
 

 
* Corresponding author. 

E-mail address: jordi.genemola@udl.cat 

Simultaneous Fruit Detection and Size Estimation Using Multitask Deep 

Neural Networks 
Mar Ferrer-Ferrera, Javier Ruiz-Hidalgob, Eduard Gregorioa, Verónica Vilaplanab, Josep-Ramon 
Morrosb, Jordi Gené-Molaa,c,* 
aResearch Group in AgroICT& Precision Agriculture - GRAP, Department of Agricultural and Forest Engineering, Universitat de Lleida (UdL) – 
Agrotecnio-CERCA Center, Lleida, Catalonia, Spain 

bDepartment of Signal Theory and Communications, UniversitatPolitècnica de Catalunya, Barcelona, Catalonia, Spain.  

cEfficient Use of Water in Agriculture Program, Institute of AgriFood, Research and Technology (IRTA), Parc Científic i Tecnològic Agroalimentari de 
Gardeny (PCiTAL), Fruitcentre, 25003 Lleida, Catalonia, Spain. 

Abstract 

The measurement of fruit size is of great interest to estimate the yield and predict the harvest resources in advance. This 

work proposes a novel technique for in-field apple detection and measurement based on Deep Neural Networks. The proposed 

framework was trained with RGB-D data and consists of an end-to-end multitask Deep Neural Network architecture 

specifically designed to perform the following tasks: 1) detection and segmentation of each fruit from its surroundings; 2) 

estimation of the diameter of each detected fruit. The methodology was tested with a total of 15335 annotated apples at 

different growth stages, with diameters varying from 27 mm to 95 mm. Fruit detection results reported an F1-score for apple 

detection of 0.88 and a mean absolute error of diameter estimation of 5.64 mm. These are state-of-the-art results with the 

additional advantages of: a) using an end-to-end multitask trainable network; b) an efficient and fast inference speed; and c) 

being based on RGB-D data which can be acquired with affordable depth cameras. On the contrary, the main disadvantage 

is the need of annotating a large amount of data with fruit masks and diameter ground truth to train the model. Finally, a fruit 

visibility analysis showed an improvement in the prediction when limiting the measurement to apples above 65% of visibility 

(mean absolute error of 5.09 mm). This suggests that future works should develop a method for automatically identifying the 

most visible apples and discard the prediction of highly occluded fruits. 
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1. Introduction  

According to the Food and Agriculture Organization (FAO), by 2050 the agriculture industry will need to produce 70% 

more food while only being able to use 5% more land. Since most land suitable for farming is already in use, this production 

growth has to come from another source. The introduction of Precision Agriculture has enabled farmers to measure, map and 

manage crops at their different stages to increase production while optimising used resources and costs.  



 
 

Interest in vision techniques for Precision Agriculture has grown in recent years. Such techniques have contributed to 

triggering improvements in field conditions and have also helped farmers to better estimate their production through the use 

of fruit counting (Gené-Mola et al., 2020a) or fruit size estimation methods (Casagrande et al., 2021; Tsoulias et al., 2020), 

among others. This project focuses on the use of Deep Neural Networks (DNNs) for the detection of fruits on the tree and 

the estimation of their size. 

Fruit growing and production are of great importance worldwide and in-field fruit monitoring contributes to the 

optimisation of its management (Anderson et al., 2021). Some of the most interesting tasks for farmers in this regard are fruit 

detection since it is used for fruit counting, and fruit size estimation, which is an important fruit quality parameter. In-field 

fruit counting and sizing also serve to estimate yield load and plan for its future transport, determine whether an automated 

harvesting system can be supported, or assess the validity of different cultivation techniques (Longchamps et al., 2022). 

Traditionally, in the agriculture industry, yield prediction of orchards has been a challenging task since fruit measurement is 

usually done manually using a Vernier calliper. Therefore, only an approximation is obtained, since not all the fruits are 

measured due to the time-consuming nature of the task. Another challenge is the generalization capacity of the methodology 

so fruits can be measured at different growth stages (Neupane et al., 2023). 

