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Abstract

This paper presents a human action recognition framework based on the
theory of nonlinear dynamical systems. The ultimate aim of our method is to
recognize actions from multi-view video. We estimate and represent human
motion by means of a virtual skeleton model providing the basis for a view-
invariant representation of human actions. Actions are modeled as a set of
weighted dynamical systems associated to different model variables. We use
time-delay embeddings on the time series resulting of the evolution of model
variables along time to reconstruct phase portraits of appropriate dimensions.
These phase portraits characterize the underlying dynamical systems. We
propose a distance to compare trajectories within the reconstructed phase
portraits and a method to learn a set of weights reflecting the discriminative
power of a given model variable in a given action class. Our approach presents
a good behavior on noisy data, even in cases where action sequences last just
for a few frames. Experiments with marker-based and markerless motion
capture data show the effectiveness of the proposed method. To the best of
our knowledge, this contribution is the first to apply time-delay embeddings
on data obtained from multi-view video.

Keywords: action recognition, multi-view, markerless motion capture,
nonlinear dynamical systems, time-delay embeddings

1. Introduction

Automatic recognition of human actions from video is a challenging prob-
lem that has attracted the attention of researchers in the recent decades.
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Human computer interfaces, surveillance or entertainment, to name a few,
are among the wide range of applications of this technology.

From the computer vision perspective, the evolution of certain features
in the temporal dimension is crucial to recognize human actions. The most
common approach consists in extracting these features directly from pixels
[1, 2]. While one can obtain accurate recognition results even with low-level
features, approaches relying on pixels and appearance-based descriptors are
normally limited by view-points. In our work, however, we focus on using
body models to overcome the view-point dependency. Human body models
introduce motion constraints, offer a compact representation of human mo-
tion and are able to represent the underlying hierarchical relation between
joints. Due to these properties, human body models are of interest for both
pose inference and action recognition. We therefore understand the recogni-
tion of human actions as a two-step problem: pose inference and modeling
the temporal evolution of a set of human model variables. This paper focuses
on the second step.

The aim of this paper is to exploit the theory of nonlinear dynamical sys-
tems and, more specifically, time-delay embeddings, to model the dynamics
of human actions using a set of parameters resulting from a motion capture
procedure. In contrast to a few existing approaches in the literature [3], we
propose a method to compare the set of trajectories lying in phase spaces
reconstructed with experimental data. This comparison relies on the topol-
ogy of trajectories in a phase space, and overcomes problems related to the
availability of long-term observations. Our ultimate goal is to recognize a set
of human actions in a multi-view environment. We experimentally illustrate
our achievements by inferring the pose of humans and recognizing their ac-
tions in a multi-camera scenario. To the best of our knowledge, this is the
first application of time-delay embeddings on data obtained from markerless
motion capture in multi-view video. We also provide comparative perfor-
mance with existing approaches by using a 3D MoCap dataset obtained with
marker-based sensors.

2. Related Work

The term human action can be defined according to [4], thus meaning a
simple motion pattern usually lasting a short period of time and typically
executed by a single person. Provided this definition, approaches addressing
the problem of human action recognition from video can be divided into



Figure 1: System overview. (a) Motion Capture estimate. (b) View-invariant representa-
tion of motion through the human model (¢) Phase space reconstruction of elbow motion
using a time-delay embedding.

two large categories, depending on whether they employ or not an explicit
representation of the human body. In this paper, we use the term model-
based for approaches using a human body model, usually in the form of a
skeletal structure. In contrast, we term model-free the approaches that work
directly with image or video features. These latter approaches are copious in
number, and can be applied in a wide variety of situations. Nonetheless, they
usually rely on view-dependent features. For a deeper analysis of model-free
methods, we refer the reader to [4, 5].

Model-based approaches are able to tackle the problem of view-dependency
whenever the model can be represented in the 3-dimensional world in a view-
invariant manner [6]. This is the case of virtual skeleton representations,
where motion sequences can be easily represented independently of the over-
all rotation and translation parameters. The main drawback is the pose
estimation problem associated to these approaches: it requires capturing the
motion from video. This problem is normally addressed by tracking ap-
proaches either in multi-view settings [7, 8], using range sensors [9, 10, 11],
such as Kinect, or by example-based approaches [12, 13, 14].

