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We propose a distance-based method to relate two data sets. We define and study
some measures of multivariate association based on distances between observations.
The proposed approach can be used to deal with general data sets (e.g., observations
on continuous, categorical or mixed variables). An application, using Hellinger
distance, provides the relationships between two regions of hyperspectral images.

Keywords Binary partition tree; Canonical correlations; Hellinger distance;
Metric multidimensional scaling; Wilks lambda.

Mathematics Subject Classification Primary 62H20; Secondary 62H35.

1. Introduction

Several coefficients have been proposed to measure the relationships between two
data sets taken on the same individuals. The data sets are often represented
by two sets of variables, which in practice can be identified with the columns
of two quantitative data matrices X, Y, with the same number of rows. Then
some measures of multivariate association, as extensions of Pearson correlation
coefficient, can be used. Most measures are based on canonical correlations, as the
first canonical correlation, first proposed by Hotelling (1936), or the average of
the squared canonical correlations. This class of symmetric measures has important
applications. Ecology is an example where environmental data is related to species
abundance. In genetics, the relationship between environmental variables and
genetic frequencies plays an important role. In biometry, the user is interested in
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Distance-Based Multivariate Association 2343

relating some physical characteristics of individuals to the same characteristics in
their offspring. In psychology, it is important to relate physical characteristics to
mental tests. There are examples dealing with classic types of multivariate data in
Manly (1986), Rao (1952), and Rencher (1995); see Cramer and Nicewander (1979)
for a complete repertoire of multivariate measures of association.

Nowadays, the sources of data are much more complex. In genomics we have
many base pairs, microarrays, etc., and we may seek relationships between genotype
and phenotypes of interest. Often in medical studies the variables are of mixed type
(continuous, categorical, nominal), and cannot be treated as quantitative variables.
In image processing, multivariate images are captured by hyperspectral remote
sensors, containing, for each position, the solar radiation reflected by a material at
different wavelengths. Then, in order to partition a multivariate image in similar
regions, we should relate these regions by using an association measure.

Dealing with quantitative variables and using conventional coefficients may
not be appropriate in these frameworks, because we can have more variables
than observations, or the quantification may be artificial. The information can
alternatively be given by a similarity or dissimilarity matrix. From this matrix and
via Metric Multidimensional Scaling (MMDS), we can obtain principal coordinates
providing two matrices X, Y, and next apply the proposed association measures.
This distance-based approach, originated in Cuadras (1989) and Cuadras and
Arenas (1990), has been used as a tool in prediction and multivariate analysis; see
Amat et al. (1998), Bartkowiak and Jakimiec (1994), Boj et al. (2007), and Esteve
et al. (2009). The procedure proposed here extends McArdle and Anderson (2001),
Wessel and Schork (2006), and Zapala and Schork (2006), to relate a quantitative
variable to some mixed variables by using distance-based regression.

In this article, we propose several ways of constructing association measures,
based on appropriate statistical models. These results reduce to the measures
proposed in Cramer and Nicewander (1979) when the distance is Euclidean.

2. A Motivating Application

In image processing, by varying the wavelength, any material reflects and absorbs
the solar radiation differently. This radiance (number of photons) is registered
by hyperspectral sensors, which collect multivariate discrete images in a series of
contiguous wavelength bands, providing the spectral curves, which can distinguish
between materials. In order to partition a multivariate image in regions belonging
to different materials, we need to compare these regions objectively, by first
transforming them into frequency data matrices and then converting into matrices
with probability distributions in the rows.

Figure 1 shows an example of such interpretation. Figure 1(a) shows a
hyperspectral region formed by three spectral curves belonging to the same material.
Figure 1(b) shows how to describe (for one specific wavelength �i) a region by means
of a probability distribution f�i . Then, by varying the wavelength, the hyperspectral
region is described by a set of probability distributions according to the observed
radiance values of this region.

