumors are also
used as prognostic factors4,5 thus making the distinction of stromal and epithelial tissues an
important first step in digital pathology image analysis.

A common procedure used by pathologists to better detect tumoral regions is to compare the
Ki67 sample with an adjacent tissue section stained with cytokeratin-19 (CK19). CK19 is an
epithelial cell marker, which is expressed in more than 90% of breast tumors. The presence
of CK19 helps identifying the tumoral cells, discarding the stroma, in those stains where the
tumoral area is not clearly defined.

On the image analysis side, recent advances in computer vision based on convolutional neu-
ral networks (CNNs) produce outstanding results in semantic segmentation. Semantic segmen-
tation identifies each pixel in an image as belonging to one of several predefined classes, thus
generating a mask for each of these classes. In our case, the classes of interest are tumoral and
stromal. However, CNN models, usually containing millions of parameters, need to be trained
with an extensive labeled database. Usually, a huge task force is needed to create such a database
since it requires the manual annotation of a large number of images. In this paper, we propose a
methodology to create with a limited amount of manual annotation effort a database to train a
CNN semantic segmentation model. In particular, we show how an image-to-image (I2I) trans-
lation model based on a generative adversarial network (GAN) can be trained to highlight infor-
mation that, although present in the Ki67 images, is expressed in a subtle way. The GAN model
captures this subtle expression through the observation of unpaired CK19 and Ki67 images. Note
that, as previously mentioned, visual comparison of CK19 and Ki67 images is a common prac-
tice used by pathologists to help them localize epithelial area in Ki67 images. Once trained, the
GAN model converts Ki67 images in what we call “fake-CK19,” where epithelial regions are
clearly distinguished (as in real CK19 images) and can be easily segmented by simple algo-
rithms. We use the segmented fake-CK19 images as initial masks for the annotation of the
Ki67 images. After manual correction when required, these masks are used as ground truth
to train a stromal semantic segmentation CNN (e.g., in this work, based on the U-Net
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architecture). Once trained, this CNN can be used to process arbitrary Ki67 images. Results for
stroma segmentation on Ki67 images, evaluated through comparison with registered CK19
images, show the potential of this technique as a preprocessing step before proliferation index
computation or for prognosis based on tumor–stroma analysis.

2 Related work

2.1 Automatic Ki67 Image Analysis
In March 2010, the “International Ki67 in Breast Cancer Working Group” agreed that IHC Ki67
measurement is a key point for tumor proliferation studies and developed guidelines for its analysis
based on the computation of a Ki67 labeling index also named proliferation score. This score was
defined as the percentage of positively stained cells among the total amount of evaluated tumor
cells.6 As previously mentioned, manual procedures to obtain this index are time-consuming and
present a high variability, mainly due to limitations of the human eye and randomness in choice of
the regions for cell counting. For this reason, and taking advantage of the continuous advances in
computer vision, several works have focused on the automation of this process.

A recent study7 has validated the usage of computer assisted image analysis for Ki67 stained
images. It confirms that there is a significant benefit of automated image analysis as part of daily
pathologists’ workflow, both in the consistency of the automated results and in the time savings
for pathologists. However, it also points out the unavailability of tumor/stroma segmentation
tools. Although manual ROI annotation was used for the study, discrepancies among pathologists
produced different interpretations of some cells as stroma or negative cells. The work of Ref. 8
also shows the importance of the ROI definition in Ki67 quantification when using computer
assisted image analysis. The study compares commercial applications supporting semiautomated
Ki67 quantification, many of which rely on measurements in user-defined ROIs. It was observed
that results depend on the size of the ROI and that a common rejection cause of the software
results was due to the confusion between tumor and stroma cells. This caused a rejection of 23%
of the samples. In Ref. 9, it was also observed that although computer assisted image analysis has
the advantage of measuring a much larger number of cells, it is less accurate than humans for
stromal/inflammatory cells identification.

