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Abstract: This study proposes a system to estimate the depth order of regions belonging to a monocular image sequence. For each
frame, the regions are ordered according to their relative depth using information from the previous and following frames. The
algorithm estimates occlusions relying on a hierarchical region-based representation of the image by means of a binary tree. This
representation is used to define the final depth order partition which is obtained through an energy minimisation process. Finally,
to achieve a global and consistent depth ordering, a depth order graph is constructed and used to eliminate contradictory local
cues. The system is evaluated and compared with the state-of-the-art figure/ground labelling systems showing very good results.
1 Introduction

Depth perception in human vision relies on several depth
cues. For close objects, humans accurately estimate depth
making use of both eyes and inferring disparity between
two views. However, when objects are distant or when only
one viewpoint is available, it is also possible to partially
estimate the scene structure through the so-called
‘monocular depth cues’. In static images, T-junctions or
convexity cues are classical depth cues. In video sequences,
motion information can also be used to obtain depth
information. For example, occlusion of moving objects, size
change or motion parallax are used to structure the scene [1].
Nowadays, motivated by the film industry, many research

works are focusing on depth maps generation. Most
approaches make use of several viewpoints to compute
disparity as it offers a reliable cue for depth estimation [2].
However, disparity estimation assumes that two images
captured at the same time instant are available but, in many
situations, this assumption cannot be fulfilled. For example,
most commercial cameras have only one photographic lens
and only record monocular sequences. Moreover, one
critical issue is the large amount of material which has
already been acquired in the past as monocular sequences
and which needs to be converted to some extent to a
three-dimensional (3D) format. In such cases, depth
information can only be inferred through monocular cues.
The film industry is seriously tackling this problem. For
example, Disney or Microsoft have designed supervised
systems supporting the creation of depth maps for
monocular sequences [3, 4]. These systems rely heavily on
human interaction. However, there is a clear interest in
defining unsupervised systems because of their reduced cost
in time and money resources [5–7].
Depth order maps can be seen as an intermediate state

between 2D images where no depth information is defined
and full 3D maps. The depth order map specifies an image
partition where regions are ordered by their relative depth.
State-of-the-art depth ordering systems include [5, 7] in
which a layered representation of a sequence is obtained by
finding occlusions between a pair of regions. However, the
final depth order is obtained by a simple aggregation of
local cues with no global reasoning. As a result, the final
map is not globally consistent. In [8], a global depth order
is obtained through the estimation of 3D movements. The
approach processes pixels individually and lacks the
concept of regions. Therefore the resulting partitions
involve many small regions and the decision process is not
robust. Karsch et al. [6] attempt to find a full depth map by
matching parts of the input video to similar videos and then
by propagating depth information to unmatched regions.
This approach works well for known scenes but its
generalisation to arbitrary scenes is very difficult. There is
an attempt in [9, 10] to retrieve a full depth map from a
monocular image sequence. However, they involve
important assumptions and restrictions about the scene
structure which may not be fulfilled in many typical
situations.
Other state-of-the-art systems do not try to create a depth

partition but focus on the estimation of the depth order
around contours. In this context, the contours may not be
closed and therefore do not specify regions. For example,
assuming that the scene is still and the occlusions are
because of disparity, the contours are detected in [11].
Interesting detection results are shown but, if relative depth
is needed, another approach should be followed. Sundberg
et al. [12] defines a figure/ground (f/g) labelling on
occlusion contours by computing the motion boundaries
and assigning the closer (figure) side to the region that
moves similar to the contour. The main drawback of this
scheme is that the relative depth is assigned based on a set
of local characteristics of the contour and avoids global
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reasoning on the depth structure of the scene. However, the f/
g labels are attractive because they offer a good way to
compare systems by taking into account the correct number
of labelled contour pixels and an objective evaluation
methodology is defined in [12].
The system proposed here addresses the main problems of

the state-of-the-art solutions dealing with depth order
estimation in video sequences. The three main challenges
we address are: to allow moving objects to be present in the
scene, to provide a complete depth order partition in
contrast to defining depth order only on occlusion
boundaries and to ensure that this partition is globally
coherent.
Our approach is to use motion occlusion to determine the

depth order within a frame given its previous and next
frames. We make no assumptions on scene stillness.
Therefore the main cue we can rely on is motion occlusion.
When the objects move relative to the camera, background
areas may appear and disappear, providing a reliable cue to
determine the depth order. Note that motion occlusion
appears when the apparent motion of two overlapping
objects/regions is different. This situation occurs either when:

† The real motion of the two objects is different (e.g. two
cars in a road).
† The scene is static and the object depths are different (e.g. a
building occluding the sky).

