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Abstract: Semantic segmentation and depth estimation are two important tasks in computer vision, 
and many methods have been developed to tackle them. Commonly these two tasks are addressed 
independently, but recently the idea of merging these two problems into a sole framework has been 
studied under the assumption that integrating two highly correlated tasks may benefit each other 
to improve the estimation accuracy. In this paper, depth estimation and semantic segmentation are 
jointly addressed using a single RGB input image under a unified convolutional neural network. 
We analyze two different architectures to evaluate which features are more relevant when shared 
by the two tasks and which features should be kept separated to achieve a mutual improvement. 
Likewise, our approaches are evaluated under two different scenarios designed to review our results 
versus single-task and multi-task methods. Qualitative and quantitative experiments demonstrate 
that the performance of our methodology outperforms the state of the art on single-task approaches, 
while obtaining competitive results compared with other multi-task methods.

Keywords: depth estimation; semantic segmentation; convolutional neural networks; hybrid 
architecture14

1. Introduction15

Semantic segmentation and depth information are intrinsically related, and both pieces of16

information need to be considered in an integrated manner to succeed in challenging applications, such17

as robotics [1] or autonomous navigation [2]. In robotics, performing tasks in interactive environments18

requires identification of objects as well as their distance from the camera. Likewise, autonomous19

navigation applications need a 3D reconstruction of the scene as well as semantic information to20

ensure that the agent device has enough information available to carry out the navigation in a safe21

and independent manner. Although RGB-D sensors are currently being used in many applications,22

most systems only provide RGB information. Therefore, addressing depth estimation and semantic23

segmentation under a unified framework is of special interest.24

On the other hand, deep learning techniques have shown extraordinary success in both tasks [3] in25

recent years. In this context, the feature-extraction process for a specific task is modeled as a parameter26

estimation problem in Convolutional Neural Networks (CNNs) which is based on a set of training27

data. In other words, the feature extractors are created by learning from the prior knowledge that we28

have. This provides a possibility of combining different tasks (different sources of prior knowledge)29

when training the feature extractors, in particular for highly correlated tasks such as depth estimation30

and semantic segmentation. Specifically, the idea of integrating the depth estimation and semantic31

segmentation into a sole structure is motivated by the fact that both segmentation information and32
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depth maps represent geometrical information of a scene. In this manner, the feature extractors can be33

better trained due to the enriched prior knowledge.34

In this paper, we introduce a hybrid convolutional network that integrates depth estimation35

and semantic segmentation into a unified framework. We propose to build a model where the36

features extracted are suitable for both tasks, thus leading to an improved accuracy in the estimated37

information. One of the main advantages of the proposed approach is the straightforward manner38

semantic segmentation and depth map are estimated from a single image, providing a feasible solution39

to these problems.40

2. Related Work41

Depth estimation and semantic segmentation are two widely studied problems in the image42

processing community and recently have been tackled through deep learning techniques due to its43

successful results in terms of accuracy and efficiency. This section makes a review of the state of the art44

introducing, first, single-task approaches, and, afterwards, methods focused on solving multiple tasks.45

2.1. Single-Task Approaches46

2.1.1. Semantic Segmentation47

Semantic segmentation is a methodology which approaches the image segmentation problem by48

performing pixel-level classifications. Compared to the traditional image segmentation approaches, such49

as superpixel segmentation methods [4,5], active contour methods [6,7] and watershed segmentation50

methods [8,9], it introduces semantics in an image segmentation process by employing a classifier51

trained on the annotated data. Although semantic segmentation methods generally have limited52

genericity due to the predefined semantics in the annotations, the advantage of semantic segmentation53

is obvious. The introduced semantics provide higher level knowledge which helps obtain more54

meaningful segments in comparison to homogeneous regions.55

Before CNN-based techniques were applied to semantic segmentation; handcrafted features56

were usually employed to represent pixels when training the classifier [10]. The emergence of57

CNN-based techniques provide an approach that trains neural networks to extract features with58

higher discriminative power. One of the first well known works that applies CNNs to semantic59

segmentation is Fully Convolutional Networks (FCN) [11]. It popularizes CNN architectures for dense60

predictions without any fully connected layers. This allowed segmentation maps to be generated for61

images of any size and it also reduces the number of parameters in the architecture since no fully62

connected layers are involved. Almost all the subsequent state-of-the-art approaches on semantic63

segmentation adopted this paradigm.64

Apart from fully connected layers, one of the main problems of using CNNs for segmentation are65

the pooling layers. Pooling layers increase the field of view and are able to aggregate the context while66

discarding the ‘where’ information. However, semantic segmentation requires the exact alignment67

of class maps and thus, needs the ‘where’ information to be preserved. Two different classes of68

architectures evolved in the literature to tackle this issue.69

The first one is the encoder-decoder architecture. The encoder gradually reduces the spatial70

dimension with pooling layers and the decoder gradually recovers the object details and spatial71

dimension. There are usually shortcut connections from the encoder to the decoder to help the decoder72

recover the object details better. U-Net [12] is a popular architecture from this class. It consists of73

a contracting path to capture context in the encoder and a symmetric expanding path from the encoder74

layers to the decoder layers that enables precise localization. Seg-Net [13] is proposed based on75

FCN. It introduces more shortcut connections between the encoder and the decoder. Furthermore,76

it copies the indices from the max-pooling layers in the encoder to the decoder instead of copying77

the encoder features as in FCN, which makes easier for SegNet to recover the spatial information and78

provides more memory efficiency than FCN. Ghiasi et al. [14] present a Laplacian pyramid for semantic79
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segmentation refinement incorporating, into the decoding step, the spatial information contained in80

the high-resolution feature maps to keep the spatial information destroyed after pooling. Thus, a better81

dense pixel-accurate labeling is obtained.82

Architectures in the second class use what are known as dilated/atrous convolutions [15–17].83

Pooling layers help in classification networks because they increase the receptive field of a network.84

