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Exploring Hyperfine Coupling in Molecular Qubits 
Joan Cardona,a Àlex Solé,a,b Pablo Mella,c Daniel Aravena,c* Javier Ruiz-Hidalgo,b* Silvia Gómez-
Cocaa* and Eliseo Ruiza* 

Molecular qubits represent a promising avenue for advancing quantum sensing and computing technologies, yet significant 
challenges remain in optimising their performance. Hyperfine coupling critically influences molecular qubit coherence, 
creating substantial interactions between the qubit and its environment that dramatically reduce coherence time. While 
previous studies have exhaustively investigated this phenomenon, a comprehensive understanding of the underlying 
mechanisms across different systems remains elusive. A benchmark test was performed using DFT to assess which 
methodology worked best to accurately predict hyperfine coupling constants in molecular qubits predominantly composed 
of VIV and CuII. We systematically analysed the decomposition of hyperfine coupling and examined how variations in 
coordination sphere and molecular geometry impact dipolar, isotropic and spin-orbit contributions. By modelling diverse 
systems, we demonstrate how molecular design can fine-tune hyperfine coupling contributions, either minimising overall 
interaction or enhancing coupling along specific axes. This study provides useful insights into the structure-property 
relationships governing hyperfine coupling mechanisms and assesses the accuracy of different choices of density functional, 
basis sets and relativistic corrections in the prediction of hyperfine coupling constants.

Introduction 
Magnetic molecules play a prominent role in quantum devices due 
to their electronic spin behaviour, making them potential candidates 
as qubits and quantum sensors.1-4   A variety of two-state systems 
have been explored as potential platforms for qubit realisation, 
benefiting from different physical implementations such as 
photons,5 electronic spins,6 trapped ions,7 ultracold atoms,8 
superconductor Josephson junctions,9 and quantum dots.10 
Electronic spins can directly behave as qubits, and controlling their 
direction is a fundamental element in achieving sufficiently long 
coherence times for technological applications.2,11 Currently, 
diamond NV centres are being implemented in technological devices, 
mainly for quantum sensing. These systems are employed in 
scanning probe microscopy or single-photon emitters despite the 
difficulty of controlling the concentration of spin centres and the 
behaviour of such defects. In this way, magnetic molecules present a 
great potential to be competitive with NV centres if coherence times 
can be improved, as molecular crystals can be designed to yield an 
ordered array of spin centres, avoiding the problems associated with 
qubits based on randomly distributed defects. 12, 13 

Quantum coherence represents a critical parameter for qubit 
performance, with coherence times necessarily exceeding gate 
operation timescales (0.1-1ms) to facilitate fault-tolerant quantum 
computation.14 Measuring coherence time is experimentally carried 
out using pulsed Electron Paramagnetic Resonance (EPR), which is a 
highly specific technique that involves a Hahn echo pulse15 to study 
the dephasing of electron spins. Furthermore, the level of complexity 
and resources required to obtain most qubits is very high; hence, 
molecular spin-based qubits are an attractive alternative. They offer 
great tunability,16, 17 homogeneity in comparison with the defects of 
solid-state spin qubits, and easy enough synthetic approaches. 
However, they still face the same challenge of maintaining coherence 
over spin-lattice (T1) and spin-spin (T2) relaxation mechanisms. The 
former involves vibrational relaxation of the lattice, while the latter 
centres on interactions between spins, both contributing to 
dephasing.18 At lower temperatures, the limiting factor is T2 due to 
reduced molecular vibrations from insufficient thermal energy; on 
the other hand, when higher temperatures are reached, T1 decreases 
exponentially, and it becomes the main hindrance due to efficient 
spin-phonon coupling.19 

Hyperfine Coupling (HFC) between electron and nuclear spins 
introduces additional spin interactions that can significantly 
contribute to the T2 relaxation mechanisms, especially in the low-
temperature regime.3, 18 This interaction arises from the magnetic 
coupling between the electron spin and the nuclear spin(s) of the 
same atom (hyperfine) or nearby atoms (superhyperfine).20 The Spin 
Hamiltonian approach is often employed to study these interactions 
systematically. In this formulation, the energy spectrum is projected 
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to the small, low-energy manifold, which is important to the 
magnetic properties of the system, as expressed in equation 1.20, 21 