To exploit this idea, the system first computes the forward
and backward optical flows (‘optical flow estimation’ block of
Fig. 1). Then, a hierarchical region-based representation of
the image is computed and stored in a binary partition tree,
BPT (‘tree construction’ block). The goal of this
representation is to support robust estimation and global
reasoning about relative depth. The use of such
representation is essential in our approach. In this paper, we
will use and compare two ways to construct this
representation: one based on colour, shape and motion
features (CSM) [13] and one based on ultrametric contour
map (UCM) [14]. The created BPT is used to retrieve two
partitions using specific graph cut techniques called
‘pruning’. The first partition allows us to fit parametric flow
models to regions, finding reliable flow values at occlusion
points (‘parametric flow fitting pruning’ block) and then
obtaining occlusion relations. The second partition is
obtained by exploiting these occlusion relations and defines
regions which can be depth ordered (‘depth ordering
Fig. 1 Proposed system: three consecutive frames are used to estimate

System involves an optical flow estimation step and a tree construction
Then, two pruning (graph cut) strategies are applied to extract one partition provid
involving regions which can be depth ordered
Finally, a global reasoning is used to define a consistent depth order map
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pruning’ block). Since occlusion relations provide depth
relations between a pair of regions, a final step is needed to
ensure global consistency and to obtain a final depth order
map. Besides the algorithm definition, this work’s
contributions concern the formalisation of the energy
minimisation originally presented in [15] as an efficient way
to retrieve partitions from BPTs and the study of motion
occlusions as a reliable cue for depth ordering on video
frames, showing that dynamic cues perform better than
static ones [16].
The paper is organised as follows: Section 2 defines the

optical flows used in the system. An overview on the
hierarchical segmentation tools used is explained in Section
3 whereas Section 4 discusses the specific graph cut
technique, called pruning, used to extract an optimal
partition from the trees. The motion occlusion estimation is
presented in Section 5. Finally, the definition of the
partition involving the regions to be ordered and the global
reasoning leading to a complete depth order map are
detailed in Section 6. The evaluation of the prosed scheme
is performed in Section 7. Finally, Section 8 concludes the
paper.

2 Optical flows

To determine the depth order of a frame It, the previous
and following frames It−1, It+1 are used. The forward flows
wt−1, t, wt, t + 1 and backward flows wt, t−1, wt+1, t (see
Fig. 2) are estimated using the technique presented in [17].
This is a classical motion estimation algorithm which
provides good results with a reduced computational load.
The optical flow wta , tb maps each pixel of Ita to one pixel
in Itb . The flows wt, t + 1 and wt, t−1 are used with colour
information to create the BPT (Section 3). The two
remaining flows are also used to estimate the occlusions
(Section 5). Let us discuss now the construction of the BPT.

3 BPT to represent hierarchical
segmentations

The algorithm developed in this paper relies on a hierarchical
region-based representation of the image using a binary tree
structure. A classical way to build such a BPT is using a
bottom-up region merging technique. A region tree
structure is attractive as it allows a more global and robust
image interpretation to be performed compared with the
original pixel-based representation. Moreover, the
a depth order map

ing a region-based representation of the optical flow and a second partition
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Fig. 2 Top row: three consecutive frames It− 1, It (outlined) and It + 1