However, as mentioned, this is not suitable for a semantic segmentation task since pooling drops the85

spatial information and decreases the resolution. Dilated/Atrous convolutions can compute responses86

at all image positions with an n times larger receptive field if the full resolution image is convolved87

with a filter ‘with holes’, in which the original filter is upsampled by a factor n, and zeros are introduced88

in between filter values. Although the effective filter size increases, it is only necessary to take into89

account the non-zero filter values, hence both the number of filter parameters and the number of90

operations per position stay constant.91

2.1.2. Depth Estimation92

One of the first works to tackle the depth estimation problem using CNNs is the one presented93

in [18]. They used a novel network architecture made of two main components. First, a coarse-scale94

network estimates a low-resolution depth map from a single image. Then, this depth estimation along95

with the original image becomes the input of the fine-scale network. In this way, the local network can96

incorporate finer-scale details in the global prediction. Additionally, they also apply a scale-invariant97

error to help measure depth relations instead of scale.98

Likewise, a similar work based on [18] is presented in [19]. In this approach the authors included99

an extra part to the model presented by [18] that estimates gradient information. The idea behind100

this additional part is to improve the fine-tuning part by adding gradient information along with the101

global depth estimation and the input image. Additionally, a normalized loss function was applied102

resulting in a better depth estimation.103

2.2. Multi-Task Approaches104

Approaches addressing depth estimation and semantic segmentation with multi-task learning105

schemes are receiving large attention due to its potential of improving the performance of multiple106

tasks. The idea of merging tasks in one architecture is motivated by the fact that different correlated107

tasks commonly share some basic attributes in the parsing process. Approaching them together108

may be mutually beneficial. In practice, multi-task approaches in the state of the art seek to extract109

features suitable to perform diverse tasks at a time, which lead to an improvement in both estimated110

information and simplification of systems where multiple modalities are required, such as autonomous111

navigation [2], robotics [1] or augmented reality [20].112

In [21], the authors provide a common network which can be used for different tasks, including113

the estimation of depth map, surface normals, and semantic segmentation. Although these tasks are114

not all addressed jointly, it proves that a network for a specific task can be obtained by fine-tuning115

a network with the same architecture trained for another correlated task. The results obtained by [21]116

outperformed the ones presented in [18] proving how the strategy of tackling multiple tasks with117

a common network may lead to a better performance.118

In [22] a unified framework was proposed, which incorporates global and local prediction where119

the consistency between depth and semantic segmentation is learned through a joint training process.120

From an input image, they first used a CNN to jointly predict a global depth map and semantic labels.121

Then, they decompose the image into local regions to train another CNN which predicts the depth122

map and the semantic labels for each region. With global and local predictions, they re-formulate123

the problem into a two-layer hierarchical conditional random field to produce the final depth and124

semantic map.125

A more recent multi-task approach is introduced in [23]. The methodology proposed in this work126

makes initial estimations for depth and semantic label at a pixel level through a joint network. Later,127
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depth estimation is used to solve possible confusions between similar semantic categories and thus to128

obtain the final semantic segmentation.129

Another multi-task approach by Teichmann et al. [24] presents a network architecture named130

MultiNet that can perform classification, semantic segmentation, and detection simultaneously. They131

incorporate these three tasks into a unified encoder-decoder network where the encoder stage is132

shared among all tasks and specific decoders for each task produce outputs in real time. These133

work efforts were focused on improving the computational efficiency for real-time applications as134

autonomous driving.135

A similar approach is Pixel-Level Encoding and Depth Layering (PLEDL) [25], this work extended136

a FCN [11] with three output channels jointly trained to estimate semantic labeling, direction to the137

instance center and depth at pixel level.138

Table 1 presents a brief comparison on the pros and cons between different types of methods.139

Traditional image segmentation approaches [4–9] usually perform low-level segmentation, which140

obtain the segments with more general assumptions, such as local homogeneity. On the other hand,141

semantic segmentation methods [10,11,13,16,26] improve image segmentation by introducing semantic142

annotations, which provide higher level meaning (semantics at object level) rather than low-level143

features exploited in traditional methods. Approaches under multi-task learning schemes, such as144

the proposed approach and [21,25] exploit the correlation between semantic segmentation and depth145

estimation to benefit each of the tasks, which generate both image segmentation and depth estimation146

taking as input a single-color image. Unlike the multi-task methods in the state of the art [21,25], the147

proposed approach focuses on separating the commons and distinctions between the two tasks, which148

obtains promising results shown in our experiments.149

Table 1. A comparison of different types approaches.

Unsupervised Object Level Segm. Depth Estimation Joint Estimation

Ours ×
Eigen [21] × ×

PLEDL [25] ×
Superpixel [4,5] × × -

Active Contour [6,7] × × -
Watershed [8,9] × × -

Semantic Segm. [10,11,13,16,26] × × -
Depth Prediction [19] × × -

2.3. Our Proposal150

Multi-task approaches aim to directly estimate the segmentation and depth maps from an input151

color image by unifying CNNs working for a single task into a sole hybrid convolutional neural152

network. Most of the state-of-the-art works unify tasks under a feature-extraction block whose output153

becomes the input of a group of decoders designed to carry out each task.154

In our preliminary work [27], we presented a hybrid network for a multi-task learning scheme155

that benefits both semantic segmentation and depth estimation, and its application to autonomous156

driving scenes. This hybrid network employs a global depth estimation network to estimate separately157

the global layout of a scene from the input image additionally to the common feature extraction.158

In this paper, we focus on comparing different hybrid network unifying strategies and159

investigating how those two tasks help each other. More specifically, we employ two unifying160

strategies, one from the hybrid architecture proposed in our previous work [27] and the other from161

the state-of-the-art works [21,23,24]. In the experiments, we compare the performances obtained from162

different hybrid architectures, named HybridNet A1 and A2 (see Figures 1 and 2), by applying different163

unifying strategies to the same single-task architectures, in order to clarify how the two tasks help164

each other in a hybrid system. We also apply them to the more challenging indoor scenes to verify the165

validity of the unifying strategy.166
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Figure 1. Architecture 1

Figure 2. Architecture 2

The rest of the paper is organized as follows: in Section 3 we introduce the proposed methodology;167

the detailed explanation of the proposed architectures is presented in Section 4, as well as the training168

details. In Section 5, we present the experiment results of our approach in different datasets and169

compare our approach with state-of-the-art approaches. Finally, conclusions are drawn in Section 6.170