𝐻"!"#$ = 𝑆%𝐃𝑆% + 𝜇%𝒈𝐁𝐒, +-𝐒,𝐀(')𝐈%(')
'

(1) 

Here, the first term is attributed to the Zero-Field Splitting (ZFS) 
which describes the interactions resulting from the presence of more 
than one unpaired electron, where 𝑆% is the operator for the electron 
spin and 𝐃 describes the spin-spin interaction between two or more 
unpaired spins. The second term represents the electronic Zeeman 
effect (where 𝜇% is Bohr magneton, 𝒈 is the electron g-factor and 𝐁 
is the applied magnetic field). For a free electron, the g-factor is 
approximately 2.0023. However, in chemical systems, the g-factor 
can vary significantly due to spin-orbit coupling and other 
interactions. The magnetic anisotropy described by the g-factor 
offers detailed information about the spatial arrangement and 
geometry of the metal complex. In anisotropic systems, such as those 
with low symmetry or strong ligand fields, the g-factor becomes 
directionally dependent, reflecting the interaction between the 
unpaired electron magnetic moment and the local environment. 
Finally, the third term represents the HFC (where 𝐀(') is the 
hyperfine tensor and 𝐈%(') is the nuclear spin for a nucleus A). 

Recent molecular qubit studies19, 22 seem to point towards 
mononuclear complexes based on S=1/2 systems as potential 
candidates for molecular systems with long coherence time. To avoid 
spin-spin interactions, we have chosen first-row transition metals, VIV 
and CuII, as they present d1 and d9 electronic configurations and 
reported the best coherence times.4, 6, 23-25 Longer coherence times 
have also been achieved through ligand design by favouring spin-free 
nuclei, reducing electronic-nuclear spin interactions.26 Beyond 
minimising spin-spin interactions, a ligand should also possess 
rigidity to minimise vibrational perturbations, thereby reducing spin-
phonon coupling.3, 27, 28 

In recent advances within quantum computing materials, 
understanding the fundamental principles governing molecular spin 
qubits has become increasingly crucial.29 This research addresses a 
significant gap in our understanding of these systems. This work aims 
to understand how to modulate HFC in copper and vanadium 
compounds to develop systems with enhanced coherence. This 
investigation led us to evaluate various computational methods to 
identify a precise approach for calculating the hyperfine coupling 
constant 𝐀. Through this methodology, we analysed the geometric 
and electronic factors that determine the HFC constants, ultimately 
providing insights into how this parameter can be effectively 
modulated for optimal qubit performance. 

Hyperfine Coupling Contributions 
The theoretical framework presented in this section draws on 
established equations from the literature.20, 21 The HFC interaction 

(A)*
(')) can be decomposed by considering the isotropic, also called 

Fermi contact, (A+,-
(')), dipolar (A)*

(';/+0)) and the spin-orbit 

contributions (A)*
(';123)). This term is treated as a 3x3 tensor where 

µ, ν	 = x, y, z and 𝛿)* is a Kronecker delta such as 

A)*
(') = A+,-

(')𝛿)* + A)*
(';/+0) + A)*

(';1234) + A)*
(';1235) (2) 

Since the isotropic contribution is based on the electronic spin 
density within the nucleus, transition metal atoms should not exhibit 
such contribution as the unpaired electron resides in d orbitals, 
which present a node at the nucleus position. However, the 
exchange terms for a d1 system between the d orbital bearing the 
unpaired alpha electron and the paired core electrons differ for alpha 
and beta orbitals because such contributions are non-zero for 
electrons with the same spin. Thus, a spin-dependent interaction 
occurs within the atom, resulting in a spin polarisation of the inner 
shell s electrons. This exchange energy leads to a non-uniform 
distribution of the 𝛼 and 𝛽 electrons near the nucleus, consequently 
inducing a spin density in the internal orbitals.30 Consequently, s 
orbitals, with their spherical symmetry, dominate the isotropic term 
in Equation 2 and require theoretical methods incorporating 
relativistic approaches to describe this term properly.31 For a nucleus 
A, we use the following expression: 

A+,-
(') = ?