The most common approach taken for DIA systems is to rely on ROIs defined by the user in
order to avoid stromal areas. For instance, in Ref. 10, an automatic approach for Ki67 index
estimation is presented. The process is applied to hot-spot regions (area of high density of pos-
itive tumor cells for Ki67) where stromal cells are not observed. The system relies on color
processing techniques to segment nuclei, which are then classified as “positive” or “negative”
based on color and shape features. A recent work11 proposes a pipeline for accurate automatic
counting of Ki67 cells, using U-Net for nuclei segmentation, combined with a watershed algo-
rithm to separate overlapped regions, and a final classification into positive and negative nuclei
by a random forest classifier using deep features extracted from each nucleus patch. The analysis
is also performed on manually selected hot-spots of small size, with little presence of stromal
cells. Here also the most common false detection errors are due to the confusion with stromal
cells. A study made for Ki67 in adrenocortical carcinoma12 also shows that manual counting and
DIA techniques are highly correlated in hot-spots while, in average areas, DIA overestimates the
number of non-tumor cells, identifying stromal and inflammatory cells as tumoral cells, regard-
less of the parameter setting. In this research, features such as shape and size were used to
exclude lymphocytes and stromal cells. Although most approaches work on selected ROIs, the
Breast Cancer Working group recommends approaches that assess the whole section, due to the
fact that intratumoral differences can be important when analyzing only hot-spots.6 In this sce-
nario, a stroma segmentation procedure is necessary.

In Ref. 2, the Ki67 index is estimated by color segmentation of the tumoral area. It is shown
that the index can be approximated with an area-based computation. Non-tumor areas were man-
ually excluded using stromal masks obtained by manual annotation of the tumor boundaries on
HE-stained registered images. Then these masks were superposed on the Ki67 images and were
manually corrected by a pathologist.

Some previous works have been done for automatic stroma-epithelium classification for
other stains, such as H&E, for the classification of small regions. For instance, in Ref. 13, a
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CNN is used for classifying epithelial and stromal regions for H&E stained images of breast
cancer. The images are over-segmented in superpixels, which are then resized into fixed-square
images for feeding a CNN. The CNN learns to classify the patches as epithelium or stroma. As
superpixels include regions of several cells, the approach cannot be used to classify images at the
pixel level. In Ref. 14, the classification is made with perception-based features for square
patches, also covering too large areas for pixel classification. In order to minimize the labeling
effort when different datasets are used, Qi et al.15 proposed a domain adaptation scheme applied
to stroma-epythelium classification. The algorithm works with blocks (size 50 × 50 in this case)
that correspond to a single class and not at a pixel level.

In some studies,16,17 the tumor area is identified with virtual dual staining. This procedure
consists on digital merging of parallel CK and Ki67 stained slides. Rotation and local deforma-
tion are applied to the CK-stained image to detect the epithelial zone in the Ki67 image. Although
this method was useful for many cases, misaligned cases were excluded from further analysis.
The studies conclude that misalignment occurs when the physical distance between the selected
slides increases. The limited availability of contiguous slides stained with CK and Ki67 restricts
the application of this technique.

Hiary et al.18 proposed a segmentation system with the same target as ours; that is, separation
of stromal tissue in Ki67 images, but based on traditional image features and not in an end-to-end
CNN. The classification is made with two Bayesian models that collaborate for the classification
decision (epithelial versus stromal). Texture-based features extracted from the HSV color model
of the images are used. The effect of stromal removal before a manual count of the pathologist,
both in terms of time reduction and inter-pathologist variability was also studied. Compared to
our study, the samples shown in this work do not exhibit the variability that we have encountered,
and moreover, quantitative segmentation results are not given.