Bottom row: from left to right, wt−1, t, wt, t−1, wt, t + 1 and wt+1, t
flows
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representation is multi-scale and small details as well as very
large areas are described by the tree. Note that arbitrary trees
could be used, but we restrict ourselves to the binary case for
two reasons: (i) binary trees allow a fine control of the image
under/over segmentation and (ii) pruning algorithms on these
kinds of trees are easier to define and to handle than arbitrary
trees.
The BPT construction begins with an initial partition of the

image and iteratively merges a pair of neighbouring regions
until only one region is left. The merging order is defined
by a region distance describing the similarity between two
regions. In the case of static images, the distance is usually
a combination of similarity measures relying on simple
characteristics such as colour, area, shape or contour
strength. In the video case, using motion flows, it is also
possible to differentiate between regions of similar colour
which move in different directions. In any case, the
resulting BPT is composed of nodes representing image
regions and edges describing the inclusion relationship
between regions, whereas the leaves represent regions
belonging to the initial partition. Any oversegmentation can
be used as initial partition. In the following, we will assume
that the initial partition is made of regions involving only
one pixel.
For the purposes of this work, two possible trees have been

considered: the BPTCSM created using [18] and the BPTUCM

using the UCM of [14]. The only difference in the
construction of the two BPTs is region distance d(Ri, Rj).
The BPTCSM uses a combination of colour, shape and
motion information, whereas the BPTUCM considers the
mean strength of the common contour between Ri and Rj.
The formal expressions are

dBPTCSM Ri, Rj

( )
= da adcm + (1− a)ds

( )
(1)

dBPTUCM Ri, Rj

( )
=

∑
x[Gij

gPb(x)

|Gij|
(2)

For the BPTCSM distance, ds is the shape distance defined as
in [19], da is a logarithmic weight of the area as defined in
[16]. dcm stands for a distance measuring the region
similarity in terms of colour and motion. Essentially, each
region is represented by a limited number of dominant
colours and motion vectors and the Earth Mover’s distance
154
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is used to compare the descriptions of two regions. See [13]
for more details. For the BPTUCM distance, Γij is the
common region contour and gPb is the contour detector of
[14]. Once the BPT has been constructed, it can be used to
retrieve many different partitions. The next section
discusses this point.
4 Optimum tree pruning

Independent of the distance used to create the tree, the
technique extracting a partition from it can be viewed as a
‘pruning’ [15, 19, 20]. The BPT is a particular graph where
each node represents a region and the tree branches the
region inclusion relationship. A partition can be naturally
defined from a BPT by selecting the regions represented by
the tree leaves. If this is done on the original tree, the initial
partition where each region involves only one pixel is
extracted. However, if we prune the tree, that is, if we cut
branches at one location to reduce their length, a new tree,
called a ‘pruned BPT’ is created. The leaves of the pruned
BPT define a non trivial partition. This pruning is a
particular graph cut: if the tree root is the ‘source’ of the
graph and the leaves are connected to a ‘sink’ node, the
pruning cuts the tree in two connected components, one
including the source and the other the sink. Note that
following this approach, partitions observed during the
merging sequence can obviously be obtained but the
interest of the pruning is that a much richer set of partitions
can be extracted. Of course, the key point is to define an
appropriate pruning rule. Here, an optimum pruning based
on energy minimisation is proposed.
A partition P extracted by pruning can be represented

by a ‘partition vector’ x of binary variables xi = {0, 1} with
i = 1, ..., N assigned to each BPT region Ri. If xi = 1, Ri

belongs to the partition, otherwise xi = 0. Only a reduced
subset of vectors, called ‘valid’ vectors, actually represents
a partition extracted by pruning. A vector x is valid if one
and only one region in every BPT branch involves only one
xi = 1. A branch is a sequence of regions from a leaf to the
root of the tree. For example, the tree of Fig. 3 involves
four branches.
Each branch l can be represented by a ‘branch vector’

bl = bl1, . . . , blN
( )`

where bli = 1 if region Ri is in the
branch and bi = 0 otherwise. In the example of Fig. 3, the
IET Comput. Vis., 2014, Vol. 8, Iss. 2, pp. 152–160
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Fig. 3 Left: set of valid partition vectors representing a pruning and an invalid partition vector

Centre: BPT with light grey nodes indicating the cut described by x3
Right: BPT with grey nodes representing the regions described by xI which does not define a pruning
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four branch vectors are: b1 = 1, 0, 0, 0, 1, 0, 1( )`,
b2 = 0, 1, 0, 0, 1, 0, 1( )`, b3 = 0, 0, 1, 0, 0, 1, 1( )` and
b4 = 0, 0, 0, 1, 0, 1, 1( )`. With this notation, a partition
vector x is valid if, for every branch l, b`l x = 1. In Fig. 3,
xI = (1, 1, 0, 0, 1, 0, 0)T is not valid because b`l xI = 2. The
constraint can be globally expressed as a matrix product
Ax. In the case of Fig. 3, the constraint is