Within model-based approaches, our work is related to the analysis of
time series and the underlying dynamical systems that describe the motion
of joints in a human model. Pavlovic and Rehg [15] infer the kinematics
of walking and running to model dynamical systems that can be used to
recognize both actions. With similar kinematic features, Bisacco et al. [16]
classify human gaits by defining a distance in the space of dynamical sys-
tems. Campbell and Bobick [17] represent human motion using joint angles
to construct curves in a phase space. They are able to segment fundamental



steps in ballet dance. Lv et al. [18], infer human actions by representing
them as a set of weighted channels consisting in the temporal evolution of
3D joint coordinates. Raptis et al. [19] compare time series by considering
a time warping model that accounts for the intrinsic characteristics of an
underlying dynamical system. More recently, Raptis et al. [20], have pro-
posed a method to model human actions as a linear time-invariant dynamical
model of relatively small order that generates multivariate time series in the
form of joint angle dynamics along time.

Some authors focus on dimensionality reduction methods to deal with
the action recognition problem by embedding input feature spaces into low-
dimensional spaces. Dimensionality reduction methods have been widely
applied also in the field of model-free action recognition [21, 2, 22|, due to the
high dimensionality of many image features. However, when one deals with
actions and time series, keeping the geometric structure of input spaces is
often not sufficient, and there is a need for constraining embedding techniques
to cope with the underlying dynamics. Lewandowski et al. [23], propose
Temporal Laplacian Eigenmaps to embed time series of motion capture data
and video data, obtaining good results on both human motion reconstruction
and action recognition.

With the aim of tackling any modeling limitation produced by assump-
tions made on the dynamical model, Ali et al. [3] propose to exploit the
theory of chaotic systems to recognize human actions. They embed one-
dimensional joint signals in an m-dimensional phase space to compute metric
and dynamical invariants. They are able to recognize actions using MoCap
data and video data. In a recent work, Basharat and Shah [24] extend the
univariate embedding to multivariate analysis in order to synthesize human
motion and dynamic textures. Our proposal is based on this latter sort of
nonlinear dynamical models [25] to infer human actions from video.

3. Proposed Approach

In our work, human actions are modeled as a collection of dynamical sys-
tem models, each one characterizing the temporal evolution of a set of body
model variables. These models are obtained by phase space reconstructions
according to the theory of nonlinear time series analysis [25]. In contrast to
other embedding techniques, in our approach we embed 1-D signals onto a
higher dimensional space that is topologically equivalent to the dynamical
system generating those signals.



In the following, we present the choice of variables used in order to learn
motion patterns, we outline the phase space reconstruction method employed,
and we propose a metric to compare reconstructed phase portraits. We fi-
nally describe the training and the recognition strategy proposed to recognize
human actions.

3.1. Pose Representation

The main motivation of using a model-based approach to human action
recognition is the view-invariant nature of the representation of human poses
and actions provided by a skeletal model [6]. We employ a kinematic tree
structure that encodes an articulated skeleton. In this modeling framework,
and provided that bone elongations are fixed, human pose is represented by a
translation r € R?, a global rotation ¢ € R3 and a set of joint angle rotations
0; € R. Each joint can have up to 3 associated rotations, depending on its
degrees of freedom, and these rotations are independent of the global transla-
tion and rotation. This collection of variables matches the data provided by
marker-based motion capture systems and it is also appropriate to perform
markerless motion capture from video.

Due to the independence of joint rotations with respect to global variables,
we achieve invariance by discarding those model variables whose evolution
along time is independent of the type of human action. Specifically, we
discard the model translation on the transverse plane (XY in Fig.1b) and
the rotation around the vertical axis of the model, i.e., the orientation (z
in Fig. 1b). The remaining vertical translation is normalized using the
model height. Let us clarify this choice with walking as an example. A
human can walk in several directions on a scenario. If the coordinate axes
are aligned such that the XY plane is parallel to the floor, then all these
directions are reflected on the orientation (rotation around the vertical axis)
and the translation on the XY plane. If the human model is rotated, say
90°, around any other global axes of rotation, then walking is not possible
in this scenario (the human is likely to be lying on the floor, for instance).
Similarly, a pronounced translation in the vertical direction is not possible
while walking (unless the terrain is not an horizontal plane, but we do not
consider this case). Therefore, the translation on the XY plane and the
orientation are not characteristic of any action.