The study of hyperspectral image as a set of regions has been addressed by
the so-called Binary Partition Tree (BPT) image representation; see Salembier and
Garrido (2000). BPT is a set of regions structured in a hierarchical tree, as shown
in Fig. 2. In this example, it is quite apparent how each BPT node corresponds to a
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2344 Cuadras et al.

Figure 1. (a) Three spectral curves describing a region. For each value of the wavelength
(horizontal axis) there are three radiance values (vertical axis). (b) Instead of taking only the
mean, we consider the statistical distribution of these three values. (color figure available online.)

region of the image at a given level. BPT is constructed by merging the most similar
adjacent regions in an iterative process. For instance, in the first iteration, R3 and R4

are merged together to form a parent node R6. In order to construct the BPT, it is
necessary to use a similarity measure to compare the adjacent regions. This measure
has to deal with the type of data shown in Fig. 1.

As an illustration, a real data example is presented in Table 1. This (partial) data
matrix contains, for each spectrum, the number of photons or radiances observed
at a given wavelength �i. The simplest solution to describe the spectra is to take
the mean values in the columns of Table 1, i.e., to consider the spectra mean of
the region. Instead, we consider all possible radiance values, therefore this table

Figure 2. Example of Binary Partition Tree. Four pairs of regions forming an image are
merged by following an iterative algorithm to construct the tree representation. In each step,
the similarity is measured by comparing several probability distributions.
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Distance-Based Multivariate Association 2345

Table 1
Radiance values (number of photons) registered for four wavelengths (WL) and six

spectral curves (top). Grouped distribution of the radiance values for each
wavelength (bottom)

Spectral values

S1 S2 S3 S4 S5 S6 · · ·
WL �1 634 979 851 991 823 843 · · ·

�2 861 1055 1061 1035 835 874 · · ·
�3 1104 1030 1173 1101 1073 1103 · · ·
�4 1100 1110 1193 1098 1257 1237 · · ·
���

���
���

���
���

���
���

� � �

Radiance values (class intervals)

601–700 701–800 801–900 901–1000 1001–1100 · · ·
WL �1 0.125 0 0.375 0.250 0 · · ·

�2 0 0 0.375 0 0.375 · · ·
�3 0 0 0 0 0.375 · · ·
�4 0 0 0 0 0.250 · · ·
���

���
���

���
���

���
� � �

is converted into a probability data matrix, with rows containing the empirical
distribution of the radiances for each �i.

Our aim is to compare two probability data matrices, obtained from two
hyperspectral regions, as initial step to perform the algorithm to get the BPT.
Of course, this high level but invisible image (in contrast with a visible ordinary
image) must be studied by using mathematical and computational techniques.

3. MMDS and the Angle Between Subspaces

Let � be a finite set with n objects or individuals. Let �ij = �ji ≥ �ii = 0 a distance or
dissimilarity function between pairs of individuals in �. This gives an n× n distance
matrix �x = ��ij�. We suppose that this distance matrix is Euclidean, i.e., there exists
a configuration x1� � � � � xn ∈ Rp, with coordinates xi = �xi1� � � � � xip�

′, i = 1� � � � � n,
such that �2ij = �xi − xj�

′�xi − xj�. Thus, the coordinates of � constitute an n× p
matrix X = �xij� such that the distance between two rows i and j equals the original
distance �ij .

If In is the identity matrix and 1n is the column vector of ones, metric
multidimensional scaling (MMDS) is a well-known way of obtaining X from �x.
First, we find the n× n matrices A = − 1

2�x ∗ �x and Gx = HcAHc, where �x ∗ �x =
��2ij� and Hc = In − �1/n�1n1

′
n is the centering matrix. Next we compute the spectral

decomposition Gx = U	2
xU

′, which provides the matrix of coordinates X = U	x.
Notice that �x is a Euclidean distance matrix iff Gx is positive semi-definite matrix.