4
3𝜋

〈𝑆6〉74E 𝑃'𝜌879(𝐑') (3) 

In this equation, 〈𝑆6〉 is the expectation value of the z-component of 
the total spin and 𝜌879(𝐑') is the spin density at the centre of the 
nucleus, respectively. The proportionality constant is defined as: 

𝑃' =
𝛼
2 𝑔:𝜇;𝑔;

(') (4) 

Where 𝛼, 𝜇;, 𝑔;
(') are the fine structure constant, nuclear magneton, 

and nuclear g-factor, respectively. The second term of Equation 2 is 
based on the classical dipole interaction between electronic and 
nuclear spins and is responsible for the dipolar contribution 

(𝐀)*
(';/+0)). This term is expressed as the expectation value of the 

magnetic moment operator over the electron's spin density 
distribution for a nucleus A as: 

A)*
(';/+0) =

1
2𝑆𝑃

'-𝑃0<
879

0,<

〈𝜙0 K𝑟'7> M3𝑟'!𝑟'" − 𝛿)*𝑟'
5PK 𝜙<〉 (5) 

Where 𝑃0<
879 is the spin-density matrix and 𝑟' is the position vector 

of the electron relative to the nucleus ({𝜙} is the set of basis 
functions). Since the dipolar interaction exhibits dependence on 𝑟'7?, 
the integral can be simplified by retaining solely one-centre 
contributions. When introducing ligand-field theory, 𝑐'+ relates to 
the covalency of the metal-ligand bonding and inclusion of the one-
centre reduced field gradient integrals 𝑓)*, states that dipole 
contributions are proportional to the expectation value of 𝑟'7? over 
the rather compact d-orbitals and the value 𝑃' that can be 
substantial for some metal nuclei.21  
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A)*
(';/+0) =

1
2𝑆𝑃/-𝑐'+5

+

〈𝑑+W𝑓)*W𝑑+〉 (6)

𝑃/ = 𝑃'〈𝑟'7?〉/ (7)
 

The last two terms from Equation 2 are attributed to the spin-orbit 
coupling, which describes the second-order interaction between the 
electronic spin-magnetic moment and the orbit magnetic moment of 
the same and other electrons. 

A)*
(';1234) =

1
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where: 

𝐿4)
+J = Imcd𝜓+W ∑ 𝜉(𝑟')𝑙)'' W𝜓Jij (9) 

𝐿?)
+J = Imcd𝜓+W𝑙)'𝑟'7?W𝜓Jij (10) 

and: 

𝜉(𝑟+') =
𝛼5

2
𝑍:KK'

𝑟+'?
(11) 

The effective nuclear charges (𝑍:KK' ), used in the spin-orbit coupling 
expression are semi-empirical parameters. This expression considers 
two types of excitations: Type I involves an electronic promotion 
from a doubly occupied molecular orbital (i) to a singly occupied 
molecular orbital(oj). Type II, on the other hand, entails a promotion 
from a singly occupied molecular orbital (oi) to an empty orbital (a). 
Since only states with identical spin multiplicities contribute to the 
second-order HFC term, we restrict our focus to these states. This 
equation exhibits significant similarities to the expression for the 
second-order g-tensor (𝑔)*). This connection leads to: 

A)*
(';1234) = 𝑃/∆𝑔)* (12) 

The second spin-orbit coupling contribution comes from a cross-term 
between the electron-nuclear dipole-dipole Hamiltonian and the 
spin-orbit coupling. It is written as: 

A)*
(';1235) = −𝑃' Z - Δ@#$

74

+(/-EFCD)

- 𝜀LM)𝐹L*+-𝐿4M+-
L,MNO,D,6

− - Δ@@$&
74

G(:H0ID)

- 𝜀LM)𝐹L*G-𝐿4MG-
L,MNO,D,6

_ (13)

 

where: 

𝐹)*;	'
+J = cd𝜓+W𝑟'7>q𝛿)*𝑟'5 − 3𝑟',)𝑟',*rW𝜓Jij (14) 

Here, 𝜀LM) the Levi-Civitta symbol assumes a value of +1 for an even 
permutation and -1 for an odd permutation of 𝜅, 𝜏, 𝜇. When 
considered within the ligand theory framework, using Eq. 13 we 
obtain: 

A)*
(';1235) = −𝑃/--Δ+J74(−1)Q#%𝜁+J𝑐R+5 𝑐RJ5

J+

∙ - 𝑖𝜀LM)〈𝑑J|𝑓L*|𝑑+〉〈𝑑+|𝑙MR|𝑑J〉	
L,MNO,D,6

	 (15)
 

including the one-centre reduced field gradient integrals 𝑓)* and the 
angular momentum matrix elements between the d orbitals 𝑙MR. The 
phase factor 𝜌+J is zero if i is doubly occupied and unity if i is empty.  