2.2 Semantic Segmentation
Semantic segmentation algorithms approach the image segmentation problem by performing
pixel-level classifications. Compared to traditional image segmentation approaches, such as
superpixel segmentation methods, active contour methods, or watershed segmentation, they
introduce semantics in the image segmentation process by employing a classifier trained on
annotated data in order to predict the semantic category of each pixel. Although handcrafted
features were initially extracted to represent pixels when training the classifier,19 CNN-based
techniques have become mainstream, obtaining the best results using end-to-end networks.
One of the first well known works that applies CNNs to semantic segmentation is the fully con-
volutional networks.20 It popularized CNN architectures for dense predictions without any fully
connected layer, as it allowed one to produce segmentation maps for images of any size while
reducing the number of parameters in the architecture. Almost all the subsequent state-of-the-art
approaches on semantic segmentation adopted this paradigm. The most successful model for
biomedical image segmentation has been the one proposed by Ronneberger et al., U-Net.21

It follows an encoder–decoder architecture, where the encoder gradually reduces the spatial
dimension with pooling layers and the decoder gradually recovers the object details and
spatial dimension. Although other semantic segmentation networks have succeeded in different
tasks,22–24 U-Net is still the state-of-the-art for biological images.

2.3 Image-to-Image Translation
Generative adversarial networks (GANs)25 were first introduced in 2014 as a framework to esti-
mate deep generative models via an adversarial process, and they became an important break-
through in the field of unsupervised learning. A GAN consists of two different modules: the first
one, the generator, which tries to capture the data distribution creating a new image, and a dis-
criminator, which takes this generated image as input, and decides on its authenticity: either it is
the expected target or a synthetic approximation. GANs have been used for I2I translation to
transfer images from a source domain to a target domain while preserving the content of the
representation.26

In our work, we have used an I2I translation GAN to generate the ground-truth masks for
training the U-Net semantic segmentation network. Although, to the best of our knowledge, I2I
translation has never been used for this purpose, there exists several researches in which this
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technique has been applied for IHC images. In Refs. 27 and 28, this technology is used to transfer
the images from an easy to acquire and cost effective stain to a more difficult to manipulate and a
higher cost one. In Ref. 27, a conditional cycle-consistent adversarial networks (CycleGAN)
translates H&E stained images into IHC stained ones. Levy et al.28 used a CycleGAN to convert
H&E stained images into trichrome stained images for providing a cost-effective way to perform
computational chemical stains on tissues.

3 Methodology
The stromal segmentation proposed in this paper is based on a semantic segmentation CNN
widely used for biological images, U-Net.21 First, transfer knowledge from a natural image data-
set is used by initializing the encoder weights with those obtained from the ImageNet dataset.
This is done to reduce the size of the labeled Ki67 dataset required for training. For our task, we
need a database of Ki67 images with the corresponding ground truth, which is the stroma mask
for each dataset image. This database is used for training the U-Net, as shown in the left side of
Fig. 1(b) (bottom part of this figure). Once trained, the model can be used to segment any new
Ki67 image to produce the stroma mask, as shown in the right side of Fig. 1(b).

For the ground-truth creation, the approach shown in Fig. 1(a) (top part of the figure) is used:
we train an I2I translation model based on a GAN to translate Ki67 images into fake-CK19. This
is a style transfer mechanism, which is able to highlight epithelial areas in Ki67 images, making
them appear as CK19 positives, without changing the relevant structural information of the origi-
nal Ki67 images. As explained in Sec. 5, the GAN model is trained with unpaired Ki67 and
CK19 images [left side of Fig. 1(a)]. So the datasets to train the GAN are two sets of images
of the two stains, without any kind of labeling nor correspondence. As shown in the right side of
Fig. 1(a), once trained, this GAN model is used to generate the fake-CK19 images of the Ki67
dataset necessary for the semantic segmentation. These fake-CK19 images are binarized, filtered,
and manually corrected when necessary, to create the ground-truth masks corresponding to the
Ki67 images.