Nowadays, most fruit detection works are based on Neural Networks, either using object detectors (Aguiar et al., 2021; 

Ghiani et al., 2021), semantic segmentation (Afonso et al., 2020; Peng et al., 2021) or instance segmentation (He et al., 2017; 

Liu et al., 2019). In contrast, most fruit size estimation methods are based on classical techniques such as geometrical (circle, 

ellipse, sphere…) fitting algorithms (Gene-Mola et al., 2023; Kurtser et al., 2020; Neupane et al., 2022) or segmenting the 

detected fruits and measuring the segmented area (Apolo-Apolo et al., 2020; Costa et al., 2021; Lu et al., 2022). These 

methods are highly affected by the quality of the fruit segmentation and the amount of fruit visibility (Wang et al., 2020), in 

addition, most of them are 3D-based, therefore are computationally expensive algorithms which limit real-time operation 

(Gené-Mola et al., 2021a). Methods based on 2D images require the usage of calibration targets that must be placed at the 

same distance to the cameras as the fruits, which adds complexity to the data acquisition process (Lu et al., 2022; Wang et 

al., 2018). 

Alternatively, in this work, we propose a novel Multitask Neural Network specifically designed for simultaneous fruit 

detection and sizing using RGB-D images captured in-field conditions and without the need of requiring calibration targets. 

To the best of the authors’ knowledge, this is the first end-to-end trainable Multitask DNN to detect and estimate the diameter 

of fruits by combining two architectures: one for detection and the other for diameter regression. 



 
 

The paper itself is divided into the following sections. First, Section 2 describes the proposed methodology, presenting 

the dataset and how to pre-process it. An explanation is then provided of how and why depth maps are used, and finally, the 

developed Neural Network architecture is presented in detail. Section 3 presents and analyses the most relevant validation 

and test results in terms of fruit detection and size estimation. In Section 4, we discuss the results, while the main conclusions 

and future research lines are discussed in Section 5. 

2. Materials and Methods 

2.1. Data and data pre-processing  

The data used in this project was generated by annotating some images from the PFuji-Size dataset (Gené-Mola et al., 

2021b). The original dataset includes: (1) raw images used to generate the 3D point clouds of apple trees using structure from 

motion (SfM) and multi-view stereo (MVS) techniques; (2) the resulting 3D point clouds of the Fuji apple trees; (3) 3D 

instance (fruit) segmentation annotations; (4) fruit size (diameter) annotations which were manually obtained by measuring 

the maximum horizontal diameter using a Vernier calliper; and (5) the apples centre position. In addition, the fruit diameter 

and centre position were used to obtain 3D spherical mask of each apple. Part of the data was captured in October 2018, when 

apples were at an advanced ripening stage (growth stage of BBCH85 in Meier (2001) scale)(Fig. 1a), while the rest of the 

data was acquired in July 2020, when the apples were at 70% of their final size (growth stage of BBCH77 in Meier (2001) 

scale) (Fig. 1b). Each apple was assigned a unique identifier, which helped to manage the data. 

  
(a) (b) 

Fig. 1. (a) Sample image from data acquired in October 2018, when apples were red and at an advanced ripening stage (BBCH85). (b) Sample image from 
data acquired in July 2020, when apples were green and at 70% of their final size (BBCH77). 

To adapt the original dataset to the needs of the present research, additional data curation was required to: (1) generate 

depth images; and (2) obtain 2D image annotations (apple masks and establish the correspondence between the mask and the 

ground truth diameter using the apple IDs). In order to generate depth images, SfM and MVS techniques were applied. To 



 
 

this end, the same Metashape project (Agisoft Professional Metashape software, v1.6.4, St. Petersburg, Russia) used by Gené-

Mola et al. (2021a) for 3D point cloud reconstruction was used to export the depth images registered with raw RGB images, 

obtaining the set of RGB-D images (Fig. 2). 

  
(a) (b) 

Fig. 2. RGB-D image from the 2020 set: (a) colour image; (b) depth image. The grey scale bar illustrates the depth values ranging from 1.8 m to 3.0 m. 