Computational Details 
These effective Hamiltonian terms can be estimated using modern 
electronic structure methodologies. One relevant aspect for HFC 
calculation is a proper description of relativistic effects.32, 33 Dirac’s 
one-electron Hamiltonian containing a 4-spinor vector has been used 
as a four-component wavefunction. It describes the state of an 
electron, where these components are split as two-component 
spinor vectors. Even though the four-component methodology has 
remarkable accuracy as a potential candidate to describe quantum 
mechanical systems, it faces a heavy computational demand 
compared to Schrödinger-based methods.34 

The major shortcoming surfaces from the positronic states (negative 
energy states) are coupled by the off-diagonal terms of Pauli’s spin 
matrices.35 As we are interested in electronic states, Hamiltonian 
corrections, which eliminate the negative energy components from 
the Dirac equation, presented very efficient results in practice, where 
zeroth-order regular approximation (ZORA)36-39 stands out as a 
popular choice using a lower-order approximation. The exact 
decoupling of the upper and lower components of the spinor was 
achieved by Barysz and Sadlej,40 leading to a unique transformation 
technique, the Douglas-Kroll-Hess (DKH) method.41-43 Although 
presenting an interesting alternative to calculate fully relativistic 
quantum mechanics and properties, it also exhibits certain 
challenges, such as introducing spin-orbit and many-electron terms 
in the transformation of the many-electron Hamiltonian (in higher 
orders) and the calculation of molecular properties,44 where picture 
change effects must be dealt with.42 The eXact Two-Component (x2c) 
method offers an alternative to DKH for performing relativistic 
quantum chemistry calculations.45-48 Unlike DKH, x2c utilises a non-
iterative construction process. This means it directly obtains a matrix 
operator from the electronic solutions of the Fock-Roothaan 
equation. Additionally, x2c achieves a one-step solution by 
expanding the components of the 4-spinor in a one-electron basis 
set.47 This bypasses the requirement for additional unitary 
transformations that contribute to the computational cost, as in 
DKH. As a result, x2c offers a streamlined approach that reduces 
computational effort compared to higher order DKH35 which has 
been shown to yield notably accurate HFC and g-tensor calculations 
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for a range of small 3d(1), 4d(1), and 5d(1) complexes, including 
larger 5d(7) Ir and Pt complexes.49  

Basis and exchange-correlation functional assessment calculations 
were performed with Turbomole 7.7 package, using ridft module for 
x2c calculations, where the default density-fitted operator has been 
replaced by the exact operator.50 All x2c calculations of EPR 
parameters were computed for three distinct orthogonal directions 
of the spin-magnetization.51 A radial ultrafine/most dense grid (5a) 
was used for numerical quadrature. A 10-9 (Hartree) energy threshold 
was chosen unless stated otherwise. Computation of HFC-tensors 
was achieved using the x2c transformation applying the finite 
nucleus approximation.52 The modified Scaled Nuclear Spin-Orbit 
(mSNSO) approximation was used to calculate HFC constants as 
suggested by Wodynski and Kaupp.53 In troublesome cases, 
maximum and minimum damping settings were set to 1.5-0.5, and 
orbital shifting was added (0.2 eV). ZORA calculations were 
performed using the ORCA 5.0.4 package,54, 55 employing B3LYP 
functional with an uncontracted version of ANO-DK3 basis set, 
adjusting to a 10-8 Hartree convergence criteria, and including picture 
change effects and finite nucleus approximation, unless stated 
otherwise. The hybrid functionals selected for benchmarking were 
B3LYP, 56 PBE0 57 and a PBE40, as suggested by Wodynski and Kaupp 
for heavy metal complexes,53 a PBE-based functional with 40% exact-
type exchange. A long-range corrected functional was also analysed 
in the context of this study (ωB97X).58 A series of basis sets, mainly 
relativistic, were experimented upon, including x2c-TZVPall,50  x2c-
TZVPPall,50 x2c-QZVPPall,59 x2c-QZVPPall-s,59 def2-QZVPP,60 UGBS,61 
ANO-DK3.62 IGLO-III 63 was employed for light atoms in conjunction 
with ANO-DK3 and x2c-TZVPPall used for the metal. 