As aresult, we have a set of time series consisting in the angular evolution
of joint angles, a normalized translation and two global rotation variables.



From now on, we use £ to denote this set of body model variables describing
human motion.

3.2. Phase Space Reconstruction

Let us define a dynamical system as the possibly nonlinear map f :
R™ — R™ that describes the temporal evolution of state variables x(t) =
[21(t), 22(t), ..., xm(t)] € R™. Similarly, let h : R™ — R be the mapping
of the state-space variables to one-dimensional observables z that conform
scalar time series. In our case, the temporal evolution of ¢ variables, 2(t),
are these scalar time series, and we want to characterize the underlying sys-
tem f by reconstructing an m-dimensional phase space where time series are
unfolded.

The reconstructed phase space is a metric space and, as shown by Takens
[26], for a sufficiently large m, this space is an homeomorphism of the true
dynamical system that generated the time series. Takens’ theorem provides
the theoretical justification for reconstructing state spaces using time-delay
embeddings:

() = [5(t), 25t + 1), oy 25+ (M — 1)7))] (1)

where X%(t) is a point in the reconstructed phase space, m is the em-
bedding dimension and 7 is the embedding delay. Hence, for a sufficiently
large m, the phase space is reconstructed by stacking sets of m temporally
equispaced samples of the input scalar time series. But not only dimension
is essential: embedding delay 7 also determines the properties of the recon-
structed phase space. We first determine the embedding delay using the
mutual information method [27] and then we employ the estimated delay to
find the appropriate embedding dimension using the method by Cao [28].

Embedding delay. The basic idea behind the method for inferring the embed-
ding delay is that an appropriate embedding delay must provide independent
state variable coordinates, so that the time series data gets effectively un-
folded in a higher dimensional space. In essence, the method in [27] computes
the mutual information between the time series and delayed versions of the
same series. The optimal delay is then obtained by taking the first minimum
of the mutual information function (see Algorithm 1 and Fig. 2a).
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Figure 2: Determining the embedding delay and a suitable embedding dimension for a
joint angle scalar time series. (a) Mutual information of the series and its delayed version.
The first minimum is used as the optimal embedding delay. (b) E1 measure, obtained
by Cao’s method [28]. Suitable embedding dimensions are found when the E1 measure
starts converging to a stable, high value. In the example, m=4 is a sufficient embedding
dimension.

Algorithm 1: Embedding Delay

1 28 = {2%(0),...,25(T — 1)} : Time series obtained from the human
body model variable &

2 Normalize Z¢ between 0 and 1

3 Set minMI >> 1

4 forr=1...max 7 do

5 | Delayed time series : Z& = {25(7),...,2((T — 1+ 7) mod (T))}
¢
I(r) = = X5 Yoy (25, 28) log P22
6 if I(1) <minM1
7 then
8 | minMI =I(r)
9 end
10 else
11 | break //7 is the optimal embedding delay//
12 end
13 end




Figure 3: Examples of reconstructed 3-D phase portraits. Hip rotations for jump, run and
walk actions in the Future Light dataset [29].

Embedding dimension. Kennel et al. [30] noted that, since the phase space
of a dynamical system folds and unfolds smoothly, two points that are suffi-
ciently close in a given m-dimensional reconstructed phase space, should keep
close in m + 1 dimensions. They reasoned that, as the optimal embedding
dimension is reached, the number of false nearest neighbors (points that are
nearest neighbors in m dimensions but not in m + 1 dimensions) should be
negligible. Noting the limitations of the false nearest neighbors method for
short-term experimental data, Cao [28] proposed a novel method for finding
the optimal embedding dimension (see Algorithm 2 and Fig. 2b).

Once both the embedding delay and the embedding dimension have been
estimated, the phase space reconstruction is performed as follows:

G () o (m D)
X¢ = 25(t) zf(t'+ ) s 25+ (m—1)7)
| 25(N—=1—(m—1)7) zg(N—l—:(m—2)7') (N - 1)

(2)
Our objective is to use the phase space portraits X¢ as signatures. To
match these signatures, we exploit some topological and geometric features of
the obtained trajectories in high dimensional spaces. As mentioned through-
out the paper, each one of the model variables constitutes a time series from
which we reconstruct a phase space. In order to easily compare the re-
constructed phase portraits without using invariants [3], we must enforce a
common embedding dimension for all the actions and model variables.