Assuming the eigenvalues in 	2
x arranged in descending order, matrices X and

U contain the principal and standard coordinates, respectively, of the n individuals
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2346 Cuadras et al.

with respect to distance �. The aim of MMDS is to represent the n individuals in
reduced dimension (usually 2), by taking the first principal coordinates. However
our interest here is to relate these coordinates to a second data set.

For a second data set consisting of observations on the same n individuals,
we may consider another distance matrix �y and find Gy = V	2

yV
′ by using the

same procedure. If the eigenvalues in 	2
y are also arranged in descending order, the

principal coordinates are Y = V	y� With these coordinates, the relationship between
both data sets reduces to the relationship between the centered matrices X�n× p�
and Y�n× q�.

In Cuadras (2008) the following multivariate association measure between X
and Y is proposed:


�X�Y� = √
det�U′VV′U� = √

det�V′UU′V��

which satisfies 0 ≤ 
�X�Y� = 
�Y�X� ≤ 1, and reduces to the multiple correlation
coefficient when Y is univariate �q = 1�. Since U′V is a Gram matrix, 
 can be
interpreted as the cosine of the angle between two subspaces expanded by U and V;
see Jiang (1996).

4. Measures Based on Multivariate Regression

If we consider the columns of X and Y, as predictor and response variables,
respectively, a standard way to relate them is by multivariate linear regression

Y = XB+��

where B is a p× q matrix of parameters and � is a n× q matrix of errors. The
least-squares estimator of B is B̂ = �X′X�−1X′Y and the prediction matrix is Ŷ =
XB̂ = HtY where Ht = X�X′X�−1X′ is the hat matrix.

4.1. F test

Clearly, there is no relationship if B = 0. Assuming X�Y centered, an appropriate
statistic for testing this null hypothesis is based on

F∗ = tr�Y′HtHtY�/tr�Y
′�I −Ht�Y
�

Suppose that X�Y have been obtained by MMDS from two distance matrices.
Then X = U	x and Ht = UU′. As Ht = H2

t we have tr�Y′HtY� = tr�HtYY
′Ht� =

tr�HtGyHt�, and similarly tr��Y′�I −Ht�Y
 = tr��I −Ht�Gy�I −Ht�
. Therefore, the
ratio F∗ can be formulated in terms of distances:

F∗ =
tr�HtGyHt�

tr��I −Ht�Gy�I −Ht�


= tr�G−
x GxGyG

−
x Gx�

tr��I −G−
x Gx�Gy�I −G−

x Gx�

�

where G−
x = U	−2

x U′ is a g-inverse of Gx, i.e., GxG
−
x Gx = Gx.
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Distance-Based Multivariate Association 2347

By taking F = F∗ × �n− p− 1�/�p+ 1� we can invoke the F test when q = 1
and the only column of Y comes from a normal population. The F test is still
justified when the rows of Y are multinormal with covariance matrix � = �2I. For
general data, testing B = 0 can be performed by a permutation test.

To perform this test, we keep Y fixed, then find the n! permutations of the rows
of X and obtain the permutation distribution of F∗. There will be evidence against
B = 0 if the observed F∗ is in the extreme tail. If n is large, we may choose at random
(with repetition) a subset of n! permutations; for an example with mixed data; see
Cuadras (2011).

Tests based on F∗ when only Y comes from a distance, have been used by
McArdle and Anderson (2001) in relating ecological data, and Wessel and Schork
(2006) in large-scale multilocus association studies. Here this test has been adapted
to two distance matrices. However, this F approach has three drawbacks. First,
it depends on Gy = V	2

yV
′, i.e., on the diagonal matrix 	2

y, whose entries are
proportional to the variances of the columns of Y. Second, if F∗ is significant, we
accept dependence but we do not know the degree of association between both data
sets. Finally, F∗ is non symmetric in X and Y.