The benchmark set of molecules comprised of a series of 
mononuclear first-row metal transition complexes showing large 
reported coherence times, consisting of [Cu(mnt)2]2- (1),22 
[V(dmit)3]2- (2),19 [V(C8S8)3]2- (3),6 [VO(dmit)2]2- (4),19 and a TiIII 
complex, [CpTi(cot)] (5).64 For validation purposes we added Cu(Pc) 
(6),65 [V(C6Br4O2)3]2- (7),24 [V(C6H4O2)3]2- (8),66 [Cu(acacen)] (9),3 
[Cu(tmtaa)] (10),3 [Cu(C6H4S2)2]2- (11),25 and [Cu(C6H4Se2)2]2- (12)25. 
The molecular structures determined by X-ray diffraction have been 
employed in the calculations (see Figure 1). However, it is important 
to keep in mind that experimentally, the EPR measurements for 
molecular qubits are carried out in frozen solution and magnetically 
diluted samples employing a non-magnetic metal cation that forms 
an isostructural complex (Further details regarding the 
computational implementation and its impact on the results can be 
found in Section 1 of the Supporting Information). 

Additionally, model complexes with idealised symmetry have been 
generated using Shape 2.1 package67, 68 employing VIV as the main 
metal centre and NH3 as ligands. The V-N bond distances were 
changed from the average of non-ideal DFT-optimized structures. 
The same code was employed to perform continuous shape 
measurements to determine the degree of distortion of the metal 
complexes in comparison with ideal coordination polyhedra. 

Figure 1. Molecular structure of the 12 studied qubit molecules. 
[Cu(mnt)2]2- (1), [V(dmit)3]2- (2), [V(C8S8)3]2- (3), [VO(dmit)2]2- (4), 
CpTi(cot) (5), Cu(Pc) (6), [V(C6Br4O2)3]2- (7), [V(C6H4O2)3]2- (8), 
[Cu(acacen)] (9), [Cu(tmtaa)] (10), [Cu(C6H4S2)2]2- (11) and 
[Cu(C6H4Se2)2]2- (12). Mnt = maleonitriledithiolate, dmit = 1,3-
dithiole-2-thione-4,5-dithiolate, Cp = cyclopentadienyl, cot = 1,3,5,7-
cyclooctatetraene, Pc = phthalocyanine, acacen = 
bis(acetylacetone)ethylenediamine, tmtaa = 
tetramethyltetraazaannulene. Hydrogens are hidden for clarity 
purposes. Orange, grey and purple spheres represent the metal 
atoms, copper, vanadium and titanium, respectively. Lighter 
elements are represented with sticks using grey, blue, red, yellow, 
and orange colours for carbon, nitrogen, oxygen, sulphur and 
selenium, respectively. 

To quantify the accuracy in the prediction of A parameters, the Mean 
Absolute Percentage Logarithmic Error (MAPLE) was chosen as a 
metric for each approach according to: 

𝑀𝐴𝑃𝐿𝐸 =
1
n-

logWA+
0S:/W − logWA+

S:KW
logWA+

S:KW

$

+N4

(16) 

where Apred and Aref are the predicted and reference HFC constants, 
respectively, while n is the number of components. MAPLE benefits 
from a logarithmic transformation to reduce scale sensitivity in error 
measurements. By lowering the effect of larger values, it provides a 
more balanced error assessment than traditional metrics like MAE 
and MAPE, making it especially suitable for HFC constants with scale 
normalisation. 