3. Hybrid Convolutional Framework171

In this section, a general explanation of our hybrid convolutional neural network and its172

application to depth estimation and semantic segmentation is presented. To this end, a description173

about the two single-task architectures [16,19] employed in our approach is first presented. Then, we174

describe the proposed hybrid architecture along with a discussion to approach the problem of how to175

unify two tasks under one sole framework.176

The depth estimation architecture [19], denoted as DepthNet in this paper, is made of three177

components: global depth network, gradient network, and refining network, as shown in Figure 3.178

These three components all follow AlexNet structure. DepthNet first estimates a depth map of the179

scene at a global level from the single input RGB image via a global depth network. Meanwhile,180

it predicts two depth gradient maps from the input RGB image via a gradient network. Finally,181

a refining network uses the input image along with depth gradient maps to locally refine the global182

depth map and thus produce a better detailed depth map. As explained in [19], the three components183

in DepthNet are trained separately. For training the global depth network, the downsampled depth184

maps are used as the ground truth. Beside the global depth network, the gradient network is trained185

based on the magnitude of depth gradient on x and y direction computed from the depth map. Along186

with the global depth network and gradient network, the refining network is again trained on the187

downsampled depth maps in the training data.188

There are two main reasons to consider employing DepthNet as the depth estimation component189

in our approach: (1) DepthNet follows the state-of-the-art framework for depth estimation which is190

representative for a bunch of methods. (2) DepthNet has a modularized architecture, which allows us191

to analyze each of the components in it and better integrate DepthNet into a hybrid architecture.192
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Figure 3. Depth estimation network.

The semantic segmentation architecture [16] shown in Figure 4, is divided into two main parts:193

feature network and atrous upsampling network. For the feature network, it follows the VGGNet194

architecture proposed in [28]. It is in charge of extracting robust features from the input image, which195

benefits from the deep structure of the network. On the other hand, the atrous upsampling network is196

a group of atrous spatial pyramid pooling layers [16] which outputs a class score map with the number197

of channels equal to the number of labels. Atrous upsampling layers allows us to explicitly control198

the resolution at which feature responses are computed within the architecture, while enlarging the199

field of view of filters to incorporate larger context in the semantic segmentation task. The semantic200

segmentation architecture is denoted as DeepLab-Atrous Spatial Pyramid Pooling (DeepLab-ASPP) in201

this paper. In DeepLab-ASPP, all parts are trained together.202

Figure 4. Semantic segmentation network.

DeepLab-ASPP is employed as the semantic segmentation component in our approach due to its203

outstanding performance in this task.204

Unifying Single-Task Architectures for Multi-Tasks205

Considering the functionality of each component in DepthNet and DeepLab-ASPP, we propose206

and compare two different hybrid architectures for the joint depth estimation and semantic207

segmentation task.208

Architecture 1: An intuitive way to unify two tasks in a sole architecture is to totally share the209

feature-extraction process for both tasks. It follows the idea from the most representative architectures210

in the state of the art [21,23,24], in which a common convolutional network is shared for extracting211

features. Following the feature-extraction block, customized layers are used for each task, to decode the212

commonly extracted features and apply them in different tasks. Sharing the feature-extraction process213

for different tasks with a common convolutional network links the two tasks, since the parameters214

of the shared network are optimized with respect to the losses defined on both tasks in the training215

phase. The advantage of this architecture is obvious. Since most of the layers are shared for both tasks,216

less parameters are involved in the training process, which makes it easy to be trained. In practice,217

we exploit the VGG structure [28] as the feature-extraction network for both tasks. Based on the218
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extracted features, the atrous upsampling network in DeepLab-ASPP is employed for the semantic219

segmentation task, while the refining network in DepthNet is leveraged as the decoder for the depth220

estimation task. We denote the architecture 1 as HybridNet A1 in the rest of this paper.221

Architecture 2: The motivation of building this architecture is to further clarify the common and222

specific attributes in the two tasks. Thus, we build the hybrid network by substituting the gradient223

network in DepthNet by a common feature-extraction network for the two tasks, while keeping the224

global depth estimation network only for the depth task. The advantages of this hybrid architecture225

are two-fold. On one hand, the strong power of extracting object information from a color image226

learned in the semantic segmentation task can also benefit depth layering when predicting a depth227

map, while the strong power of extracting rich depth boundaries from a color image learned in the228

depth estimation task is shared in the semantic segmentation task to improve segmentation accuracy229

on object boundaries. On the other hand, the global layout of the scene which is more relevant in depth230

estimation than in semantic segmentation is estimated independently by a global network in the depth231

estimation task. This avoids interfering the common feature extraction for both tasks. In practice,232

we keep the global network and refining network in DepthNet without changes, while replacing the233

structure of the gradient network with the VGG structure, in order to keep the structure consistent234

with the feature network in DeepLab-ASPP. We denote the architecture 2 as HybridNet A2 in the rest235

of this paper.236

4. Architecture Details237

Since the proposed architectures are assembled with basic components in the two single-task238

architectures, we explain the detail of the proposed architectures by describing the two single-task239

architectures in this section.240

4.1. Depth Estimation Network241

As described in Section 3, the depth estimation network is modularized to calculate a refined242

depth map from a single input image through a three stages convolutional network. As shown in243

Figure 3, the global depth network is formed by 5 convolutional layers and two fully connected layers,244

which corresponds to the architecture of AlexNet [29]. Following each convolutional layer, a Rectified245

Learner Unit (ReLU) is introduced as an activation function to provide non-linearity to the system.246

Local normalization is also performed after each convolutional layer in a Local Response Normalization247

layer (LRN), which helps the generalization of the system. Max-pooling layers are placed after the first248

and the last convolutional layer to provide basic translation invariance to the internal representation249

and reduce the number of parameters of the system. In this network max-pooling is performed over250

a 3 × 3 window with a stride of 2. Since the global depth network aims at describing the global layout251

of the scene, we introduce two fully connected layers following the last convolutional layer, to capture252

the information contained in the intermediate representation with the full receptive field. In practice,253

