DATA IN BRIEF TEMPLATE

Meta-Data

*Title:	KFuji RGB-DS database: Fuji apple multi-modal
	images for fruit detection with color, depth and
	range-corrected IR data
*Authors:	Jordi Gené-Mola ^a
	Verónica Vilaplana ^b
	Joan R. Rosell-Polo ^a
	Josep-Ramon Morros ^b
	Javier Ruiz-Hidalgo ^b
	Eduard Gregorio ^{a,*}
*Affiliations:	^a Research Group in AgroICT & Precision
	Agriculture, Department of Agricultural and
	Forest Engineering, Universitat de Lleida (UdL) –
	Agrotecnio Center, Lleida, Catalonia, Spain.
	^b Department of Signal Theory and
	Communications, Universitat Politècnica de
	Catalunya, Barcelona, Catalonia, Spain.
*Contact email:	egregorio@eagrof.udl.cat
*Co-authors:	Jordi Gené-Mola (j.gene@eagrof.udl.cat)
	Verónica Vilaplana
	(veronica.vilaplana@.upc.edu)
	Joan R. Rosell-Polo(jr.rosell@eagrof.udl.cat)
	Josep-Ramon Morros (ramon.morros@upc.edu)
	Javier Ruiz-Hidalgo (j.ruiz@upc.edu)
	Eduard Gregorio (egregorio@eagrof.udl.cat)
*CATEGORY:	Horticulture; Agronomy and Crop Science;
	Computer Vision and Pattern Recognition

Data Article

Title: KFuji RGB-DS database: Fuji apple multi-modal images for fruit detection with color, depth and range-corrected IR data

Authors: Jordi Gené-Mola^a, Verónica Vilaplana^b, Joan R. Rosell-Polo^a, Josep-Ramon Morros^b, Javier Ruiz-Hidalgo^b, Eduard Gregorio^{a,*}

Affiliations:

^aResearch Group in AgroICT & Precision Agriculture, Department of Agricultural and Forest Engineering, Universitat de Lleida (UdL) – Agrotecnio Center, Lleida, Catalonia, Spain.

^bDepartment of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain.

Contact email: ^{*}*egregorio@eagrof.udl.cat*

Abstract

This article contains data related to the research article entitle "Multi-modal Deep Learning for Fruit Detection Using RGB-D Cameras and their Radiometric Capabilities" [1]. The development of reliable fruit detection and localization systems is essential for future sustainable agronomic management of high-value crops. RGB-D sensors have shown potential for fruit detection and localization since they provide 3D information with color data. However, the lack of substantial datasets is a barrier for exploiting the use of these sensors. This article presents the KFuji RGB-DS database which is composed by 967 multi-modal images of Fuji apples on trees captured using Microsoft Kinect v2 (Microsoft, Redmond, WA, USA). Each image contains information from 3 different modalities: color (RGB), depth (D) and range corrected IR intensity (S). Ground truth fruit locations were manually annotated, labeling a total of 12,839 apples in all the dataset. The current dataset publicly available is at http://www.grap.udl.cat/publicacions/datasets.html.

Keywords

Multi-modal dataset; Fruit detection; Depth cameras; RGB-D; Fruit reflectance; Fuji apple

Specifications Table

Subject area	Machine learning, computer vision, deep learning, agronomy
More specific subject	Image fusion, Precision agriculture.
area	
Type of data	Multi-modal images with color (RGB), depth (D), and range-corrected
	IR intensity (S).
How data was acquired	The images were acquired using Microsoft Kinect v2.
Data format	Raw images: JPG
	Raw point clouds: MAT
	Pre-processed images: JPG (color channels) and MAT (depth and
	range-corrected IR channels)
	Annotations: CSV and XLM.
Experimental factors	Different image modalities have been registered to have pixel-wise
	correspondence between image channels.
Experimental features	All captures were carried out during the night, using artificial
	lighting.
Data source location	Data were acquired in Tarassó Farm, a commercial apple field
	located in Agramunt, Catalonia, Spain (E: 336297 m N: 4623494 m
	31N 312 m a.s.l., UTM31T - ETRS89).
Data accessibility	http://www.grap.udl.cat/publicacions/datasets.html
Related research article	Gené-Mola J, Vilaplana V, Rosell-Polo J.R, Morros J.R, Ruiz-Hidalgo J,
	Gregorio E. Multi-modal Deep Learning for Fruit Detections Using
	RGB-D Cameras and their Radiometric Capabilites. Computers and
	Electronics in Agriculture (2018) 162, 689-698. DOI:
	10.1016/j.compag.2019.05.016 [1]

Value of the Data

- First dataset for fruit detection that contains 3 different modalities: color, depth and range corrected IR intensity.
- The presented dataset could be used in the development and training of fruit detection systems with applications in yield prediction, yield mapping and automated harvesting.
- Compilation of this database allows fusing RGB-D and radiometric information obtained with Kinect v2 for fruit detection.