To validate the generated ground-truth masks and to guide the manual correction, the real
CK19 images corresponding to the Ki67 images are necessary, because, as previously men-
tioned, epithelial zones in Ki67 images are not always easy to visually identify. For this reason,
adjacent sections of the Ki67 WSI stained with CK19 have been used. Then, for each selected
Ki67 image, a registration procedure has been applied to search for the corresponding CK19
image. Let us mention that these adjacent sections can be used as a guide for the manual cor-
rection but often exhibit a poor correspondence of the cell structures because they do not re-
present the exact same tissue and may have been differently manipulated in the staining and
scanning processes. As a result, these CK19 images cannot be used directly to obtain the

(a)

(b)

Fig. 1 Workflow diagram of the whole approach: (a) ground-truth generation with I2I translation
and (b) stromal tissue segmentation with semantic segmentation.
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ground-truth masks. Instead, the I2I translation is used because it perfectly preserves the cell
structures of Ki67 images, as needed to compute the masks.

4 Database
The database has been constructed for extracting tiles from whole slide images of 17 different
patients of invasive breast carcinomas. Slides have been scanned with a “3DHISTECH
Pannoramic 1000 slide scanner” with a magnification of 40× and a resolution of
0.25 × 0.25 μm∕pixel. From each patient multiple stainings of adjacent slides are available,
among them Ki67 and CK19. Although the markers are applied to parallel sections of the
extracted sample, they are not always contiguous, and significant differences can be observed
between them. For Ki67, we have obtained 150 tiles of size 4096 × 4096 pixels, corresponding
to a field of view of 995 × 995 μm. The patients have different levels of proliferation, marked by
the Ki67 stain, and the tiles reflect a wide variety of cellular structures. A registration algorithm
has been applied in order to find the corresponding tiles for the CK19 marker. This produces a set
of 150 couples of tiles, each one composed of original Ki67 and registered CK19 images. An
example of couple of tiles is shown in Fig. 2.

Observing the CK19 WSI of the 17 patients, we can notice that there is a wide variety of cell
structures and tumoral expressions (see Fig. 3). The tile selection has been done to achieve a
representative and balanced database including all the different tumoral expressions.

If we focus on the CK19 tiles, where the epithelial zones can be distinguished from the
stromal ones, we can observe very different structures both in the size and the distribution
of the epithelial areas. This variability reflects different tumor architectures. As will be discussed

Fig. 2 (a) Ki67 tile and (b) registered CK19 tile corresponding to (a).

Fig. 3 Crops of various CK19 whole slide images illustrating the variety of cell structures and
tumoral expressions.
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in the sequel, for ground-truth generation, it is useful to process differently these classes. As a
result, we have defined four different classes, and grouped our dataset images accordingly:

• Class 1: Nest pattern, consisting of large epithelial areas. They are dense and well defined.
• Class 2: Trabecular pattern, small but well defined epithelial areas.
• Class 3: Solid pattern, epithelial zones with granular shapes with river-shaped stroma.
• Class 4: Cordal pattern, epithelial areas with a filamentous shape.

Visual examples of these classes can be seen in Fig. 4. To ensure an equal representation of
the four classes, and thus a balanced dataset, we have approximately collected the same number
of images for each class.

Finally, the extracted Ki67 and CK19 tiles of size 4.096 × 4.096 pixels have been down-
sampled to 512 × 512 pixels. We have considered that this resolution was appropriate in terms of
memory requirements and computational load for the CNNs while keeping enough visual infor-
mation for the stroma segmentation.

This dataset is used to train both the U-Net and the GAN. As illustrated in Fig. 1, the Ki67
dataset images are essentially used to train the U-Net semantic segmentation (bottom part of
Fig. 1). The dataset has been partitioned into train, validation, and test datasets. We have used
different patients for each partition in order to avoid data leakage. Table 1 describes the number
of patients and images used for each partition and each class.

As discussed in Sec. 3, in order to be able to train the U-Net, we need to create the associated
ground-truth images, which are masks defining the stromal areas of the Ki67 images of the data-
base. This is the objective of the upper part of Fig. 1 and the procedure involves the training of a

Fig. 4 The four CK19 classes: (a) class 1: nest patterns, (b) class 2: trabecular, (c) class 3: solid,
and (d) class 4: cordal.