4.2. Wilks’ Measure of Association

There are alternative criteria for testing B = 0 in the multivariate linear regression
model Y = XB+�, which provide symmetric measures of multivariate association.

Let E = Y′Y − Ŷ′Ŷ and H = Ŷ′Ŷ the “error matrix” and the “hypothesis
matrix,” respectively, with Y = V	y and Ŷ = HtY = UU′V	y. We then have
E = 	y�I − V′UU′V�	y and E+H = Y′Y = 	yV

′V	y = 	2
y.

Likelihood ratio criterion or Wilk’s lambda is well known in multivariate
analysis; see Mardia et al. (1979). Wilk’s lambda is

W = det�E�/ det�E+H�

= det�I − V′UU′V��

W does not depend on 	y.
The canonical correlations ri between X and Y satisfy the eigenequation

Y′X�X′X�−1X′Yvi = r2i Y
′Yvi

i.e.,

Hvi = r2i �E+H�vi�

where vi is the corresponding eigenvector. This implies Evi = �1− r2i ��E+H�vi.
Therefore, W can be expressed in terms of canonical correlations

W =
s∏

i=1

�1− r2i ��

where s = min�p� q�. Hence,

AW = 1−W = 1−
s∏

i=1

�1− r2i � (1)
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2348 Cuadras et al.

is an association measure which is 0 if X�Y are independent, and 1 if X�Y are
linearly dependent. As AW can be very close to 1 for large data sets, it is necessary
to choose in advance the number of principal coordinates p and q, which determine
the number s of canonical correlations. A proposal is presented in Sec. 6.

4.3. More Association Measures

For testing B = 0, we may also employ other criteria, which also provide measures
of association. For example, if Hvi = �iEvi gives the eigenvalues of E−1H, and
�1 = max�v′Hv/v′Ev�, then Roy R, Lawley-Hotelling U and Pillai’s criterion V are
given by

R = �1/�1+ �1��

U = tr�E−1H
 =
p∑

i=1

�i�

V = tr��E+H�−1H
 =
p∑

i=1

�i/�1+ �i��

If ri� i = 1� � � � � s, are the canonical correlations, then �i = r2i /�1− r2i � and
the three criteria provide measures of multivariate association, AR = r21 , ALH =
�U/s�/�1+ U/s� and AP = V/s, also based on canonical correlations; see Table 2.
For the derivation and sampling distribution of R, U , V and W under
multinormality, see Anderson (2003).

We can obtain other measures based on generalized multiple correlation
det�SyxS

−1
xx Sxy�/ det�Syy�, the vectorial correlation tr�SxySyx�/

√
tr�S2

xx�tr(S2
yy�, see

Escoufier (1973), Rencher (1995), and the Procrustes statistic

P2 = 1− �tr�X′YY′X�1/2
2/�tr�X′X�tr�Y′Y�
�

see Cox and Cox (2001). The distance-based version of these coefficients are

AHC =
s∏

i=1

r2i � AP =
( s∑

i=1

r2i

)/
s and APR =

( s∑
i=1

ri

)2/
s2�

respectively.
Cramer andNicewander (1979) gave geometrical arguments in terms of lengths of

vectors and volumes of parallelotopes, to propose the measures ACN1 = A
1/s
HC , ACN2 =

1−W 1/s. They also proposed the average AP = �
∑s

i=1 r
2
i �/s, which also arises from

Pillai’s criterion. However, in general, coefficients ACN1, ACN2 and AP do not increase
with the dimensionality s, the number of canonical correlations considered.

These measures are described and justified in Cuadras (2011). Table 2 reports
all measures in terms of the association matrix A = V′UU′V, as well as Ac = I − A.
Thus W = det�Ac� and AP = tr�A�/s.