1024 neurons are included in the first fully connected layer while 1681 neurons are included in the254

second fully connected layer. We reshape the 1681 neurons to a 41 by 41 matrix which is treated as the255

output of the global depth network. In this manner, we predict a global depth map with 1
8 resolution256

for an input image with size 321 by 321.257

The gradient network aims at estimating depth gradient from an input color image. In practice,258

we employ the same architecture used in global depth estimation except for the fully connected layers.259

Finally, the refining network takes the concatenation of the output from the global depth network,260

the gradient network, and the color image as input and computes a refined depth map. The refining261

network improves the rough estimate from the global depth network, using gradients estimated by262

the gradient network and an input color image. In practice, the first convolutional layer processes the263

input color image, followed by a ReLU layer, an LRN layer, and a max-pooling layer, which produces264

the feature maps extracted from the color image. These feature maps are concatenated with outputs of265

the global depth network and the gradient network, then are fed to the remaining four convolutional266



Version April 14, 2019 preprint accepted for Sensors Journal 8 of 20

layers. Each of them is followed by a ReLU layer. The output from the 5th convolutional layer in the267

refining network is treated as the output (a refined depth map with size 81 by 81).268

4.2. Semantic Segmentation Network269

Figure 4 presents an overview of semantic segmentation network. This figure shows in a detailed270

manner how the input image is processed by first going through a group of convolutional layers for271

feature extraction (feature network) and then through an upsampling procedure which finally provides272

the segmentation map (upsampling network). Dividing this architecture into two parts helps us to273

understand it as a single-task network but also how it can be integrated into a hybrid model.274

The feature network contains 5 groups of convolutional layers, forming a deep architecture.275

All these convolutional layers have the same kernel size 3 × 3. For simplicity, we only plot276

the convolutional kernel in the first convolutional layer in the feature network. Following each277

convolutional layer, a ReLU layer is provided as the activation function. Pooling layers are placed after278

each group of convolutional layers to reduce the computational cost by downsampling the internal279

representation, as well as to provide basic translation invariance to the internal representation.280

On the other hand, the atrous upsampling network contains 4 parallel groups of three281

convolutional layers, to perform upsampling operation at different scales. Each branch upsamples the282

output from the feature network at the first convolutional layer with an atrous convolution. An atrous283

convolution employs a dilated convolution template, in which a convolution template is enlarged by284

filling zeros with respect to a defined rate. In this manner, we can explicitly control the resolution285

of the upsampling operation and enlarge the field of view of filters to incorporate larger context in286

the semantic segmentation task without introducing more parameters. In practice, we employ atrous287

convolutions with rates 6, 12, 18, 24 respectively for each branch. The other 2 convolutional layers in288

each branch perform 1 × 1 convolutions, which increases the non-linearity of the decision function289

without affecting the receptive fields of the convolutional layers. Taking the output of the 4 branches290

of upsampling layers as input, a soft-max layer produces the final semantic segmentation mask.291

4.3. Training Details292

As explained in the Section 3, the two proposed architectures (HybridNet A1 and A2) are based on293

DeepLab-ASPP [16] and DepthNet [19]. Although HybridNet A1 and A2 are constructed by merging294

single-task architectures, the training process for the hybrid architectures are not always performed as295

in those single-task architectures.296

In HybridNet A1, we initialize the feature network and the atrous upsampling network with the297

model provided by DeepLab [16] which was pre-trained for classification purpose on ImageNet. The298

other parts in HybridNet A1 are initialized using a Random Number Generator (RNG). The RNG is299

set to be a Gaussian distribution with zero mean and 0.1 variance.300

In HybridNet A2, we initialize the feature network and upsampling network before the training301

process using again the model provided by DeepLab [16]. Additionally, we initialize the global depth302

network using the model provided in [19]. The other parts in HybridNet A2 are randomly initialized303

using the same RNG.304

Once we have the initialization for our hybrid architecture, all of its components are trained305

simultaneously. Both hybrid architectures are trained for 100 K iterations with a learning rate 2.5× 10−6,306

polynomial learning rate decay policy. The momentum is set to 0.9 and weight decay 0.005. The input307

image is randomly cropped with a size 320 × 320. We set batch size to 7, regarding the maximum308

allowance of memory.309

The loss function used in both architectures is the same. For the semantic segmentation task, LS310

is the sum of the cross-entropy terms for each spatial position in the output class score map, being311

our targets the ground truth labels. All positions and labels of the output class score map are equally312

weighted in the overall loss function except for those unlabeled pixels which are ignored. The loss313

function used for the depth estimation task is made by two Euclidean loss layers LDabs and LDmvn .314
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LDabs computes the Euclidean distance between absolute values of a depth map in the ground truth315

and the estimated depth map, while the LDmvn computes the Euclidean distance between estimation316

and ground truth after performing a mean variance normalization on both of them. LDabs stands317

for a pixel-level metric which evaluates locally how well the estimated depth value matches the318

ground truth regardless of the geometry of the scene. On the other hand, LDmvn introduces a global319

regularization in the depth estimation by aligning depth values in both the estimation and the ground320

truth to zero mean and unit variance.321

The hybrid loss function LH is therefore defined as the linear combination of them:322

LH = αLS + (LDabs + LDmvn) (1)

where α is the term used to balance the loss functions of the depth estimation and semantic323

segmentation tasks. In our experiments, α is set to 1000, given an analysis on the values of LDabs + LDmvn324

and LS respectively, when training them separately in the single-task architectures.325

5. Experiments326

We quantify the performance of the proposed architectures on both semantic segmentation and327

depth estimation in different scenes using our Caffe implementation. We first evaluate the proposed328

architectures in road scenes which is of current practical interest for various autonomous driving329

related problems. Secondly, the proposed architectures are evaluated in indoor scenes which is of330

immediate interest to possible augmented reality (AR) applications.331

5.1. Road Scene332

In this section, we present the evaluation of the proposed architectures in road scenes. Several333

road scene datasets are available for semantic parsing [30–32]. Since we evaluate the proposed334

architecture from both semantic segmentation and depth estimation perspective, we employ Cityscapes335

dataset [32] in our experiment, which provides not only the ground truth of semantic labels but the336

depth information of each frame. Cityscapes contains 5000 RGB images manually selected from337