Table 1 Description of the partitions of the used dataset. It must be taken into account that there
are two patients with tiles assigned to both classes 3 and 4.

Train Validation Test Total

Class 1 Patients 4 2 1 7

Images 30 2 4 39

Class 2 Patients 3 2 2 7

Images 19 12 8 39

Class 3 Patients 1 0 1 2

Images 30 0 4 34

Class 4 Patients 1 1 1 3

Images 31 3 4 38

Total Patients 10 3 4 17

Images 110 20 20 150
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GAN. The goal of the GAN is to produce initial stromal masks that will reduce the amount of
manual annotation work on these specific Ki67 images. As a result, the aim of the GAN training
is not to produce a model that can generalize to new unseen images but to get the initial masks of
the specific set of images included in the database. Therefore, all the images included in the
dataset are going to be used to train the GAN. As we do not want the GAN model to generalize
to other images, there is no need to make any partition of the dataset into train, validation, and test
sets as was done for the U-Net. However, the pairs of Ki67 and CK19 images have been dis-
tributed in four classes depending on the class of the CK19 images (nest, trabecular, solid, and
cordal).

5 Ground-Truth Generation

5.1 Stain Translation with FastCUT
I2I translation is the process of taking images from one domain and transforming them to another
domain while preserving the content representation of the source image. During these last years
and thanks to the progress of deep learning technologies, many I2I translation implementations
have been developed providing significant improvements in the performance and results. Many
tasks, such as realistic-looking image synthesis, text-to-image translation, image semantic
manipulation, or image restoration, rely on I2I translation techniques. Here we apply I2I trans-
lation to transfer Ki67 tiles into the CK19 domain, with the objective to obtain a stroma mask that
can be easily segmented and manually corrected to create the ground truth. Let us note that
complex epithelial-stroma structures, such as the ones shown in Figs. 4(c) and 4(d), make it
almost impossible to obtain a segmentation by manual annotation, even if the corresponding
registered CK19 tile is available.

The I2I translation task is based on a generative architecture capable of modeling the dis-
tribution of the target domain by generating credible fake data that resembles an original image
from the target domain. Many generative models performing these I2I translation tasks are avail-
able. We have applied two popular techniques: CycleGAN29 and fast contrastive unpaired trans-
lation (FastCUT),30 obtaining significantly better results with the second one. Both techniques
are based on GANs,25 which are neural networks consisting on two simultaneously trained mod-
els: a generator (G) that generates fake data and a discriminator (D) that tries to distinguish the
fake data from real examples. In a GAN, the generator is trained from the feedback that it receives
from the classification of the discriminator. In turn, the discriminator tries to improve its task by
evaluating how far its classifications are from the true labels: real or fake. During the training, the
generator and the discriminator are competing because as one performs better, the other worsens.
The goal is to find the equilibrium, in which the generator is capable of producing fake images
that cannot be distinguished from the original training dataset, whereas the discriminator is only
able to randomly guess if the generated data are real or not. This results in the adversarial loss,
which is one of the main components of the loss of these networks.

There are two types of generative adversarial models: those that use paired data from both
domains and those that do not require paired data. In our case, as we do not have a perfect
correspondence in our pairs of tiles for Ki67 and CK19 staining, we have used a model capable
of working with unpaired images. Furthermore, the objective of the selected approach is to
change the appearance from an input domain to a target domain while retaining the structure
of the input image. As mentioned, target appearance is enforced using the adversarial loss.
In the case of CycleGAN, the content is preserved through cycle consistency. However, maxi-
mization of the mutual information between corresponding input and output patches does a better
job preserving not only the content but also the structure of the input image. The FastCUT model
was introduced in Ref. 30, based on the GAN architectures and adding a patch-wise contrastive
learning on the discriminator. The patch-wise contrastive learning is based on maximizing the
mutual information of patches from the same location while minimizing those from different
locations. To compute this loss, features from different layers of the encoder, which represent
patches of different sizes, are used.