Note that we are interested in relating two data sets rather than testing
statistical hypotheses, but the above tests help us build association measures.
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Distance-Based Multivariate Association 2349

Table 2
Eight symmetric measures of multivariate association between

two data sets based on distances

Measure of
association

Expression in terms of
A = V′UU′V, Ac = I − A

Expression in terms of canonical
correlations and �i = r2i /�1− r2i �

AR First eigenvalue of A r21

AHC det�A�
∏s

i=1 r
2
i

AW 1− det�Ac� 1−∏s
i=1�1− r2i �

ALH �tr�A−1
c A�/s
/�1+ tr�A−1

c A�/s
 �
∑s

i=1 �i�/s

1+�
∑s

i=1 �i�/s

AP tr�A�/s (
∑s

i=1 r
2
i �/s

APR �tr�A1/2�
2/s2 �
∑s

i=1 ri�
2/s2

ACN1 �det�A�
1/s �
∏s

i=1 r
2
i �

1/s

ACN2 1− �det�Ac�

1/s 1− �

∏s
i=1�1− r2i �


1/s

5. Choosing the Association Measure

It is worth noting that all association measures in Table 2 reduce to the squared
multiple correlation coefficient when Y is univariate. In general, these measures are
different. Since we have seven measures, a criterion to choose one is necessary.

As it is proved in Cramer and Nicewander (1979) and Cuadras (2011), the above
measures of association can be ordered as follows:

AHC ≤ r2s ≤ ACN1 ≤ APR ≤ AP ≤ ACN2 ≤ ALH ≤ AR ≤ AW�

where AR = r21 and r2s are the largest and smallest squared canonical correlations.
Because of this order relationship, in practice AHC can be quite small and AW almost
one.

We choose AW because it is the largest coefficient, it depends on the s canonical
correlations and it does not take small values if s is high, a property which does not
hold for other coefficients. Thus, AW works well with hyperspectral data in order to
compare hyperspectral regions.

6. How Many Dimensions?

Choosing the number of (principal) dimensions is an important aspect in most
techniques of multivariate analysis. Often the maximum dimension is limited by
the number of variables p. However, when we work with distances, this maximum
dimension can be larger, even can reach n− 1. In MMDS the number of dimensions
considered in graphical representation, based on the percentage of variability
accounted for by the first dimensions. This quality measure can be generalized; see
Graffelman (2001). We propose a criterion, which extends a sequence defined in
Cuadras et al. (1996).
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2350 Cuadras et al.

First we fix two maximum dimensions K�L suggested by the data, see below.
Let ui� i = 1� � � � � K, vj� j = 1� � � � � L, be the first K�L columns of U and V,
respectively. We define the sequence

ckl =
1′k�	

2
x�U

′V ∗U′V�	2
y
1l

1′K�	2
x�U′V ∗U′V�	2

y
1L
=

∑k
i=1

∑l
j=1 �

2
ix�u

′
ivj�

2�2jy∑K
i=1

∑L
j=1 �

2
ix�u

′
ivj�2�

2
jy

� k� l = 1� � � � � K� L� (2)

where 1k = �1� �k� � �� 1� 0� �n−k� � � � 0�′ and �2ix, �
2
jy are the eigenvalues (also called inertias)

of Gx = U	2
xU

′, Gy = V	2
yV

′, respectively. These eigenvalues are proportional to
the variances of the corresponding principal axes. Here, ∗ denotes element wise
multiplication. Note that u′ivj is just the correlation coefficient between the ith and jth
principal coordinates obtained from �x and �y, respectively. Thus, the numerator in
ckl is a weighted average of the relationships between principal axes. Clearly,

0 < c11 ≤ · · · ≤ ckl ≤ · · · ≤ ck′l′ ≤ · · · ≤ cKL = 1� if k ≤ k′� l ≤ l′�

We should choose dimension s = min�k� l� if 100× ckl is high, for example, 90%.
As for the maximum dimensions, if we take K1� L1 initially, the correct

dimensions should be K�L if cK+1�L+1 � · · · � cK1�L1
= 1, or very close to 1; see two

numerical examples in Sec. 8.
In practice, �u′ivj�

2 decreases as i and j increase, but a dimension i < s of the first
data set may be highly correlated with a (removed) dimension j > s of the second
data set. As discussed in Cuadras (1993), this quirk could be interpreted in the sense
that this ith principal dimension depends on “noise,” rather than the main variability
of the second data set.