27 different cities for dense pixel-level annotation to ensure high diversity of foreground objects,338

background, and overall scene layout. Along with each of the 5000 RGB images, Cityscapes dataset339

provides the depth map obtained from a stereo vision system. The 5000 images in the dataset are split340

into 2975 training RGB images of size 1024 × 2048 along with their corresponding 2D ground truth341

object labels for 19 outdoor scenes classes and depth information, 500 RGB images for test validation342

with their corresponding annotations and, for benchmarking purposes, 1525 test RGB images.343

In practice, the training process of our approach was performed using the 2975 images of344

Cityscapes training set that provides a depth map and object labels of 19 classes for each RGB345

image. To evaluate the performance of the proposed architectures, we group the 500 images of346

the validation set and the 1525 images of the test set in the Cityscapes dataset into a single evaluation347

set of 2025 images. In the training phase, images in the training set are shuffled and randomly cropped348

to fit the input image size of the hybrid architecture. Training data augmentation is done by flipping349

and mirroring the original images, to enlarge the training set. In the testing phase, we crop the test350

image with the original size of 1024 × 2048 into a group of images with the size of 321 by 321 which351

cover the whole test image while having the minimum overlapped area. These images are tested one352

by one and grouped to obtain the final prediction of the segmentation mask and depth map. Please353

note that a score map is obtained for each image, which shows the degree that a pixel belongs to a label.354

For the overlapped area, we compare the normalized score maps and take the label with higher score355

as predicted labels on the segmentation mask. Likewise, for the overlapped area, the predicted depth356

values on the depth map are computed as the mean values.357

Our first aim is to determine if the features obtained in the shared part of the proposed358

architectures solving the two tasks simultaneously provide better results than the ones that we would359
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obtain using two identical networks trained separately. This is why, in addition to the results of the360

proposed architectures, we present the results obtained by the models that solve these two tasks361

separately for comparison. The models used to train semantic segmentation and depth estimation362

independently are denoted as DeepLab-ASPP [16] and DepthNet [19], respectively. We trained these363

two models using the code provided by the authors with the same training data in Cityscapes dataset364

and the same training configuration than the proposed architectures. Apart from that, we also compare365

different ways of unifying single-task architectures proposed in Section 3, to justify whether the366

unifying strategy is better. Besides, the comparison between the proposed architectures and a hybrid367

method in the state of the art [25] is also made in Cityscapes dataset. The hybrid approach proposed368

in [25] is similar to HybridNet A1, in which the encoder network in FCN [11] is employed as the369

feature network shared by three different tasks and the decoder network in FCN is then employed for370

each task to decode the commonly extracted features. The three tasks that [25] tackles are semantic371

segmentation, depth layering, boundary detection, which is similar to our target. However, in the372

depth layering task, ref. [25] focuses on estimating a depth label for each object, instead of estimating373

the real depth value of the whole scene at pixel level. This is also the reason that we only compare the374

performance between our approach and [25] in semantic segmentation. We present the results in our375

experiments in the following two subsections specifying the evaluation in semantic segmentation and376

depth estimation, respectively.377

5.1.1. Semantic Segmentation378

Figure 5 provides four examples from the evaluation set for visual comparison between the379

results obtained by our hybrid model and ground truth as well as those obtained by DeepLab-ASPP.380

The purpose of this figure is to depict the differences between a single-task and a multi-task approach.381

In Figure 5 the input image is displayed in the first column, second and third columns show the results382

obtained by DeepLab-ASPP and our hybrid model, respectively. Finally, in the fourth column the383

ground truth is presented for reference. This figure shows how the segmentation performed by the384

proposed HybridNet A2 retains with a greater detail the geometrical characteristics of the objects385

contained in the scene. For instance, in the 3rd row where the shapes of a pedestrian and a car can be386

better distinguished in the estimation obtained by Hybrid A2 than the one obtained by DeepLab-ASPP.387

Input Image HybridNet A2 Ground TruthDeeplab-ASPP

Figure 5. Semantic segmentation qualitative results. A comparison between semantic segmentation
estimation against ground truth is presented. From left to right, input image is depicted in the first
column. In column 2 the segmentation map estimated by DeepLab-ASPP semantic segmentation
network [28] is presented, in column 3 the estimated segmentation map by our hybrid method are
presented and finally the ground truth is depicted in column 4.
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In addition to qualitative results, we employ three commonly used metrics, to measure388

quantitatively the segmentation performance: the global accuracy (G), the class average accuracy389

(C) and mean intersection over union (mIoU). The global accuracy counts the percentage of pixels390

which are correctly labeled with respect to the ground truth labeling. The class average accuracy is391

the mean of the pixel accuracy in each class. The mean intersection over union measures the average392

Jaccard scores over all classes. Table 2 presents the quantitative results and confirms that the proposed393

HybridNet outperforms the results obtained by DeepLab-ASPP. Please note that the global accuracy394

and the class average accuracy evaluation of PLEDL are not provided due to the unavailability of the395

source code, whereas the evaluation of mIoU is reported in [25].396

The improvements obtained by our method against DeepLab-ASPP confirm the hypothesis that397

sharing the feature-extraction network between tasks leads to an improvement in terms of segmentation398

accuracy. The strategy of unifying two single-task architectures affects the segmentation performance399

of hybrid methods. HybridNet A2 where common and specific attributes between two different tasks400

are better clarified outperforms HybridNet A1 in which the feature-extraction process is totally shared401

for the two tasks. The improvement that HybridNet A1 obtains against DeepLab-ASPP is very limited402

(HybridNet A1 58.1% mIoU against DeepLab-ASPP 58.02% mIoU); however, Hybrid A2 improves the403

mIoU by around 8%. We also compare our architectures against a state-of-the-art hybrid method [25]404

in Table 2. HybridNet A2 has a better segmentation performance in all three metrics, than the work405

in [25]. For additional evaluation, comparisons between our approach against other well adopted406

single-task methods [11,13,16,33] are presented in Table 2.407

Table 2. Evaluation of HybridNet against Multi-task and single-task approaches (best results in bold).