Then, RGB-D images were annotated with: (1) instance segmentation masks (Fig. 3b); (2) apple diameter ground truth 

(associated with each mask) (Fig. 3b); and (3) 2D projection of each 3D spherical mask (Fig. 3c). To this end a semi-automatic 

annotation procedure was carried out. The apple IDs and the spherical masks were in the 3D space, but since this project is 

image-based (therefore, 2D), some adjustments were made. First, a Mask R-CNN (He et al., 2017) network trained with the 

Fuji-SfM dataset (Gené-Mola et al., 2020b) was used to automatically segment apples from the dataset images. Then, the 3D 

information was projected onto the 2D images in order to obtain the apple ID and consequently, its diameter provided in the 

PFuji-Size dataset. Furthermore, the 2D projection of the spherical masks was also obtained (Fig. 3c). This projection was 

carried out following the pinhole camera model (Faugeras, 1993). This allowed us to estimate the percentage of visibility 𝑉 

of each annotated apple, which is defined as the ratio between the area (in pixels) of the instance segmentation mask 𝑆! (Fig. 

3b) and the area of the projected spherical mask 𝑆" (Fig. 3c). It can be translated to the following expression, which represents 

the visibility of an apple with a unique ID as the number of pixels of the instance mask (which represents the visible part of 

the apple) over the number of pixels in the projected spherical mask (which represents the whole area of the fruit): 

𝑉 =	
𝑆!
𝑆"
× 100	[%]	 (1) 

Finally, the result of this automatic annotation was manually corrected by using the VIA annotation software (Dutta and 

Zisserman, 2019). The manual correction consisted of: (1) deleting apple masks wrongly identified; (2) correcting the apple 

IDs and ground truth diameters wrongly matched; (3) labelling miss-annotated apples. The result of this annotation is shown 

in Fig. 3. 



 
 

   
(a) (b) (c) 

Fig. 3. Data annotation. (a) Sample image from data acquired in October 2018 (BBCH85). (b) Instance segmentation masks and apple diameter ground 
truth. (c) Projected spherical apple masks. 

The generated dataset was split into training, validation and test sets. Images acquired from the west side of the row of 

trees were used for training, while east-side images were used for validation and testing. Table 1 details the number of images 

and apple annotations from BBCH77 (green apples)and BBCH85 (ripe apples) data split into the training, validation and test 

sets. All the data generated and used for this project (RGB-D images and annotations) has been made publicly available at 

http://www.grap.udl.cat/en/publications/papple_rgb-d-size-dataset/. 

Table 1. Training, validation and test split: number of images and apple annotations from BBCH77 (green apples) and BBCH85 (ripe apples) data 
included in each split. 

 Num. of images Num. of apple annotations 
 BBCH77 BBCH85 BBCH77 BBCH85 
Training set 1036 1268 3819 4760 
Validation set 275 539 1161 2288 
Test set 249 558 857 2450 

2.2. Multitask deep neural network 

2.2.1. Instance segmentation branch 

Mask R-CNN (He et al., 2017) architecture was used as the baseline. It is a well-known two-stage network that detects 

objects in an image while also generating a segmentation mask for each detection. It is an extension of the Faster R-CNN 

(Ren et al., 2017) network and, in our case, we used the Detectron2 implementation (Wu et al., 2019) as the baseline. A 

representation of the Mask R-CNN architecture is shown in Fig. 4b (region coloured in orange). The main parts of this 

architecture are: 

● Backbone (ResNet and Feature Pyramid Network): the Mask R-CNN implemented in this work uses the 

standard ResNet (He et al., 2016) architecture for encoding the image, where, at every layer, feature map size is 

reduced by half and the number of feature maps is doubled. Using ResNet-50 architecture, we extracted features from 

four feature maps (𝑟𝑒𝑠1, 𝑟𝑒𝑠3, 𝑟𝑒𝑠4, 𝑟𝑒𝑠5). Next, to generate the final feature maps, the Feature Pyramid Network 

(FPN) was used. Identifying the same object at different scales is known to be a challenging task and sometimes the 



 
 

network is not able to generalise well in this regard. For this reason, FPNs are of great use in such situations, since 

they take the input features at different scales and transform them so that, at smaller scales, the network focuses on 

the larger objects, while, at bigger scales, the network can focus on extracting features for the smaller objects. The 

outputs of the backbone are the final feature maps 𝑓𝑝𝑛2, 𝑓𝑝𝑛3, 𝑓𝑝𝑛4 and	𝑓𝑝𝑛5, while the feature map 𝑓𝑝𝑛6 is 

generated from a max-pooling operation on	𝑓𝑝𝑛5. 