Algorithm 2: Embedding Dimension
1 %6, (i) = [5(1) f(i+7) -+ 25(i+ (m—1)7)] // Reconstructed
phase space point in m dimensions //

2 N //Number of points in time series Z¢ //
3 form=1...M do
4 fori=0---N—-1—-m7 do
5 Find the Nearest Neighbor %5(5)
. a(i,m) = |\>251A§1<z1>—>:<§+}<j>||
(%5 (1) =% (4
7 end
s | Elm) = x2m X" ali;m)
9 if m > 2 then
10 | El(m—1) = E(m)/E(m —1)
11 end
12 if m > 3 then
13 if |E1(m —1) — E1(m —2)|| < Th then
14 | break //m — 1 is a suitable embedding dimension//
15 end
16 end
17 end

3.3. Distance between phase portraits

The proposed recognition method is based on comparing the set of re-
constructed phase portraits of a target action (one per rotation) with a set
of phase portraits from representative templates. In order to perform such a
comparison, we propose a distance between two reconstructed phase portraits
X¢ and Xg

We use the map f(x(t)) — x(t + 1) to refer to the underlying dynamical
system associated to some model variable and f(x,(n)) = X.(n+1) x, € X§
to the system representing the evolution in the phase portrait Xg recon-
structed with the model time series (we use n instead of ¢ to denote that we
have a sampled signal). From this notation we introduce the nonlinear time
evolution operator f such that:



O = identity (3)
e 0
i = (5)

Due to the nature of human motion, we assume that f is smooth. We also
assume that important topological characteristics of the underlying dynamics
are reflected on the trajectories of the reconstructed phase portraits (Fig. 3),
in spite of the fact that the data employed is a sampled version of a continuous
signal.

Our proposal for the distance between reconstructed phase portraits relies
on these properties and it is inspired on DTW [31]. The underlying idea is to
traverse one phase portrait Xg and look for the nearest neighbor at each time
instant in another phase portrait X§ If the portraits have been generated by
similar motion (and possibly by the same action) nearest neighbors should
be in closer distances along the respective reconstructed phase portraits.
Nearest neighbor retrieval is, therefore, restricted in such a way that the
temporal ordering is preserved. This is equivalent to measuring the prediction
error of points in Xg given f{g Algorithm 3 describes the computation of
the distance between two reconstructed phase portraits of some body model
rotation.

The search for nearest neighbors is restricted by ¢ to the near future of the
phase portrait. This variable aims at compensating for the different lengths
of the available action samples. Note that while the distance performs a
one-pass traversal through Xg, we allow fb to go from the last reconstructed
state space point to the first one. This is clearly necessary for periodic or
quasi-periodic human motion, such as walking. Note also that the distance
between X§ and Xg is, in general, different from the distance between Xg
and X§. Hence, in order to have a true metric, we define the final distance
between two phase portraits as:

d(XE,X5) + d(X5, X)
2

o(X;, X}) = (6)

3.4. Training and Recognition

Human actions are not necessarily characterized by full body motion.
Clearly, understanding the action raise hand does not require knowledge of

10



Algorithm 3: d( X§ , X$)

Start at x,(0) € X§

Look for its nearest neighbor x,(no) € X

Xy = Xp(no)

d = [|x4(0) = x(n0) |*

n=1

while x,(n) # x,(0) do

I = argmin  ||xq(n) — fF(xy))|? restricted to 0 < k < 4.

k

d=d+ |[x.(n) - A x)) |12
9 xp = fl(xp)

10 n=n-+1

11 end

12 d=d/n

b =R, VR VN

0]

the motion of legs. Even in the case of having full body motion, it might hap-
pen that some parts are more important for understanding a human action.
Motivated by the potential saliency of different body parts in different ac-
tions, we use training data to learn a set of weights reflecting the importance
of the motion of different body model variables in each action class.