G C mIoU

HybridNet A2 93.26 79.47 66.61
HybridNet A1 89.31 77.22 58.1

PLEDL [25] - - 64.3
DeepLab-ASPP [16] 90.99 74.88 58.02

FCN [11] - - 65.3
SegNet [13] - - 57.0

GoogLeNetFCN [26] - - 63.0

5.1.2. Depth Estimation408

For depth estimation evaluation, Figure 6 presents a visual comparison of the results obtained by409

Hybrid A2 as well as those obtained by the single-task approach presented in [19] against the ground410

truth. The figure displays, row-wise the same four examples depicted in Figure 5. Figure 6 depicts411

the input image in the first column, the depth map obtained by DepthNet in the second column,412

while third and fourth columns show the depth map obtained by HybridNet A2 and ground truth,413

respectively. Note how the results obtained by Hybrid A2 are more consistent with the ground truth414

than those obtained by DepthNet in terms of the depth layering.415

Additionally to qualitative analysis, we evaluate the performance of our methodology for depth416

estimation employing 6 commonly used metrics: Percentage of Pixel (PP), Mean Variance Normalized417

Percentage of Pixel (PP-MVN), Absolute Relative Difference (ARD), Square Relative Difference418

(SRD), Linear Root Mean Square Error (RMSE-linear), Log Root Mean Square Error (RMSE-log)419

and Scale-Invariant Error (SIE).420

Table 3 shows the definition for these metrics employed in the evaluation process. d and d∗421

represent the estimated depth and ground truth, respectively. N stands for the number of pixels with422

valid depth value in the ground truth depth map.423
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Table 3. Definition of the evaluation metrics: for depth estimation: Percentage of Pixel (PP), PP-MVN
Absolute Relative Difference (ARD), Square Relative Difference (SRD), RMSE-linear, RMSE-log and
Scale-Invariant Error (SIE).

Metrics Definition

PP max
(

di
d∗i

, d∗i
di

)
= γ < threshold

PP-MVN max
(

MVN(di)

MVN(d∗i )
, MVN(d∗i )

MVN(di)

)
= γ < threshold

ARD 1
N ∑

∣∣di − d∗i
∣∣ /d∗i

SRD 1
N ∑

∣∣di − d∗i
∣∣2 /d∗i

RMSE-linear
√

1
N ∑

∥∥di − d∗i
∥∥2

RMSE-log
√

1
N ∑

∥∥log (di)− log
(
d∗i
)∥∥2

SIE 1
N ∑i

(
log (di)− log

(
d∗i
)
+ 1

N ∑j

(
log
(

dj

)
− log

(
d∗j
)))2

Input Image HybridNet A2 Ground TruthDepthNet

Figure 6. Depth estimation qualitative results. A visual comparison between the estimated depth maps
against the ground truth is presented. In the first column the input image is presented, columns 2 and 3
depict the estimated depth maps obtained by DepthNet in [19] and our hybrid model A2, respectively.
Finally, ground truth is presented in column 4.

In the quantitative experiment, we compare the proposed hybrid architectures and DepthNet.424

Table 4 shows the quantitative results of the proposed hybrid architectures and DepthNet under the425

different evaluation metrics introduced above. HybridNet A2 outperforms in 6 out of 9 metrics, which426

proves that training the feature-extraction network for the simultaneous tasks of semantic segmentation427

and depth estimation also improves the depth estimation results. The better performance of HybridNet428

A2 in comparison to DepthNet illustrates that the shared features obtained with the semantic429

segmentation task in HybridNet A2 have richer information and are more relevant in the depth430

estimation task than the information extracted from the depth gradient in DepthNet. The comparison431

between Hybrid A2 and Hybrid A1 shows the necessity of clarifying the common and specific attributes432

of different tasks. Sharing only the common attributes of tasks in the feature-extraction process leads433

to a better performance in-depth estimation. We also verify the standard deviation of the performance434

of these methods among all testing samples to ensure the statistical significance of the results. Since435

very similar results are observed, we do not present them in Table 4 for conciseness.436
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Table 4. Depth estimation. Quantitative evaluation: PP, PP-MVN, ARD, SRD, RMSE-linear, RMSE-log,
and SIE (best results in bold).

HybridNet A2 HybridNet A1 DepthNet [19]

γ < 1.25 (MVN) 0.7483 0.6834 0.7248

higher is betterγ < 1.25 0.5968 0.5037 0.6048
γ < 1.252 0.8221 0.8172 0.8187
γ < 1.253 0.9292 0.9194 0.9152

ARD 0.24 0.2879 0.23

lower is better
SRD 4.27 4.35 4.43

RMSE-linear 12.09 12.67 12.35
RMSE-log 0.4343 0.3407 0.4340

SIE 0.19 0.2 0.25

5.2. Indoor Scene437

Road scene images have relatively limited variation in terms of the involved semantics and their438

spatial arrangements. They are usually captured by a camera fixed on a moving vehicle where the view439

direction of the camera is always parallel to the ground. This limits the variability of road scene images440

and makes it easier for the convolutional networks to learn to segment them robustly. In comparison,441

images of indoor scenes are more complex due to the free view point, the larger number of semantics442

in the scene, widely varying sizes of objects and their various spatial arrangements. On the other hand,443

although indoor scenes have smaller depth range than road scenes, they usually have more complex444

spatial layout, which provides challenges for depth estimation.445

In this section, we evaluate the proposed architectures on indoor scene data for both semantic446

segmentation and depth estimation. We employ RGB-D Scene Understanding Benchmark dataset [34]447

(SUN-RGBD) for the experiments. SUN-RGBD contains over 10k RGB-D images of indoor scenes448

captured by 4 types of depth sensors, including also RGB-D images from NYU depth v2 [35], Berkeley449