To generate the fake CK19 images, the FastCUT model was selected over the CycleGAN.
Note that since these I2I translation GAN are tools that simplify the generation of the ground
truth, there was no available ground truth to make an objective comparison. Therefore, the
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comparison between FastCUT and CycleAN was done subjectively by visual inspection of the
produced fake-CK19 and the registered CK19 images.

For each one of the four CK19 style classes (nest patterns, trabecular, solid, and cordal), we
trained a FastCUT model with 400 epochs and a learning rate of 0.0002. This resulted in four
different trained FastCUT models. The training was stopped after subjective evaluation of the
generated fake CK19 images (selecting images that would minimize the annotation work). The
obtained results show the preservation of the Ki67 input structure while changing the domain.
The training process is illustrated in the left side of Fig. 1(a), whereas the translation inference
corresponds to the first block of the right side of Fig. 1(a).

5.2 Mask Computation
This step is referred to as “segmentation” in the diagram on the right side of Fig. 1(a). After the
I2I translation process, we generate the stroma masks from the obtained fake CK19 images
applying binarization and classical image processing tools, such as morphological operators.

The first step of the segmentation is the binarization of the fake CK-19 image. This binar-
ization produces accurate results except for some noise in the stromal area and small holes in the
epithelium. In the case of images of class 1 and 2, with more dense epithelial areas, such holes are
removed with an opening by reconstruction of erosion, followed by closing by reconstruction of
dilation. The erosion and the dilation use as structuring element a disk of radius 2. With the
opening we can remove small holes in the epithelium while the closing removes noise in the
stromal area. For classes 3 and 4, an opening by reconstruction of erosion is applied, with struc-
turing element a disk of radius 1. Examples are shown in Fig. 5.

5.3 Manual Correction
The masks resulting from the translation and segmentation processes have to be checked and
manually corrected before including them in the final ground truth to be used for the training of
the U-Net dealing with the semantic segmentation of the Ki67 images. Registered pairs of Ki67

Fig. 5 Examples of masks obtained from the segmentation of fake CK19 images of classes 1
(large areas) and 3 (granular shape). (a) Fake CK19 images and (b) masks.
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and CK19 tiles are used for this checking. Although there is not a perfect correspondence
between these pairs of tiles, there is most of the time enough information to visually confirm
whether the areas extracted as epithelium are correct. Errors in the masks are manually corrected.
While errors in class 1 and 2 images (nest and trabecular, which correspond to more compact
stroma areas) are easy to rectify, classes 3 and 4 (which have a filamentous pattern) are much
harder, and only very clear mistakes have been corrected. Manual correction examples can be
seen in the figures of Sec. 5.4. In order to measure the effect of this manual correction we have
computed the Intersection over Union (Jaccard index) between the masks obtained and the ones
manually corrected. Manual correction was not needed for 67% of the images, meaning that the
mask obtained was considered good enough for the purpose of discarding stroma cells. For the
remaining ones, the mean IoU was 0.93, with a minimum value of 0.73, and a maximum of 0.98.
These numbers show the excellent CK19 translation achieved and the good segmentation result
of Sec. 5.2. The differences are mainly due to areas that were incorrectly stained in the fake CK19
of images of class 1 and 2, which did not require much labeling effort. On the contrary, the
detailed images of class 3 and 4, which are very hard to manually label, are usually better trans-
lated and require few changes.

5.4 Ground-Truth Generation Result
In this section, we present the results obtained from the different steps of the ground-truth gen-
eration process. The procedure is summarized in the right side of Fig. 1(a). Example of images
from each one of the four classes are shown respectively in Figs. 6–9.