Due to the independence of the variables in the model-based represen-
tation of human actions, we propose a strategy that performs fusion of the
similarity scores obtained in each model variable . Let {I'¢,Y¢} be the
training data consisting in the set of reconstructed phase portraits Xf and
action class labels for the variable &, respectively. We aim at maximizing
the classification accuracy by weighting each one of the variables £ based
on their discriminative power on the training data. For this reason, we first
classify each training sample using the nearest neighbor, based on the dis-
tance e(f{f, Xﬁ), 1 # j. Using the training data false positive, false nega-
tive (misses) and true positive classifications for the action class label y in
each model variable & (fpyézy, fny,=, and tpy,_, respectively), we define the
weights for each variable £ and action y as:

tpyE —y
pr5=y + fny,—, + tPy,—y

Wy,=y X <7>
To classify a test action based on the set of reconstructed phase portraits
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Xf), we normalize the weights wy,—, such that Zwyézy = 1, and we fuse
the similarity scores with respect to the training samples :

y = argmaz Z Wy, —y€XP (—e(Xf), Xi}/&:y)) (8)
yey ¢
The proposed strategy takes advantage of training data to learn the vari-
able model weights in a discriminative manner, i.e., the importance of each
model variable depends on the extent to which its motion pattern in a given
action differs from motion patterns in other actions.

4. Experimental Results

In order to evaluate our method, we have conducted two different types
of experiments. On the one hand, we have tested our method with a 3D
MoCap dataset [29] for comparative performance with previously reported
results in the literature [3, 20, 32]. On the other hand, we have tested the
proposed technique with markerless motion capture data obtained in a multi-
view environment with our own implementation of a hierarchical particle
filter algorithm for human pose estimation. The latter experiments aim at
evaluating the trajectory matching in phase spaces with less accurate motion
data.

4.1. MoCap Data

The motion capture data dataset provided by FutureLight [29] contains
158 sequences of 5 action classes: dance, jump, run, sit and walk. These se-
quences have important intra-class variations that make this dataset a chal-
lenging one. For instance, dance sequences contain several ballet moves but
also 4 walk-style dance moves that, actually, are similar to walking. Run
and walk class sequences present important variations in speed, arm swing
or bouncing, and include stops and turnings. Similarly, jump class sequences
are performed in place or while walking. A good description of this dataset,
illustrated with some samples, can be found in [3].

We employ a total of 27 variables (arm and leg joint rotations, 2 global
rotations and normalized translation in the vertical axis), thus obtaining
27 reconstructed phase portraits per action sequence. Classification perfor-
mance is evaluated using leave-one-out cross-validation, as has been done

12



by other authors working in action recognition with this dataset [3, 20, 32].
Classification results are shown in Table 1. Classification accuracy (91.77%)
validates the performance of reconstructed phase portraits and the proposed
distance for the action recognition task, as the results obtained are compara-
ble to existing approaches [20, 3|, but are ranked just below the approach by
Raptis et al. [32] (see Table 2). They use an efficient time series dictionary
in these dataset, thus achieving robustness against intra-class variations. On
the contrary, our method makes a comparison that is rather exhaustive, in
the sense that all points of the available trajectories are matched. There-
fore, our method presents limitations in coping with significant performance
differences between the same action class.

The comparative performance of the method by Ali et al. [3] and our
method is relevant, since they use chaotic invariants and time-delay embed-
dings. The accuracy of our algorithm on this data is slightly better but, in
overall, both results are consistent, thus proving that methods using time-
delay embeddings perform well in recognizing human actions from MoCap
data. Apart from the improved recognition performance, our method has the
advantage of being suitable for short term actions, as we show in experiments
with video data (see Section 4.2 ).

Using the same model variables, we evaluate the recognition rate as a
function of the embedding dimension (Fig. 4). In the case of m = 1 we per-
form DTW [31] using a window to constrain the warping to near time instants
of the evaluated sample. In this way, the computation time is dramatically
reduced. As expected, the recognition rate improves as the embedding di-
mension m grows, until a limit is reached (in our case, this limit is reached
at m = 4). If we look at the E1 measure computed using the false nearest
neighbor method, we see that at m = 4 the slope changes notably and the E1
measures starts settling down to a convergence value. This is an interesting
result, since it shows the correlation between the recognition performance
and the theoretical correctness, both topologically and geometrically, of the
reconstructed phase space (according to the Takens’ theorem and the em-
bedding dimension m).