Ax =

b`1

b`4

b`3

b`4

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠x = 1

1 0 0 0 1 0 1

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 0 1 1

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠x = 1 (3)

where 1 is a vector containing all ones.
An efficient way to extract a partition from the BPT is to

find the one that minimises an energy function of the type

x∗ = argmin
x

E(x) = argmin
x

∑
Ri[BPT

Er Ri

( )
xi (4)

s.t. Ax = 1 xi = {0, 1} (5)

where Er(Ri) is a function which only depends of the internal
characteristics of Ri. In that case, the optimum partition x* can
be efficiently found by the dynamic programming Algorithm
Fig. 4 Algorithm 1 Optimal partition selection: OPTIMALSUBTREE
(region Ri) contains the set of regions belonging to the subtree
rooted at Ri which have been selected to be part of the partition
and the sum of their associated energy
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1 (see Fig. 4). The algorithm benefits from the fact that the
energy Er(Ri) does not dependent on regions Rj≠i and that
the global energy is the sum of the energy values assessed
on each region. Therefore locally optimum decisions lead to
a global optimum. More precisely, if Ri is a region which
has two child regions Rl and Rr, the local decision which
has to be taken is to know whether Ri or Rl < Rr has to
belong to the partition as both solutions cover the same
image area. If Er(Ri) is smaller (larger) than Er(Rl) + Er(Rr),
the locally optimum solution selects Ri Rl < Rr

( )
. The

complete tree is analysed in a bottom-up fashion (from the
leaves to the root) to define the complete partition as
outlined in Algorithm 1 (see Fig. 4). This algorithm is
going to be used twice in the proposed system. Once for
the identification of occluded and disoccluded areas and
once for the extraction of regions to be depth ordered. The
first issue is discussed in the next section.

5 Estimation of occlusion relations

5.1 Occluded and disoccluded areas

As discussed in the introduction, motion occlusion is used
here as the basis of depth order estimation. Using three
frames It−1, It, It+1, it is possible to detect pixels becoming
invisible from It to It+1, called ‘occluded pixels’ and pixels
becoming invisible from It to It−1 called ‘disoccluded
pixels’. Here, we describe the detection of occluded pixels
as the detection of disoccluded pixels can be performed
similarly by working on the past frame It−1 instead of the
next frame It+1.
When there is no occlusion, the optical flow wt, t + 1 creates

locally a bijection between It and It+1. However, in case of
occlusion, two different pixels from It, pa and pa, are
projected at the same location pm in It+1. This situation is
illustrated in the left part of Fig. 5. Therefore an occlusion
is detected if

pa + wt, t+1 pa
( ) = pb + wt, t+1 pb

( )
= pm assuming that pa = pb (6)

This equation explains that either pa or pb is an occluded
pixel. To decide which one is the actual occluded pixel, we
rely on a comparison of patches centered around pa, pb and
pm. Indeed, it is likely that the patch around the
non-occluded pixel (pb in Fig. 5) is very similar to the
155
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Fig. 5 Left: detection of occluded pixels (black area)

Right: detection of occluding pixels (white area)
In both cases, the image on the left (right) is It (It+1)
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patch centred around its projected point (pm). Therefore the
decision is based on the distance between patches

D px, pm
( ) = ∑

d[G

It+1 pm + d
( )− It px + d

( )( )2
(7)

with px = pa or pb and Γ is a 5 × 5 square window. The pixel
with highest D(px, pm) is declared to be the occluded pixel.
Following this strategy, all pixels belonging to the black
area of Fig. 5 are defined as occluded pixels. An example
on a real image can be seen in the central image of Fig. 6
where occluded pixels are shown.
Once the occluded pixels have been defined, we need to

find the ‘occluding pixels’, that are the pixels which will
cover the occluded pixels in the next frame. Indeed, it is the
relation between occluded and occluding pixels that
provides a depth cue. However, as can be seen in Fig. 5,
the optical flow associated with occluded pixels (Pa) is
particularly unreliable. To deal with this issue, the
previously created BPT is used to define an optical flow
partition Pf where a parametric motion model is assigned to
each region allowing us to obtain a reliable flow for
occluded pixels. Of course, a similar detection has to be
performed for disoccluded and disoccluding pixels.