B3DO [36], and SUN3D [37]. It provides 2D ground truth object labels for 37 indoor scene classes, such450

as wall, floor, ceiling, table, chair etc. and depth maps of different resolutions. Our task is to segment451

the objects within these 37 classes in each image while estimating its depth. In practice, we split the452

dataset into 5285 training and 5050 testing images, following the experiment configuration introduced453

in [13].454

Similarly to the experiments in Cityscapes dataset, we perform training data augmentation by455

random cropping, flipping, and mirroring the original training images. However, in the testing phase,456

instead of cropping the test image as we did in the Cityscapes dataset, we downsample the test image457

to fit the input size of the hybrid architecture. Since the difference between the size of the test image458

and input size is not large in SUNR-GBD dataset, directly downsampling the test image to fit the input459

size strongly improves the efficiency in the testing phase, while not losing the important information460

in the test data.461

5.2.1. Semantic Segmentation462

SUN-RGBD is a very challenging indoor scene dataset for semantic segmentation, in which object463

classes come in various shapes, sizes, and different poses. There are also frequent partial occlusions464

between objects, which is typical in indoor scenes, due to the fact that many object classes are presented465

in each of the test images. Figure 7 provides a visual comparison for the estimated segmentation mask466

against ground truth. The figure presents, row-wise, 7 out-of-training examples where the first row467

shows the input images, the 2nd and 3rd row show the estimated segmentation mask from HybridNet468

A2 and DeepLab-ASPP respectively, and the last row shows the ground truth. HybridNet A2 exhibits469

stronger performance in distinguishing different objects in indoor scenes compared to DeepLab-ASPP.470
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Figure 7. Semantic segmentation qualitative results. A comparison between semantic segmentation
estimations against ground truth is presented. Input image is depicted in the first row. In the 2nd
and 3rd row, the estimated segmentation mask obtained from HybridNet A2 and the ground truth are
presented, respectively.

Additionally, to qualitative results, we follow the three metrics introduced in Section 5.1.1: the471

global accuracy (G), the class average accuracy (C) and mean intersection over union (mIoU) to evaluate472

the segmentation performance quantitatively. We also benchmark the proposed architectures against473

several other well adopted architectures for semantic segmentation, such as FCN [11], SegNet [13],474

DeepLab [16] and DeconvNet [38]. For FCN, the parameters for the deconvolutional layers are475

learned from the training process instead of using fixed parameters to perform bilinear upsampling.476

For DeepLab, three architectures are employed, which are DeepLab-ASPP, DeepLab-LargeFOV,477

and DeepLab-LargeFOV-denseCRF. They use the same VGGNet architecture for feature map478

extraction, which is similar to the proposed architectures. DeepLab-LargeFOV performs single479

scale upsampling on the feature map, while DeepLab-ASPP performs multi-scale upsampling.480

DeepLab-LargeFOV-denseCRF introduces a dense conditional random field as a post-processing481

step for DeepLab-LargeFOV. Table 5 shows the quantitative results of the proposed architectures482

(HybridNet A1 and A2) compared with other methods. HybridNet A2 achieves the best results in483

C and mIoU over all the 7 methods while also obtaining a (71.63%) in G close to the best (73.87%)484

obtained in DeepLab-ASPP. The higher global accuracy and lower per-class accuracy obtained in485

DeepLab-ASPP in comparison to HybridNet A2 illustrates that DeepLab-ASPP prefers to better cover486

large objects in the scene such as floor and wall, which provides good results in global evaluation.487

However, this affects its performance in smaller objects, which results in its lower per-class accuracy,488

as well as mIoU. The improvement against DeepLab-ASPP verifies again the idea of the multi-task489

learning, that estimating depth in addition to semantic segmentation helps the segmentation task490

(6.1% and 5.1% improvement in C and mIoU respectively). The performance of HybridNet A1 is491

even worse than the single-task method DeepLab-ASPP, which indicates that the idea of benefiting492

from unifying two single tasks in a hybrid architecture can hardly be achieved by simply sharing493

the feature-extraction process in more complex indoor scenes. The best segmentation performance494

obtained by HybridNet A2 compared with HybridNet A1 shows the importance of selecting a suitable495

unifying strategy in a multi-task learning problem and verifies the efficiency of the strategy employed496

in HybridNet A2.497

5.2.2. Depth Estimation498

For depth estimation evaluation Figure 8 depicts a qualitative analysis of results. The figure499

presents, column-wise, the same 7 out-of-training examples presented in Figure 7, where the first row500

shows the input images, the 2nd and 3rd row show the estimated depth map from HybridNet A2 and501

DeepLab-ASPP respectively, and the last row shows the ground truth. The depth maps estimated by502

HybridNet A2 are more consistent with the ground truth than those obtained by DepthNet in terms of503

the depth layering.504
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Table 5. Semantic segmentation. Quantitative evaluation (best results in bold).

G C mIoU

HybridNet A2 71.63 46.20 34.30
HybridNet A1 69.34 38.64 28.68

DeepLab-ASPP [16] 73.87 40.09 29.22
SegNet [13] 72.63 44.76 31.84

DeepLab-LargeFOV [16] 71.90 42.21 32.08
DeepLab-LargeFOV-denseCRF [16] 66.96 33.06 24.13

FCN(learned deconv) [11] 68.18 38.41 27.39
DeconvNet [38] 66.13 32.28 22.57
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Figure 8. Depth estimation qualitative results. A comparison between depth estimations against
ground truth is presented. Input image is depicted in the first row. The 2nd, 3rd and 4th rows present
the estimated depth map of our method, DepthNet and the ground truth, respectively.

Additionally, to qualitative analysis, we evaluate the performance following the metrics505

introduced in Section 5.1.2: PP, Mean Variance Normalized Pixel of Percentage (PP-MVN), ARD,506

SRD, Linear Root Mean Square Error (RMSE-linear), Log Root Mean Square Error (RMSE-log) and507

SIE. Table 6 shows the quantitative results of the proposed architectures (HybridNet A1 and A2) and508

DepthNet under different metrics. HybridNet A2 outperforms over all the metrics which proves that509

performing semantic segmentation in addition to depth estimation helps the depth estimation task.510

The better performance of HybridNet A2 in comparison to A1 confirms the efficiency of the unifying511

strategy proposed in HybridNet A2 in more complex indoor scenes.512

Table 6. Depth estimation. Quantitative evaluation: PP, PP-MVN, ARD, SRD, RMSE-linear, RMSE-log,
and SIE (best results in bold).