4.2. Video Data

To test our method, we record several sequences involving four actors per-
forming several actions. This test scenario is intended to simulate a smart
environment where each user interacts with the room through 4 calibrated

13



Dance Jump Run Sit Walk
Dance 28 3 0 0 0
Jump 0 11 1 0 2
Run 1 3 25 0 1
Sit 0 0 3 33 0
Walk 0 0 0 0 48

Table 1: Confusion Matrix of the Future Light dataset for an embedding dimension m = 5

and 0=10. Overall classification accuracy is 91.77%.

Method Performance on the FutureLight Dataset
3] 89.7
[32] 98.03
[20] 83.63
Our method 91.77

Table 2: Comparison of classification results

cameras located at the ceiling corners (see Fig. 5). In this context, intra-
class variations of the actions performed are not as relevant as in the case
of the Future Light dataset, because in this dataset many actions serve as
commands, and are executed in a somewhat precise manner. In spite of that,
some stylistic variations exist, especially between actors. We employ 7 min-
utes of video data containing the following actions: walk, raise hand, crouch,
wave hand, bounce (an arm movement similar to bouncing a ball), jump,
clap, kick, sit and stand up. Actions involving a single arm or leg motion
are performed with the right limb. Except for walk, all the actions last a
few seconds (typically between 1 and 4 seconds). This fact produces recon-
structed phase portraits with a few points in several cases, making unfeasible
to apply chaotic invariants reliably unless some re-sampling is performed [3].
Concatenation of sequences has been proposed also as a possible solution,
but in some actions concatenation may produce jumps that would violate
the continuity of the dynamics. The metric distance that we propose in this
paper does not require a very good quality of the reconstructed phase por-
traits, since we are analyzing the trajectories in the phase space. Since the
estimated time delays and the embedding dimensions allow having at least 15
reconstructed points in the worst case, we do not perform any up-sampling
nor concatenation.

14
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Figure 4: Analysis of the recognition rate and the embedding dimensions in the Future
Light dataset (a) Recognition rate as a function of the embedding dimension. (b) Mean
E1 measure [28] on the whole Future Light dataset.

Figure 5: Multi-view data-set samples. Top row: The four available viewpoints during
walk action. Bottom row: Kick, jump, sit and bounce samples.

Tracking. To track the actors, we employ a markerless motion capture method
based on our previous work on Hierarchical Particle Filter-based pose and
anthropometrics estimation [33]. Although the state vector strictly comprises
pose and anthropometric variables, we simplify the problem by computing
anthropometric variables only once at the beginning of each subject’s se-
quence. Our tracking method uses a body model comprising an articulated
skeleton (a set of joints connected by bones) and a triangular mesh surface
model to generate pose and anthropometric candidates. In this modeling
framework, pose is formulated as a global rotation and translation and a
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Figure 6: Selected tracking samples.

set of joint angles, while the anthropometric profile is expressed in terms of
bone elongations and mesh deformations. In this way, all the joint positions
and mesh vertices can be controlled by varying the state space vector. Pose
and anthropometric candidates are projected onto the multiple views and
the mesh projection is compared with the foreground silhouettes extracted
in each corresponding view in order to define the weight of each particle.
In the HPF formalism, the state space vector is sampled and filtered by us-
ing hierarchical partitions; specifically, we divide the state space variables
into global and torso variables, arms and legs in a total of 7 layers. From
the tracking results we obtain the necessary rotations. We use 19 variables,
since our model is simpler than the one resulting from marker-based mo-
tion capture in [29]. We estimate an average tracking error of 15 c¢cm for all
the considered data, although errors occur especially in some arm motions
(clapping), in fast motion (kick, jump) and in crouching actions, where the
tracker makes important errors in estimating the legs’ pose. In spite of that,
the tracking provides an approximate representation of the motion involved
in each action (see Fig. 6).