5.2 Pruning for parametric flow fitting

To obtain a region-based modelling of the optical flow, a
parametric projective model [21] is used. The flows
w̃t, q
Ri

= (̃u, ṽ) with q = t ± 1, associated with region Ri can
be expressed as a quadratic model on the x and y coordinates

ũ(x, y) = a1 + a2x+ a3y+ a7x
2 + a8xy (8)

ṽ(x, y) = a4 + a5x+ a6y+ a7xy+ a8y
2 (9)
Fig. 6 Example occlusion estimation for two regions

From left to right: original frame with the region contours in white
Frame with occluded and occluding pixels
Forward (top) and backward (bottom) estimated and modelled flows
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where (x, y)∈ R. The a1, …, a8 parameters are estimated with
robust regression using iterative least squares [22]

w̃t, q
Ri
(p) = argmin

w̃t,q

∑
p=(x, y)[Ri

C wt, q(p)− w̃t, q(p)
∥∥ ∥∥2( )

(10)

with the robust penaliser C(z) = ��������
z2 + e2

√
with e≪ 1. An

example of flow fitting can be seen in the right part of
Fig. 6. To limit the computational load, this flow fitting is
applied on the tree nodes that are close to the tree root.
Typically, the nodes corresponding to the last thousand
merging steps are kept and the remaining nodes
corresponding to earlier merging steps are discarded. Once
the parametric flow is estimated, a partition Pf representing
the regions that best fit to these models is computed using
the optimal pruning Algorithm 1 (see Fig. 4) with the
following energy Er(Ri)

Er Ri

( ) = ∑
q=t+1

∑
x, y[Ri

wt, q(x, y)− w̃t, q
Ri
(x, y)

∣∣∣ ∣∣∣+ lf (11)

The constant λf = 4 × 103 is used to prevent oversegmentation.
It was found experimentally and proved not to be crucial for
overall system performance.

5.3 Occlusion relation estimation

Once the partition Pf has been defined and a parametric
optical flow model is available for each region, the
occluding pixels can be defined by projecting the occluded
pixels in It+1 with w̃t, t+1 and by going back to the current
frame following the backward flow wt+1,t. This is illustrated
in the right part of Fig. 5 where occluding pixels appear in
the white area. Hence, for each occluded pixel pu, the
IET Comput. Vis., 2014, Vol. 8, Iss. 2, pp. 152–160
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corresponding occluding pixel po is given by

po = pu + w̃t, t+1
Ri

pu
( )+ wt+1, t pu + w̃t, t+1

Ri
pu
( )( )

(12)

The central image of Fig. 6 also shows these occluding
pixels. At this point, we know that the occluding pixels
are in front of the occluded pixels and similarly, the
disoccluding pixels are in front of the disoccluded pixels.
This information is used in the second BPT pruning
described in the following section.

6 Depth order map definition

6.1 Depth ordering pruning

Equation (12) creates a set of pixel pairs (pu, po) for which
depth information is available. If both pixels belong to the
same region, they are discarded but if they belong to two
different regions, we can conclude that there is one
evidence that the two regions belong to different depth
planes. In the context of regions described by the BPT, if
we deal with regions that are close to the root, many (pu,
po) pairs are discarded because the regions are very large.
By contrast, if the regions are close to the leaves, many (pu,
po) pairs will be preserved.
To extract from the BPT a partition Pd involving regions

which can be depth ordered, an optimal pruning is used.
Here, the energy to be optimised should be a compromise
between the number of occlusion relations, that is of (pu, po)
pairs, that are kept and the simplicity of the partition in terms
of region number. As a result, the pruning is performed with
Algorithm 1 (see Fig. 4) with the following energy

Er Ri

( ) = ∑
pu, po( )[Ri

1

No
+ lo (13)

where No is the total number of estimated occlusion relations.
To avoid oversegmented solutions, λo = 4 × 10−3 is used (see
Section 7).