● A Region Proposal Network (RPN) is the core component of the R-CNN detector. The inputs are the feature 

maps coming from the FPN. Then, at every cell of the feature maps, it makes k predictions for k anchor boxes. It 

computes two things: 

o Regression to estimate the four coordinates of the proposed bounding boxes. 

o Binary classification: probability map of object existence in each cell. 

The k proposals are parameterised relatively to the k reference boxes (anchors) generated with cluster analysis over 

the training set. Mask R-CNN, as Faster R-CNN, uses three scales and three aspect ratios by default, yielding k = 9 

anchors at each cell. The output boxes of the RPN are called proposal boxes. 

● Box Head: The region of interest (RoI) Align process crops the rectangle regions of the feature maps that 

are specified by the proposal boxes. RoI Align is a more precise way to perform RoIPooling as it matches the feature 

map level that is most convenient for each bounding box. The result is fed to the Box Head, which has two fully-

connected layers and performs regression to obtain the final corners of each bounding box. L1-loss is used to calculate 

the error. 

● Mask Head: With the new bounding boxes estimated by the Box Head, RoI Align is again performed, and 

the output is the input for the Mask Head. This branch of the network is formed by three convolutional layers and a 

deconvolutional one. The loss used is the cross-entropy loss. 

Usually, the input of Mask R-CNN is a 3-channel colour image. However, this project considers the depth information to 

be relevant for fruit size estimation purposes, so the input ends up having four channels: RGB+D (Fig. 4a). In order to boost 

speed, the depth channel was added following an early-fusion strategy (Sa et al., 2016). Due to this additional channel, filters 

from the first convolutional layer increase in depth (from 3 to 4). This modification does not affect the detection accuracy, as 

stated in previous works (Gené-Mola et al., 2019) and it is a way of simulating a tri-dimensional space using bi-dimensional 

data, which will be very helpful for the fruit size estimation. 



 
 

 

Fig. 4. Scheme of the Multitask Neural Network developed for fruit detection and size estimation. a) The network input allows up to 4 channel input images 
(RGB-D images). b) Instance segmentation architecture based on Mask R-CNN. c) Diameter head to estimate the size of each detected fruit by combining 
previous feature maps and the depth image using a set of convolutions and regression layers.  

 



 
 

2.2.2. Diameter regression branch 

The Diameter Head is a regression branch added to the baseline (Mask R-CNN) that aims to estimate the maximum 

horizontal diameter of detected apples. Fig. 4c (region coloured in green) illustrates a conceptual representation of the 

architecture of this branch inspired by the Mask Head. Its main differences from the Mask Head are the addition of depth 

information as an input and a final linear layer to predict the diameter.  

The input of this Diameter Head comes from different parts of the network and has to be properly combined. The output 

from the FPN is fed into the sub-network. These four groups of feature maps (levels) have different sizes: 𝑓𝑝2(256	x	256), 

𝑓𝑝3	(128	x	128),𝑓𝑝4	(64	x	64) and 𝑓𝑝5	(32	x	32). In addition, to ensure the depth information influence plays a major role 

in the network’s final weights, the depth maps of the corresponding images in the batch are concatenated to the FPN feature 

maps by reshaping them four times to the four desired sizes. The feature maps together with the resized depth information 

are matched with the bounding boxes coming from the Box Head using RoI Align.  

The Diameter Head architecture (Fig. 4c) is formed by three 2D convolutions with a kernel of size 3	x	3, a stride of 1	x	1 

and padding of 1	x	1. Each of the three convolution layers has a ReLU activation. Then, there is a deconvolution layer with 

a kernel of size 2	x	2 and a stride of 2	x	2 and a ReLU activation. This deconvolution, up-samples the image, which goes 

from 14	x	14 (default pooling resolution) to 28	x	28. After the deconvolution, the data is flattened and fed to a linear layer 

that predicts the diameter for that mask. 

The developed network was implemented in the Pytorch framework and the code has been made publicly available jointly 

with the presented dataset at http://www.grap.udl.cat/en/publications/papple_rgb-d-size-dataset/. 