7. Comparing Regions of Hyperspectral Images

7.1. Frequency Table

One hyperspectral image is divided into regions, the initial ones being pixels. Each
data matrix, representing a region, is obtained by considering a set of spectral curves
depicting the radiation (number of photons) at different wavelengths. For example,
spectrum S1 (see Table 1) reflects 634, 861, 1104, 1100 photons at wavelengths
�1� �2� �3� �4. The distribution of the radiances at wavelength �1 is then computed,
and similarly for the other wavelengths, as is described in Table 1 (bottom).

Accordingly, this information (counts of photons) is transformed into a data
matrix, where the columns correspond to radiances (number of photons) and the
rows to wavelengths. Thus, each row represents the observed statistical distribution
of the radiance for a given wavelength.

In general, given a set of S spectra belonging to a hyperspectral region of an
image, we must consider the table:
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Distance-Based Multivariate Association 2351

where fij is the frequency of the radiance j at wavelength �i, that is, fij spectra
reflects j photons at this wavelength. (Note that we can also have class intervals
I1� I2� � � � � Ip of radiances rather than specific values.) For each row, the sum of
the frequencies is n. Both n and p can take large values. If F = �fij�, the data is
represented by an n× p matrix P = F/n, with non negative entries pij such that

p∑
j=1

pij = 1�

i.e., P1p = 1n. Since the n wavelengths represent discrete contiguous values, the
distribution in a row is very similar to the distribution in neighboring rows. To
measure this proximity, we use Hellinger distance between rows:

�2ii′ =
p∑

j=1

�
√
pij −

√
pi′j�

2 = 2
(
1−

p∑
j=1

√
pij

√
pi′j

)
�

This gives an n× n (squared) distance matrix:

� ∗ � = 2�1n1
′
n −

√
P
√
P′��

where
√
P = �

√
pij�. As Hc1n = 0, 1′nHc = 0′, where Hc is the centering matrix, we

have

Hc

√
P
√
P′Hc = U	2U′�

and the principal and standard coordinates of the n wavelengths are the rows of
X = U	 and U, respectively. We can also find U from the SVD

�
√
P− 1

n
1n1

′
n

√
P� = U	T′�

7.2. Image Comparison

Suppose that we have another hyperspectral image region of the same size, which
provides the n× p matrix Q such that Q1p = 1n. Following the same procedure, we
obtain the standard coordinates V from the SVD

�
√
Q− 1

n
1n1

′
n

√
Q� = V	W′�

To relate both regions we find the association between P and Q by computing the
matrix A = V′UU′V� Finally we use Wilks association measure (1) AW = 1− det�I −
A�, which approaches 1 when P is very similar to Q.

7.3. Distance Choice

Note that, by using distances and MMDS, we can address the case p > n. But,
what distance? We choose Hellinger distance between two probability densities for
several reasons. First, it has a simple geometric interpretation and provides a closed

D
ow

nl
oa

de
d 

by
 [

U
ni

v 
Po

lit
ec

 C
at

],
 [

Ph
ili

pp
e 

Sa
le

m
bi

er
] 

at
 0

8:
56

 2
1 

M
ay

 2
01

2 
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Figure 3. Contour plots of the probability matrices obtained from the regions of two
spectral images taken from a street and a building. The white lateral parts mean that
these matrices contain many zeros. The radiance values are grouped in 100 intervals. Wilks
association measure is 0.8157. (color figure available online.)

formula for obtaining the principal coordinates. Second, it gives values similar to
other distances as chi-square and log-ratio, which belong to a parametric family
including Hellinger; see Cuadras and Cuadras (2006). Third, as discussed in Cuadras
et al. (2006) and Rencher (1995), Hellinger distance is more appropriate when we
have multinomial populations. This is the case of the rows of F. It is worth noting
that while log-ratio (Aitchison) distance is suitable for compositional data, it can
not be used here because F and P contain many zeros; see Fig. 3. Finally, Hellinger
distance � locally coincides with Bhattacharyya distance arccos���, the information
metric under a multinomial statistical model.