6.2 Final depth ordering

Once the final partition Pd is obtained through BPT pruning, a
global ordering can be computed. The problem could be
viewed as a rank aggregation problem which is used for
Fig. 7 Depth ordering example

a Depth order partition: top: region number and contours, bottom: estimated occlu
b Initial G graph with all occlusion relations
c Final graph where cycles have been removed. Removed edges are dashed
d Depth order map (brighter regions are closer to the viewer)
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web ranking [23] or photosequencing [24]. Here, the goal is
to achieve a fully ordered list from a set of partial orders by
minimising a given cost function. Normally, rank
aggregation works with fully ordered lists, where two
elements cannot have the same order. Since, in an image,
two different regions may be at the same depth (thus have
the same order), we state the problem as a network
reliability problem [25].
A graph G = (V, E) is constructed where the vertices V

represent the regions of Pd. A directed edge ei = (a, b, pi) is
defined between node a and node b if there are occlusion
relations between region Ra and region Rb. The weight of
ei is pi = Nab/No where Nab is the number of pixels from Ra

which have been estimated as occluding pixels of Rb and
No is the total number of occluding pixels. The graph G can
be seen as a network of (un)reliable links, with the edge ei
= (a, b, pi) connecting a and b with probability pi. In this
context, a precedes b in depth (a is in front of b) with
probability pi. For two arbitrary nodes of G, the probability
of precedence (PoP) can be computed even if there are no
edges directly connecting them. If there exists more than
one path from a node a to b, the probability of ‘a to
precede b’ is called ρab and is the probability that at least
one path between a and b is reliable. ρab can be computed
by complete state enumeration and the inclusion–exclusion
principle [25].
To define a globally consistent depth order between

regions, G should be acyclic. To break cycles in G (if any),
the algorithm iteratively eliminates the edge of minimum
PoP. Once all cycles have been removed in G, a topological
partial sort [26] is applied and each region is assigned a
depth order. Regions which have no depth relation, are
assigned the depth of their most similar adjacent region
according to the distance in the BPT construction. The
complete process is illustrated in Fig. 7 with a simple
example.

7 Results

System evaluation is performed on keyframes of several
classical sequences. In order to obtain an objective
evaluation, we propose two classes of experiments:

Figure/ground assignment: We assess the foreground/
background (f/g) label assignment on contours as discussed
in [11, 12]. In our context, the assignment is performed as
ded points and occluding points

157
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Table 1 Percentage of correct f/g assignments and BR on the
CMU and BDS datasets

Dataset CMU [27] BDS [12]

f/g, % BR f/g, % BR

figure/ground from optical flow [12] 83.8 – 68.6 –
still image depth ordering [16] 63.4 0.5 63.6 0.4
depth ordering with BPT 88.0 0.48 80.9 0.37
depth ordering with UCM 67.9 0.48 68.9 0.37

www.ietdl.org

follows: when two depth planes meet, the part of the contour
belonging to the closest region is assigned the foreground
label and the other side of the contour is assigned the
background label, see Fig. 8. It is important to note that the
proposed system defines the depth information on a region
basis, whereas the f/g algorithm of [12] only labels contour
points. These contours are not necessarily closed and
therefore no regions are defined and these f/g algorithms do
not allow the creation of a complete depth order map.
Nevertheless, the existence of a ground truth f/g database
makes the comparison with these systems attractive. The
used datasets are the Carnegie Mellon Dataset (CMU) [27]
and the Berkeley Dataset (BDS) [12]. We follow the same
evaluation procedure as [12] which essentially is the
precision of f/g labels on matched contour pixels against a
ground truth database containing depth order partitions.
Segmentation evaluation: Equation (13) establishes a region
energy depending on a factor λo which has a direct effect
on the granularity of the extracted partition Pd. For large
values of λo, only prominent occlusion relations will be
kept and thus only a few regions are conserved. On the
contrary, for small values λo, the generated Pd also
preserves low-confident occlusion relations, generating a
partition with more regions. If Pd only includes regions
corresponding to highly confident occlusion relations, it is
expected to obtain a high f/g precision rate, at the expense
of a low boundary recall (BR) on groundtruth
segmentations. If Pd is formed by regions corresponding to
low-confident occlusion relations, the BR is expected to
improve, although the f/g precision can decrease. To this
end, jointly with the f/g precision, we present the BR of the
given algorithm.