Evaluation. To evaluate the classification performance, we divide the data
into several training and testing sets. We pick 2/3 of the action sequences
for training and 1/3 for testing. We repeat this procedure 10 times with
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walk 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
raise hand | 0.00 0.66 0.00 0.04 0.24 0.0 0.06 0.00 0.00 0.00
crouch 0.00 0.00 0.96 0.00 0.00 0.01 0.00 0.00 0.03 0.00
wave hand | 0.00 0.03 0.00 0.83 0.10 0.00 0.04 0.00 0.00 0.00
bounce 0.00 0.09 0.00 0.36 0.56 0.00 0.00 0.00 0.00 0.00
jump 0.00 0.00 0.00 0.00 0.00 0.93 0.00 0.06 0.01 0.00
clap 0.00 0.02 0.00 0.00 0.00 0.00 0.97 0.01 0.00 0.00
kick 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
sit 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.83 0.00
stand up | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Table 3: Confusion Matrix for Tracking Data. Training sets of 2/3 of the available data.
Overall classification performance is 87.5% (m = 4, §=5).

random partitions of the data. The classification results, for embedding di-
mension m = 4 and parameter § = 5, are shown in Table 3. The proposed
method shows an excellent performance with actions involving large motions
(the majority of these actions are classified with rates higher than 90%). The
training method, based on model variable fusion, provides effective results
with these actions. For instance, in walk action, although almost all the
model variables have non-negligible weights (except for the vertical transla-
tion), the importance is set on the leg variables. Similarly, crouch has 75%
of the weight distributed in the knees’ rotation and the vertical translation.
In contrast, actions involving a single arm motion are classified with less ac-
curacy. We have observed that in these actions, right shoulder rotations get
heavily weighted during training phase. Specifically, the actions raise hand
and wave hand have high weights on x and y axes of rotation in the shoulder
joint (in our model, the z rotation axis is defined along the upper arm), as it
is a salient feature in the dataset. In the case of wave hand and bounce, right
elbow joint is weighted over the mean, because the pattern in this joint is
particular of these two actions. However, in action bounce, the shoulder’s y-
axis, a differential trait from wave hand, has no importance. This is actually
because it is differential with respect to wave hand, but it is very similar to
many other actions in the dataset. Similarly, elbow rotation in action raise
hand, as a differential trait versus wave hand, is not significantly weighted
during training for the same reason. To summarize, our method is able to
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focus on distinct human model variables in an automated manner, with ef-
fective results when large motion takes place in the performance of an action.
However, weighting model variables in a discriminative manner considering
them isolatedly has limitations with a single arm motion.

To further analyze the behavior of our action recognition method, we
repeat the experiment reducing the amount of training data. Specifically, we
use 1/2 and 1/3 of the data as training in two additional experiments. As
before, we repeat the procedure 10 times for each one of the experiments. The
classification accuracies for 1/2 and 1/3 of training data are 84.3% and 76.7%
respectively, showing that the proposed method can perform accurately with
a few action exemplars.

In a final experiment, we use the action sequences of 3 actors for training
and the remaining for testing. In this way, we evaluate the performance of the
algorithm under stylistic variations. In this last experiment, the recognition
rate is 79.9%, confirming that the dense matching of trajectories in the phase
space is sensitive to some stylistic variations. In overall, the proposed method
has a promising performance with multi-view video data in spite of some
important tracking errors.

5. Conclusions

In this paper we have presented a novel human action recognition method
based on the analysis of time series by phase space reconstructions with time-
delay embeddings. We employ a set of variables of a skeletal model as the
set of time series, each of which is used to reconstruct a phase portrait.
We propose a distance to compare each phase portrait without requiring
the computation of chaotic invariants, which might need a high number of
samples to be significant. We also propose to perform fusion of the different
classifications performed at the variable level, a strategy that allows focusing
on a subset of variables that produces sufficient information to classify an
action. We have experimentally shown the feasibility of such an approach to
recognize human actions from multi-view video for the first time, in a novel
application of theory of nonlinear dynamical systems.

We have observed that a dense matching of embedded time series has
limited accuracy against intra-class variations. Therefore, finding of new
ways of comparing phase space points is a future research line. On the
other hand, although experimental results have shown that the discriminative
learning of weights per model variable is an effective method of removing
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nuisance from the pose data, the proposed method depends solely on training
data, thus ignoring the topological information of the human body model. We
believe that by introducing topological information of the skeletal model we
can avoid problems derived from weighting isolated variables, thus avoiding
the algorithm to ignore some information that may be of interest to recognize
actions with more subtle motions.
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