2.2.3. Network training and inference details 

a) Weight initialisation: Mask R-CNN has a set of weight initialisations pre-trained with different backbones on 

ImageNet(Deng et al., 2009). In our case, the used weights were pre-trained with a ResNet50 backbone. However, 

during the course of this project, we have carried out several additions to the baseline, and the new Diameter Head 

needs its set of pre-trained weights. We tried both a standard MSRA (He et al., 2015)initialization and re-using the 

Mask Head weights. Our experiments showed better results in re-using weights. 

b) Data augmentation: One of the most popular techniques to increase the accuracy of the model is performing data 

augmentation. Creating “new” data from the existing images allows the models to generalise better and helps avoid 

overfitting. However, the scenario we are observing is quite monotonous, at least in the short term (and at certain 

hours of the day), so many augmentations such as 2D rotations might not be of great use. After some trial and error 

processes, we concluded that the best data augmentation technique was simply to apply a horizontal flip of the image.  



 
 

c) Evaluation metrics: To evaluate the fruit detection results, we used precision (P), recall (R), F1-score, and average 

precision (AP) metrics. Diameter estimation was evaluated in terms of the mean absolute error (MAE), the mean bias 

error (MBE), the mean absolute percentage error (MAPE), the root mean square error (RMSE) and the coefficient of 

determination (𝑅#):  
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where 𝑚 is the number of observations, 𝐷$ is the diameter estimation, 𝐷%& is the diameter ground truth, 𝐷$DDD is the 

mean of estimated diameters and 𝑓 is the linear regression model that relates 𝐷$ and 𝐷%&. 

d) Training hyperparameter optimisation: The Stochastic Gradient Descent (SGD) optimiser was used, and the optimal 

hyperparameters were found by means of a grid search. We considered a parameter to be optimal if the model yielded 

the smallest diameter error in the inference process. A grid search was performed over the following hyperparameters: 

I. Learning rate: In this work, we performed a grid search over the following values: 𝑙𝑟 =

	[2 · 10'(, 2 · 10'), 2 · 10'*]. The optimal 𝑙𝑟 was found to be	2 · 10'). 

II. Batch size: In this work, we performed a grid search over the following values: 𝑏𝑠 = 	 [2, 4, 8]. The optimal 

𝑏𝑠 was 2. 

III. RoIs per batch: This value represents the number of RoIs per training mini-batch. In this work, we performed 

a grid search over the following values: 𝑟𝑜𝑖𝐵𝑎𝑡𝑐ℎ = 	 [128, 512]. The optimal 𝑟𝑜𝑖𝐵𝑎𝑡𝑐ℎ was 128. 

e) Inference parameters: The intersection over union (IoU) threshold used to determine if one detection is a true positive 

(TP) or false positive (FP) was set to𝐼𝑜𝑈 = 	0.5, since it is the standard in the state-of-the-art. The other inference 

parameters were selected based on the validation set results. These parameters include:  

I. Non-maximum suppression (NMS) threshold: NMS is used by the model to determine the number of 

accepted bounding box predictions since it will suppress boxes with an IoU bigger than the specified 



 
 

threshold. We selected the optimum NMS threshold by finding the one that maximized the average precision 

(AP) in the validation set (Section 3.1). This analysis was carried out using the AP, as this metric is not 

affected by the selected confidence score. 

II. Confidence score threshold: The minimum confidence score to consider a detection as positive was selected 

by analysing the P,R andF1-score curves for confidence values ranging from 0 to 1 (Section 3.1).  

3. Results 

3.1. Experiments on the validation set 

The presented model was trained using the parameters detailed in the section above. Fig. 5a represents the loss curves for 

training and validation. The training was stopped when the model's generalisation capacity reached its limit, and the validation 

curve started getting flatter. The presented model does not show signs of overfitting as it can be observed in more detail in 

Fig. 5b and Fig. 5c, where both curves, for fruit detection and diameter estimation tasks, descend. 

 
(a) 

  
(b) (c) 

Fig. 5. From left to right and top to bottom: (a) Training and validation loss curves using the optimal parameters. (b) Validation loss curve for the fruit 
detection part of the network. (c) Loss curve for the diameter estimation task. 



 
 

3.1.1. Fruit detection 

To find the optimal NMS threshold, the AP metric was used to analyse the effect of applying different levels of NMS in 

the validation set. Fig. 6a represents the evolution of the AP curve regarding the NMS threshold. The highest values of AP 

correspond to the more restrictive NMS threshold (𝑁𝑀𝑆+,-$", = 0.1), which means that the bounding boxes that have more 

than 10% of overlap are eliminated. Based on these results, an NMS threshold of 0.1 was subsequently used to assess the 

fruit detection performance in the test set (Section 3.2).  