Table 1 shows the performances of f/g assignment and BR
on the CMU and BDS datasets for the BPTCSM and BPTCMU

trees and compares it with the techniques proposed in [12,
16]. For [12], we only report the paper published f/g results
as it was impossible to reproduce the complete algorithm.
Therefore the BR for this technique is not available. For the
remaining techniques, we have used λo values providing a
similar BR to make a fair evaluation of the f/g results. From
Fig. 8 Results of the CMU dataset and f/g assignment with the BPTCSM
From left to right (on both columns)
(1) Processed keyframe
(2) Occlusion relations
(3) Estimated depth partition. White regions are closer and black regions are furth
(4) f/g assignment on contours
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all the presented techniques, the BPTCSM is the one with
the best performance on f/g assignment, outperforming [12]
on both datasets. The one performing worst is [16] mainly
because it does not use motion cues at all and its depth
ordering is based only on monocular static cues
(T-junctions and convexity). BPTUCM has lower
performances than BPTCSM. Although UCMs have
excellent performances in terms of defining distances
between regions in static images, they do not involve
motion features. The effects of introducing motion
information in BPT construction can be seen in Fig. 9 on
images with various objects of very similar colours. In
cases where the colour information is ambiguous, motion
successfully helps to identify regions moving coherently.
As stated in [28], prominent contours are easy to detect and

to assign the correct depth gradient, whereas ambiguous
contours are much more difficult to deal with. Therefore it
is expected that, as the BR increases, the f/g assignment
loses performance. This can be seen in the table reported in
Fig. 9. These results are obtained on the BDS dataset,
which we found more challenging than the CMU dataset,
by varying λo on the BPTCSM and BPTUCM techniques.
Depending on the application, one can set a high λo and let
the system behave like a foreground/background segregation
system with high f/g performance. If more complex scenes
have to be processed, a low λo retrieves multiple regions
although f/g assignment is less precise.
A subjective evaluation of the ability of the proposed

system to create a depth order map can be seen in Figs. 8
system
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Fig. 9 Left: comparison of BPTCSM and BPTUCM for images with objects of similar colour: original frames shown on the left, the centre
column shows the results of BPTCSM and the right column shows the results of BPTUCM
Rightmost table shows the f/g assignment and the BR varying the parameter λo

Fig. 10 Results on a subset of the BDS dataset with the BPTCSM system

For each column, the right image corresponds to the analysed frame with f/g assignment overlaid on contours
Left image corresponds to the final depth order partition
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and 10 showing that motion occlusions may work over a
variety of situations: static scenes, moving foregrounds,
moving backgrounds or even multiple moving objects.

8 Conclusions

In this work, a system inferring the relative depth order of the
regions of a frame has been described. Combining a
variational approach for optical flow estimation and a
hierarchical region-based representation of the image, we
IET Comput. Vis., 2014, Vol. 8, Iss. 2, pp. 152–160
doi: 10.1049/iet-cvi.2012.0287
have developed a reliable system to detect occlusion
relations and to create depth order partitions using only
motion occlusion. The system also allows us to deal with
the classical foreground/background contour labelling
problem (f/g). In this context, comparison with the
state-of-the-art shows that motion occlusions are very
reliable cues. The presented approach, although using only
motion information to detect boundaries, achieves better
results on f/g assignment than the state-of-the-art technique
[12].
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Many extensions of the system are possible. First, a longer

temporal window could be used to retrieve more precisely
motion occlusions. Secondly, we can take advantage of other
monocular depth cues, such as T-junctions and convexity to
help in case of motionless depth relations. Although
Table 1 shows that they are less reliable than motion
occlusions, they could be useful when motion occlusions
are not present (i.e. a static background), as in some cases
in Fig. 10. We believe also that motion occlusions can be
propagated throughout the sequence to infer a consistent
depth order. Sequence depth ordering seems plausible
because results on individual frames are promising.
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