As a summary, 150 Ki67 images of the dataset are transformed with the FastCUT model
corresponding to its class. This procedure generates the fake CK-19 images, which are seg-
mented to obtain initial masks that are manually corrected with the help of registered CK19
images.

Note again that, as the aim of this process is actually the creation of the ground truth, we
cannot rely on any objective evaluation. As a result, we have evaluated our results by subjective
comparison of the pair of Ki67 and registered CK19 images with the final masks.

From this analysis, we have concluded that the FastCUT model works quite well for this task
and has been the key for generating the ground truth masks for the U-Net training in an efficient

Fig. 6 Ground-truth generation results for images of class 1: nest patterns. (a) Original Ki67 image;
(b) registered CK19 image; (c) fake CK19; (d) mask resulting from the translation and the seg-
mentation; and (e) manually corrected mask.
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and easy way. The masks resulting from the translation and the segmentation are of course not
always perfect and manual correction is indeed an important step. However, our experience is
that the manual correction was rather easy to perform and the automatically generated masks
were very good starting points.

Fig. 8 Ground-truth generation results for images of class 3: solid. (a) Original Ki67 image; (b) reg-
istered CK19 image; (c) fake CK19; (d) mask resulting from the translation and the segmentation;
and (e) manually corrected mask.

Fig. 7 Ground-truth generation results for images of class 2: trabecular. (a) Original Ki67 image;
(b) registered CK19 image; (c) fake CK19; (d) mask resulting from the translation and the seg-
mentation; and (e) manually corrected mask.
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6 Semantic Segmentation of Ki67 Images

6.1 U-NET-Based Segmentation
Once ground-truth masks for stroma segmentation have been obtained, we can train the semantic
segmentation model to produce stroma masks for new images. This step corresponds to the left
side of Fig. 1(b). The selected semantic segmentation model is the U-Net model,21 which has
proven to produce very good results for many biomedical image segmentation tasks. Of course,
our model has to be able to process arbitrary Ki67 images. As the notion of cell structure classes
used for the generation of the ground truth is not easy to infer automatically, the semantic seg-
mentation algorithm cannot rely on this information. Here this notion has only been used for the
partition of the database in training, validation, and test sets. The complete database is made of
150 images, distributed as explained in Table 1.

In order to increase the amount of training data, data augmentation has been applied. The
following transformations were allowed: horizontal and vertical flips, translation, rotation, and
small contrast variations. The encoder was the ResNeXt-50-32x4d,31 where the blocks of the
contractive path follow an architecture based on the inception’s split-transform-merge strategy
while using residual connections. The weights of the encoder were initialized with the ImageNet
weights. We used the sigmoid function as activation function, adam as optimizer and the dice loss
as loss function. The batch-size was 4 and the learning rate was 0.00068. The model was trained
for 150 epochs, achieving stable results for both training and validation partitions after 60
epochs.

The best F-score for the validation partition was obtained at epoch 66. The model obtained
at this epoch was used to obtain the final result for the test set, obtaining an F-score of 0.87. The
importance of knowledge transfer from ImageNet is also worth mentioning. Although ImageNet
is a database of natural images, the initialization of the U-Net encoder with a network pretrained
on this extensive dataset allows us to achieve already good results in the very first epochs (F-
score higher than 0.80 for both train and validation partitions after 5 epochs). Examples of masks
resulting from the semantic segmentation for some images of the test database are shown in
Figs. 10 and 11.

The field of view corresponding to the database images is relatively large: 995 × 995 μm.
This has allowed us to capture a wide variety of structures in a limited number of images.

Fig. 9 Ground-truth generation results for images of class 4: cordal. (a) Original Ki67 image;
(b) registered CK19 image; (c) fake CK19; (d) mask resulting from the translation and the seg-
mentation; and (e) manually corrected mask.
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However, once the ground-truth masks have been obtained, we have also tested the U-Net seg-
mentation algorithm in smaller patches. That is, each Ki67 image and its corresponding ground-
truth mask have been partitioned into 4 and 16 images, and a U-Net has been trained with 368
images in the first case (corresponding to the original 92 images of the training partition) and
1472 images in the second case. The results evaluated on the test partition provide very similar F-
scores to those obtained with the initial size. This shows that U-Net semantic segmentation
results are not dependent on the large field of view and so, once the ground truth has been con-
structed, segmentation can be applied to smaller images.