The P, R and F1-score curves obtained in the validation set were analysed to choose the best confidence score value. Fig. 

6b shows the behaviour of these parameters with respect to confidence. Note that the F1-score curve remains almost constant, 

although it slightly decreases with the confidence score. This might be due to the fact that the NMS threshold was already 

optimised, and so some possible outliers were already filtered. Furthermore, the P curve is an increasing function since the 

higher the confidence in the prediction, the less likely it is to encounter an FP. In contrast, the R curve tends to decrease, 

which is due to the fact that a more restrictive confidence threshold results in fewer predictions being accepted, and therefore, 

fewer TPs. Since the F1-score metric is maximised for a confidence value of 0.7, such confidence value was used to assess 

the fruit detection performance in the test set (Section 3.2).  

  
(a) (b) 

Fig. 6. Fruit detection results on the validation set. (a) average precision depending on the NMS threshold. (b) P, R and F1-score curves depending on the 
confidence score.  

3.1.2. Fruit size estimation 

The diameter estimation error is also affected by the degree of confidence in the prediction. The curve shown in Fig. 7a 

shows the evolution of the MAE of the estimated diameter with respect to the confidence threshold. The MAE decreases with 

higher confidence values, which means that diameter estimation improves when measuring fruits detected with higher 

confidence. This improvement is also observed with the increase of the coefficient of determination (𝑅#) between predicted 

and actual fruit sizes (Fig. 7b). Since the confidence value that minimizes the MAE is 0.99, the results presented in Section 



 
 

3.2.2 were obtained using it as a threshold. Although 0.99 is restrictive, the number of fruits detected using it (about 2300 

apples) is a representative sample of all detections (about	3150	apples). 

  
(a) (b) 

Fig. 7. Diameter estimation results on the validation set. (a) evolution of the MAE of diameter estimation and the number of considered apples at different 
confidence thresholds. (b) evolution of the coefficient of determination and the number of apples, also depending on the confidence threshold. 

3.2. Test results 

3.2.1. Fruit detection 

The model was evaluated using the test set. Table 2 shows the detection results using the optimal parameters 

(𝑁𝑀𝑆+,-$", = 0.1, Confidence > 0.7). Similar F1-score results were obtained at different growth stages (𝐹1 = 0.88). In terms 

of AP, the neural network presented a better performance detecting ripe apples (𝐴𝑃../01( = 0.75) than detecting green apples 

(𝐴𝑃../022 = 0.69). We attribute this difference to two main reasons: (1) the green colour of apples from the BBCH77 set 

makes the task more challenging due to the similarity of apple and leaf colour; and (2) the number of training samples in the 

BBCH85 set is larger than in the BBCH77 set.  

Table 2. Fruit detection results in terms of Precision, Recall, F1-score and Average Precision (AP) depending on the growth stage where the images were 
taken and when evaluating the dataset. 

 BBCH77 BBCH85 BBCH77+BBCH85 
Precision 0.88 0.90 0.89 
Recall 0.87 0.87 0.87 
F1-score 0.88 0.88 0.88 
AP 0.69 0.75 0.73 

Fig. 8 shows the input image and the comparison between the actual ground truth and the model’s prediction regarding 

both detection and diameter estimation. In terms of detection, the model performed as expected and the majority of fruits 

were detected. The critical cases were whenever there were high occlusions or the apples were in the margins of the image. 

In terms of computational speed, the average processing time per image was 0.1439 s/img, which corresponds to a throughput 

of 6.95 img/s. This processing times were obtained using an NVIDIA GeForce GTX 1080 Ti GPU. 



 
 

 

 

Fig. 8. Fruit detection and size estimation results in four randomly selected images. The top two rows show results on two images from the BBCH85 set 
(ripe apples), while the bottom two rows show results on images from the BBCH77 set (green unripe apples). The first column corresponds to the original 
images. The second column illustrates the instance segmentation masks and apple diameter ground truth. The third column illustrates the fruit detections 
(instance segmentation masks) and the estimated diameters. 