HybridNet A2 HybridNet A1 DepthNet

γ < 1.25 (MVN) 89.63 62.81 83.59

higher is betterγ < 1.25 61.33 38.63 57.73
γ < 1.252 89.17 69.38 87.42
γ < 1.253 97.43 86.28 97.08

ARD 0.202 0.301 0.218

lower is better
SRD 0.186 3.02 0.204

RMSE-linear 0.682 8.35 0.715
RMSE-log 0.25 0.432 0.27

SIE 0.122 0.316 0.126

5.2.3. Comparison with Other Hybrid Architectures513

To compare HybridNet A2 with other hybrid architectures in the state of the art, the method514

proposed in [21] is chosen. This method addresses three different tasks including semantic515

segmentation, depth estimation, and surface normal estimation. The architecture is designed as516

a stacking of three VGG structures [28] representing different scales of feature extraction (shown in517
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Figure 9). Each of the VGG structures takes the output of the previous one along with the input color518

image as its input. Among the three tasks, depth estimation, and surface normal estimation are two519

tasks tackled jointly, which means that these two tasks share the network in scale 1 while the networks520

in scale 2-3 are separately assembled for each task. For the semantic segmentation task, the architecture521

shown in Figure 9 is used again. However, different from the other two tasks, the architecture of522

semantic segmentation allows two additional input channels which are depth and normal channels.523

This architecture is only fine-tuned from the model previously trained on depth and normal estimation524

to generate semantic segmentation masks.525

Figure 9. The hybrid architecture proposed in Eigen [21].

Although the source code of this method was not available, the performance evaluation is reported526

in a public dataset (NYU Depth V2 dataset [35]). To make the comparison with this approach, we527

trained and evaluated our approach on NYU Depth V2 dataset. This data set includes RGB images528

and their corresponding 2D ground truth object labels for 40 indoor scene classes and depth map.529

NYU depth V2 dataset is divided into 795 images for training and 654 for testing. Due to the small530

number of images available for training, we augment the training set by random cropping, flipping,531

and mirroring.532

Tables 7 and 8 show the quantitative results of HybridNet A2 for both tasks and provides533

a comparison with the approach proposed in [21], denoted as Eigen. Semantic segmentation results in534

Table 7 show that HybridNet A2 outperforms Eigen in class average accuracy (C) and mean intersection535

over union (mIoU) while keeping similar results than Eigen in Global accuracy (G). It also illustrates536

that addressing RGB-D-based semantic segmentation task under a multi-task learning scheme better537

uses the depth information than directly feeding the depth information to the network as an extra538

input channel. On the other hand, depth estimation results in Table 8 show that HybridNet A2 has539

a better performance in the relative measure SIE, while in the absolute measures Eigen outperforms540
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HybridNet A2. The better performance of HybridNet A2 in the relative measure shows that HybridNet541

A2 has a better depth layering capability than Eigen, which is more relevant in real applications. For542

absolute measures, we believe that the worse performance of HybridNet A2 is due to the weaker543

ability in describing the global layout of the scene. HybridNet A2 employs a much simpler architecture544

(AlexNet structure) for global depth network compared with the network of scale 1 (VGG structure)545

in Eigen.546

Table 7. Quantitative segmentation results on NYU V2: G, C and mIoU (best results in bold).

G C mIoU

HybridNet A2 64.7 48.4 36.5
Eigen [21] 65.6 45.1 34.1

Table 8. Depth estimation results on NYU V2 Quantitative evaluation: PP, PP-MVN, ARD, SRD,
RMSE-linear, RMSE-log, and SIE (best results in bold).

HybridNet A2 Eigen [21]

γ < 1.25 (MVN) 0.7293 -
SIE 0.1571 0.171

γ < 1.25 0.5006 0.769
γ < 1.252 0.8013 0.95
γ < 1.253 0.9422 0.98

ARD 0.2787 0.158
SRD 0.3236 0.121

RMSE-linear 0.9423 0.64
RMSE-log 0.3219 0.214

6. Conclusions and Future Work547

In this paper, we have introduced a methodology for depth estimation and semantic segmentation548

from a single image using a unified convolutional network. The main goal of the proposed method549

is to seek for a better hybrid architecture of CNNs that modularizes the feature-extraction process550

by separating it into distinct feature extraction for a specific task and common feature extraction for551

both tasks. In this manner, both tasks can benefit from the extracted common features without being552

affected by those features only relevant to one task, which leads to a better performance. We also553

prove that solving correlated tasks such as semantic segmentation and depth estimation together can554

improve the performance of methods tackling the tasks separately.555

The qualitative and quantitative results shown in Section 5 demonstrate that the unifying strategy556

employed in HybridNet A2 produces a better hybrid architecture for semantic segmentation and557

depth estimation compared to Hybrid A1. Hybrid A2 outperforms the results obtained by single-task558

approaches, which proves that sharing underlying feature extraction helps to improve the final559

performance in both tasks. Likewise, it is also proved that our methodology obtains comparable results560

to benchmarking hybrid approaches.561

On the other hand, there are also some interesting problems pending for a future study:562

• Designing better loss functions for a multi-task learning scheme. The loss function employed in the563

state-of-the-art approaches is normally a balanced linear combination of losses for single tasks.564

However, these losses may have totally different physical meaning regarding the tasks (e.g.,565

cross entropy and Euclidean loss), which makes it hard to combine them. Finding higher level566

evaluation metrics helps define the loss function for a multi-task learning system. For instance,567

evaluating on the prediction of the 3D oriented bounding box of objects requires using both568

semantic segmentation and depth estimation result, which naturally combines the loss function569

for both tasks.570



Version April 14, 2019 preprint accepted for Sensors Journal 18 of 20

• Applying to higher level tasks requiring 3D analysis. Since the proposed approach produces an571

object level segmentation and a depth map of an input image, applying the estimated result to572

applications requiring 3D analysis (such as traffic violation detection) will be of great interest.573
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