8. Two Examples

We present two examples illustrating the relation between two contiguous regions
of hyperspectral curves. These images have been obtained from Pavia University
(Pavia, Italy).

Firstly, we consider two data sets, Tree1 and Tree2, obtained from landscapes
containing trees. The data used here consists of n = 103 wavelengths and p = 200
distinct class intervals (with length 35� of radiance values, providing two matrices
of order 103× 200. We take initially K1 = L1 = 6. Then (2) gives

c11 = 0�937 < c22 = 0�938 < c33 = 0�980 < c44 = 0�983 < c55 = 0�991 < c66 = 1�

This result suggests the choice K = L = 3. Again from (2) we obtain the �100ckl

table 

95�6 95�6 95�8
95�6 95�7 99�4
95�9 96�1 100


 �
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We take s = 1 and the association measure is

AW�Tree1, Tree2� = 0�9510�

As AW is close to 1, both data sets represent similar trees, belonging to the same
cluster, i.e., the same class of material. Therefore, these regions are merged. Note
that p > n.

Secondly, we consider two data sets, Building and Street, obtained from the
same city. Now we have n = 103 wavelengths and p = 100 class intervals (with
length 65) of radiance values. Figure 3 shows the contour plots of the corresponding
matrices P�Q. Initially, we choose K1 = L1 = 6. Then (2) gives

c11 = 0�681 < c22 = 0�930 < c33 = 0�987 < c44 = 0�995 < c55 = 0�999 < c66 = 1�

We directly take s = 2 dimensions; see Fig. 4. The association measure is

AW�Building, Street� = 0�8157�

indicating that both data sets are relatively dissimilar, representing regions of urban
objects belonging to different clusters, i.e., different classes of material. Therefore
these regions are not merged.

Figure 4. Plot of 100×c�i� i� vs. dimension i, see Eq. (2), for the images taken from a street
and a building, indicating two canonical dimensions.
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In image processing, when the partition of the wavelength band is very fine or
the spectral resolution of the sensor increases, the dimensions n and p of the data
matrix can be much larger. However, increasing the dimensionality from moderate
to high, may not change the results much.

9. Discussion

The association measures presented here are obtained from distances, and therefore
can be used for general data sets. For example, we can deal with mixed data, by
using a distance based on Gower’s similarity coefficient and relating matrices of
principal coordinates; see Cuadras (2011).

We can relate compositional data sets (the rows sum up to 1), by using Hellinger
distance. These sets come from regions of hyperspectral images, encoded as matrices
with probability distributions in the rows, making Hellinger distance a suitable
choice because there are many zeros. Moreover, the number of radiances p can be
higher than the number of wavelengths n. Then, if we use a standard approach,
we may find both the first canonical correlation and AW equal to one. This trivial
solution is avoided by using Hellinger distance and computing coordinates.

Other association measures may be used. However, because the order
relationships 0 ≤ AHC ≤ · · · ≤ AW ≤ 1, we can find values AHC close to zero and
AW close to one. As reported by Rencher (1995), measures AW , ACN2, ALH agree in
general, but AHC , AP may not indicate the same level of association. Of course, a
single measure may not fully inform about the comparison between two data sets.
However, to construct the Binary Partition Tree, we must summarize all of the
relationships between two hyperspectral regions. We recommend the use of AW for
two reasons: it is the largest measure of association and, in general, does not take
too small values if the dimensionality increases. So it works well with hyperspectral
data.
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