 
 

3.2.2. Fruit size estimation 

A detailed comparison of the performance of the model at different apple maturity stages can be found in Table 3. Results 

showed MAE between 4.16	mm and 6.22	mm, obtaining higher errors for ripe apples (with bigger sizes). The absolute error 

presented a standard deviation (𝜎) between 3.88 mm and 5.73 mm. This is considered a high standard deviation compared to 

the reported MAE. Authors attribute this high dispersion of the error to the higher errors obtained when measuring highly 

occluded apples. The percentage error was found to be similar at different growth stages (about 8%), concluding that the 

mean error is proportional to the size of the measured apples. 

Table 3. MAE, 𝜎, MBE, MAPE and RMSE of fruit diameter estimation according to the year the images were taken and when considering the whole 
dataset. 

 BBCH77 BBCH85 BBCH77+BBCH85 
MAE (mm) 4.16 mm 6.22 mm 5.64 mm 
𝝈 (mm) 3.88 mm 5.73 mm 5.35 mm 
MBE (mm) 0.93 mm -1.74 mm 0.98 mm 
MAPE (%) 7.72 % 8.06 % 7.96 % 
RMSE (mm) 5.69 mm 8.46 mm 7.77 mm 

 

Fig. 9 compares the fruit size distribution obtained by measuring the fruits with the presented neural network with respect 

to the ground truth. The predicted distribution for both datasets is quite fitted to the actual ground truth. One thing to note is 

that, for the smaller apples, the tendency is to slightly overestimate their size (MBE	 = 	0.93	mm). The opposite also happens 

with bigger apples (MBE	 = 	−1.74	mm). This effect is caused by the fact that the model was not trained for a specific apple 

size, so it tends to look for the middle ground.  

 

Fig. 9. Distribution of predicted and actual diameters in BBCH85(reddish ripe apples) and in BBCH77 (green unripe apples) sets. 

Fig. 10 presents the effect of apple visibility on diameter estimation. As can be seen, the model behaves as expected, since 

the MAE gradually lowers when the visibility of the fruits increases. Optimal results were obtained when limiting the 



 
 

measurement to apples with visibility greater than 65%. The linear correlation was also sensitive to occlusions, showing an 

increase in the coefficient of determination (𝑅#) when measuring highly visible apples. These results confirm that occlusion 

plays a significant role in the determination of the diameter distribution.  

  
(a) (b) 

Fig. 10. Number of apples, MAE (left plot) and R² (right plot) depending on the level of visibility of the fruit. 

4. Discussion 

The presented model was robust enough to detect a significant number of apples at different growth stages and degrees of 

visibility, reporting an F1-score of 0.88 on the task. These results are comparable with other state-of-the-art works based on 

neural networks, which have reported F1-score values between 0.73 and 0.97 (Chu et al., 2021; Koirala et al., 2019; Wang 

and He, 2022). The apples that were not detected were highly occluded by other structural elements (leaves, trunks, other 

apples, …) or placed in the margins of the images with a small amount of the apple surface visible in the field of view of the 

camera. These fruit detection issues were also observed in previous works (Gené-Mola et al., 2019). 

Having a robust fruit detector is of extreme importance for fruit counting but also for fruit sizing purposes, since it ensures 

that the size measures will be representative of the crop. The proposed methodology was able to predict the diameter of apples 

at different ripening stages, reporting a MAE of 5.64	mm. As presented in the previous section, it tends to overestimate the 

size of the smaller apples, and underestimate the size of the bigger ones, however, we argue that this bias is negligible since 

in Fig. 9 we showed that the diameter prediction distribution is adapting properly to the ground truth diameter distribution. 

The results we show might differ if images with very different lighting conditions or different tree-camera distances are used. 

Nevertheless, the data-gathering settings are easy to reproduce and are public alongside the whole dataset (Gené-Mola et al. 

(2021b)). Although it is difficult to compare methodologies tested with different datasets, we can state that, in terms of mean 



 
 

diameter errors, our method performed similarly to other state-of-the-art methods, which reported MAE results between 

3.5	mm and 12.4	mm, as we can see in Table 4. 

Table 4.. Comparison of the proposed system with other state-of-the-art methods. Results are reported in terms of MAE and RMSE. 

Authors Methodology MAE RMSE 

(Tsoulias et al., 2020) LiDAR + max. distance 3.5 – 12.4 mm N.A. 