Data

The KFuji RGB-DS database contains a total of 967 multi-modal images of Fuji apples on trees and the corresponding ground truth fruit location annotations. Each image contains data from three different modalities: color (RGB), depth (D), and range-corrected IR intensity (S). Fig. 1 illustrates three selected images from de dataset, showing ground truth annotations and the modalities that composes each image.

Fig. 1. Selection of 3 multi-modal images and the corresponding ground truth fruit locations (red bounding boxes). Each image column corresponds to a different image modality: RGB, S and D, respectively.

This dataset was built to be used for training, validation and benchmarking of fruit detection algorithms using RGB-D sensors. For instance, in [1], the deep convolutional neural network Faster R-CNN [2] was used to detect and localize fruits from the presented dataset.

Images are 548x373px and were saved in three different files:

- RGB_{hr} (high resolution color image): Raw color image. These images are saved in 8-bit JPG files.
- RGB_p (projected color image): Projection of the color 3D point cloud onto the camera focal plane. The RGB_p and the D-S modalities are obtained following the same procedure, allowing the comparison between these modalities for fruit detection. These images are saved in 8-bit JPG files.
- DS (depth and range-corrected IR image): Projection of the range-corrected IR 3D point cloud onto the camera focal plane. The D channel corresponds to the depth values, while the S channel corresponds to the range-corrected IR intensity values. These modalities are saved in a unique 64-bit MAT file.

S and D data were normalized between 0 and 255 –like RGB images- to achieve similar mean and variance between channels. This normalization allows a faster learning convergence of machine learning algorithms (such as deep convolutional neural networks). All images were manually annotated with rectangular bounding boxes, labelling a total of 12,839 apples in all the dataset. Annotations are provided in XLM and CSV formats, where each row corresponds to an apple annotation, giving the following information: item, topleft-x, topleft-y, width, height, label id.

Experimental Design, Materials, and Methods

The data acquisition was carried out in a commercial Fuji apple orchard (Malus domestica Borkh. cv. Fuji), three weeks before harvesting (85 BBCH growth stage [3]). The RGB-D sensors used were two Microsoft Kinect v2 (Microsoft, Redmond, WA, USA), which are composed by an RGB camera and a time-of-flight (ToF) depth sensor. For each capture, the sensor provides a 3D point cloud with RGB and backscattered IR intensity data, and a raw RGB image. Due to the performance of the depth sensor drops under direct sunlight exposure [4], data was acquired at night using artificial lighting.

Fig. 2. Data preparation outline.

Pre-processing of data was carried out to build the multi-modal images with pixel-wise correspondence between channels. Fig. 2 shows an outline of the data preparation steps. To overcome the IR signal attenuation, the IR intensity data was range-corrected (Fig.2a) following the methodology described in [1]. Then the acquired 3D point clouds were projected onto the camera focal plane (Fig.2b), generating the RGB, range-corrected IR and depth projected images. These images were geometrically wrapped and registered (Fig.2c) with RGB_{hr} so that different image modalities have pixel-wise correspondence. Finally, to reduce the number of fruits per image, and considering that fruit size is small compared with the image size, each capture was split into 9 images of 548 x 373 px (Fig.2d).

Acknowledgments

This work was partly funded by the Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la Generalitat de Catalunya, the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (ERDF) under Grants 2017 SGR 646, AGL2013-48297-C2-2-R and MALEGRA, TEC2016-75976-R. The Spanish Ministry of Education is thanked for Mr. J. Gené's pre-doctoral fellowships (FPU15/03355). We would also like to thank Nufri and Vicens Maquinària Agrícola S.A. for their support during data acquisition.

References

[1] J. Gené-Mola, V. Vilaplana V, J.R. Rosell-Polo, J.R. Morros, J. Ruiz-Hidalgo, E. Gregorio, Multimodal Deep Learning for Fruit Detections Using RGB-D Cameras and their Radiometric Capabilites, Computers and Electronics in Agriculture (Submitted)

[2]Ren, S., He, K., Girshick, R., Sun, J., 2017. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149. doi:10.1109/TPAMI.2016.2577031

[3] Meier, U., 2001. Growth stages of mono- and dicotyledonous plants, BBCH Monograph. doi:10.5073/bbch0515

[4] Rosell-Polo, J.R., Cheein, F.A., Gregorio, E., Andújar, D., Puigdomènech, L., Masip, J., Escolà,
A., 2015. Advances in Structured Light Sensors Applications in Precision Agriculture and
Livestock Farming, in: Advances in Agronomy. doi:10.1016/bs.agron.2015.05.002