6.2 Example of Use of the Stroma Mask for Ki67 Scoring
In order to show the relevance of the stroma segmentation network for Ki67 scoring, an addi-
tional experiment is described in this section. Three images have been selected in order to per-
form a cell segmentation and classification task. In order to define the ground truth for this task,
the three images were manually segmented on a cell basis, and each cell classified as stroma,
positive or negative. Ki67 score is obtained by computing the percentage of positively stained
tumor cells among the total number of malignant cells (that is positively and negatively stained
cells, excluding the stroma cells).

To automatically compute this score, segmentation and classification of cells have been per-
formed with a state-of-the art system that can only separate stained and non-stained cells.
Figure 12 shows the results obtained when only positive and negative cells are obtained, and

Fig. 10 Results for images of class 1 and 2. (a) KI67 image; (b) ground-truth mask; (c) mask
predicted by the U-Net; and (d) registered CK-19.
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Fig. 11 Results for images of class 3 and 4. (a) KI67 image; (b) ground-truth mask; (c) mask
predicted by the U-Net; and (d) registered CK-19.

Fig. 12 Cell segmentation and classification example: (a) ground-truth for three different images;
(b) cell segmentation without stroma mask; and (c) cell segmentation after applying stroma mask.
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after applying the stroma mask computed with the method proposed in this paper. The stroma
mask allows to discard all cells under the mask when computing the Ki67 score. Table 2 com-
pares the score obtained with the ground truth, the one obtained with the cell classification
method, which does not consider stroma cells and the score obtained when applying our stroma
mask. It can be observed that, as expected, results are much closer to ground truth since con-
fusion of stroma with negative tumor cells is avoided.

7 Conclusions
In this paper, we have developed a semantic segmentation system for tumoral mask predictions
for breast cancer images with Ki67 staining. The objective of this development was to create a
tool able to distinguish between tumor and stroma regions in order to compute the Ki67 score
without the interference of stroma cells. The proposed method should be used as a first step in
automatic DIA, before cell counting algorithms are applied, in order to avoid errors produced by
the confusion of stromal cells with Ki67 negative tumoral cells. Also, in case of manual counting,
the proposed technique can generate a mask to define the areas that the pathologist needs to
quantify. This strategy should lead to a reduction of the inter-observer variability and the time
required for nuclei counting.

One of the essential problems we had to deal with is the lack of tumoral mask databases with
associated ground truth to train the semantic segmentation. In order to generate this ground truth,
we have opted for a semisupervised strategy. The first step of this strategy was to translate Ki67
images to fake CK19 images that highlight tumoral areas and are easy to segment. From the
obtained results, we can conclude that the FastCUT translation model is a good option for
transferring Ki67 images into CK19 sytle. These fake CK19 images are used to create initial
stromal masks. We have also shown that the combination of the I2I translation model with the
manual correction was a good option. The regions where the translation had clearly failed were
easy to identify and manually correct. The resulting database consists of 150 images with a field
of view of 995 × 995 μm and their corresponding stromal masks, representing a variety of
structures that the stromal/epithelial regions usually adopt.

The semantic segmentation network trained with this dataset has shown excellent results. We
have also proven that the results of the semantic segmentation are not dependent on the field of
view used.

This system can easily be extended to produce results for other markers, such as ER, PR, or
HER2. As future work, we plan to extend the semantic segmentation model so that it also predicts
areas of necrosis. Necrosis areas are zones with dead tissue, which, as the stromal area, do not
have to be taken into account when computing the proliferation index.
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