(Gené-Mola et al., 2021ª) SfM + MVS + shape fitting 3.7 – 7.7 mm 5.1 – 12.5 mm 

(Mengoli et al., 2022) RGB+D + shape fitting N.A. 7.9 – 8.6 mm 

Proposed method RGB+D + multitask DNN 4.16 – 5.64 mm 5.69 – 7.77 mm 

N/A = not available. 

The main contribution of this work is that, for the first time, an end-to-end deep learning architecture has been designed 

and tested for the simultaneous detection and measurement of fruits. Besides its performance in terms of detection and sizing, 

the method presents other significant advantages: it overcomes the limitations of traditional sizing methodologies where 

calibration targets are required and must be placed at the same distances from the fruits to be measured (Lu et al., 2022; Wang 

et al., 2018). With these techniques, only the fruits around the calibration targets can be measured, while our proposed 

methodology could measure larger areas efficiently. In addition, previous fruit sizing works required the identification of 

feature points on the apple images to subsequently perform a geometrical measurement (Wang et al., 2020). Alternatively, 

the presented method directly estimates the diameter of the apples without the need to identify specific key points to measure, 

which results in a more efficient method. Furthermore, since it is based on a CNN that can be processed with graphic 

processing units (GPUs) and parallel computing, our method will permit its use for real-time and edge-computing applications 

(Mazzia et al., 2020). We obtained a competitive throughput of 6.95	img/s thanks to using an early-fusion network 

architecture. This is considered a high inference speed for simultaneous fruit detection and sizing compared with other state-

of-the-art methods. For instance, Luo et al. (2021) required 17.88s for Red grape detection. Rojas-Cid et al. (2019) designed 

a system able to measure 16 mangoes per minute, while Tsoulias et al. (2020) developed an apple detection and sizing method 

based on LiDAR that required a processing time of 13s per tree. Another advantage of our method is that it is based on the 

use of RGB-D images, which allows us to include the 3D information without the computational complexity of adding 

another dimension. In this paper, we used highly precise depth maps that were created using SfM which requires a great 

number of images of the studied area. We propose to study the different effects that the depth maps obtained using commercial 

sensors have on the presented framework in future work.  

Some fruit sizing works from the literature limit the evaluation of their methods on fully visible fruits (Gongal et al., 2018; 

Herrero-Huerta et al., 2015; Wang et al., 2020, 2017). However, the present work presents an analysis of results at different 

fruit visibility percentages. Results showed that the more visible an apple is, the better its diameter will be predicted. The 



 
 

MAE improved from 5.64	mm	to 5.09	mm	when limiting the measurement to fruits with visibility percentages higher than 

65%. This suggests that future works should explore the development of a method for automatically identifying the most 

visible apples and not consider the prediction of low visibility scores.  

5. Conclusions 

This project proposes a deep learning approach for simultaneous fruit detection and size estimation. The method presented 

can be used to measure fruits at different growth stages and, as stated in the introduction, such insights can provide farmers 

with much-needed data to manage their crops more efficiently. The baseline for this work was the Mask R-CNN instance 

segmentation network, which was extended with a regression branch in order to compute the diameter of the detected apples, 

yielding successful results both in terms of fruit detection and fruit size estimation.  

Regarding apple detection, our method achieves state-of-the art performance, with an F1-score of 0.88. Furthermore, the 

presented architecture was able to estimate fruit size with a MAE of 5.64	mm. Results were robust at different degrees of 

visibility but, when discarding the measured highly occluded apples, the correlation between actual and estimated diameter 

slightly improved (from 𝑅	# = 0.66 to 𝑅	# = 0.77). These results are similar to other state-of-the-art methodologies, but our 

proposed method has the following advantages: a) it simultaneously detects and estimates the size with a single end-to-end 

trainable network; b) it is efficient and fast so it can be used for real-time applications, and c) it uses RGB-D data which can 

be acquired with affordable depth cameras. 

The method presented successful results, demonstrating the promising future of deep learning approaches in the field of 

fruit sizing. However, there is still room for improvement. A combination of the proposed method with automatic estimation 

of fruit visibility would help to select the best candidate apples to be measured. In addition, an unexplored and promising 

path for fruit size computation would be to use Graph Neural Networks, which use 3D data. Finally, although this work deals 

with apples, it could be extended to other fruit varieties. 
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