Results and Discussion 
Benchmark Assessment for EPR Parameters Prediction 

To evaluate the effect of the basis set and density functional in the 
calculation of HFC parameters, we selected a representative set of 
transition metal complexes proposed as molecular qubit candidates: 
[V(dmit)3]2-, [Cu(mnt)2]2-, [V(C8S8)3]2-, [CpTi(cot)] and [VO(dmit)2]2- 
(compounds 1-5). As illustrated in Figure 2, basis sets containing 
IGLO-III for lighter atoms in conjunction with ANO-DK3 and x2c-
TZVPPall for the metal centre underperformed, proving inadequate 
for accurate HFC prediction in these systems. Triple-x basis sets 
yielded relatively high errors, between 25-28%, while quadruple-x 

1 2 3 4

5 6 7 8

9 10 11 12
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basis sets performed significantly better with MAPLEs in the 10-14% 
range (excluding ωB97X results). A full basis set decontraction 
significantly improved predictions (e.g. ANO-DK3 MAPLE error 
reduced from 41% to 5% with the decontraction when used with 
B3LYP). To isolate the influence of a more detailed s orbital 
description on HFC constants, we modified the ANO-DK3 basis set by 
decontracting only the s functions. This reduced the error to 18%, 
suggesting that a more accurate description of higher angular 
momentum orbitals, even those not directly involved in bonding, can 
significantly impact HFC values. This observation aligns with Equation 
3, indicating that a better description of the spin density 𝜌879(𝐑') 
using heavier s-weighted function basis sets and adding s-primitives 
with large exponents improves the calculation of isotropic terms. 
NMR-shielded x2c-type basis sets (x2c-QZVPPall-s) were also 
evaluated but performed slightly worse than their non-shielded 
counterparts, showing approximately a 4% increase in MAPLE. For 
more numerically detailed results, check Tables S2-S6 in Supporting 
Information.  

 
Figure 2. MAPLE error of computed HFC components employing 
various methodologies from compounds 1-5. NREL stands for non-
relativistic treatment. See Table S7 of the Supporting Information for 
the numerical details. 

The evaluation of exchange-correlation functionals for HFC 
calculations revealed several notable trends. We focused our 
investigation on hybrid functionals based on previous research by 
Kossmann et al.69, which demonstrated their superior performance 
over-generalized gradient approximation (GGA) functionals and 
highlighted their versatility across diverse compound classes 
compared to computationally more demanding double hybrid 
approaches. The impact of the functional choice demonstrated 
significantly less influential on HFC predictions compared to basis set 
selection. Nevertheless, when evaluating functionals with the best-
performing basis set (uncontracted ANO-DK3), B3LYP emerged as the 
superior option with a remarkably low MAPLE of 5%, outperforming 
both PBE0 and PBE40, which showed MAPLEs of 14% and 13%, 
respectively. This finding differs somewhat from previous work by 

Kaupp and Wodynśki,53 where PBE40 showed excellent results for 
various transition metal complexes with the formula [MOXₙ]ᵐ⁻ 
(where M=Cr, Mo, Mn, Tc, Os, Re, W and X=F, Cl, Br) and larger Ir and 
Pt complexes. Surprisingly, the long-range separated hybrid 
functional ωB97X yielded the least average accurate results per 
functional among all tested functionals (Figure 2) and showed no 
significant improvement when changing basis sets. This functional 
failed to replicate HFC constants for several compounds accurately. 

To evaluate the importance of relativistic effects in first-row 
transition metal complexes, we compared ZORA, x2c, and non-
relativistic (NREL in Figure 2) treatments. ZORA demonstrated 
comparable accuracy to the x2c methodology, confirming its 
suitability for these systems. In contrast, non-relativistic calculations 
showed a MAPLE of 17%, highlighting the key influence of relativistic 
effects even for first-row transition metals. This suggests that the 
simplified ZORA approach may be preferable in some cases, offering 
a good balance between accuracy and computational efficiency. The 
impact of relativistic effects appeared less pronounced when dealing 
with lighter transition metal atoms compared to the effects of basis 
set choice and uncontracting. However, for systems containing 
heavier elements significantly affected by spin-orbit coupling, higher 
Hartree-Fock exchange might be beneficial to account for multiple 
two-electron terms and spin-other-orbit (2eSOO) contributions, 
which tend to dominate in such cases.70-72 

 
Figure 3. Average computed g-factor MAE error for compounds 1-5. 
NREL stands for non-relativistic treatment.  Numerical details are 
shown in Section 3 of Supporting Information. 

In addition to HFC constants, g-values were also calculated for 
compounds 1-5, which agree well with experimental reference 
values (see Figure 3 and Table S13). Regarding the choice of the 
density functional, B3LYP, ωB97X, and PBE0 performed similarly well, 
while PBE40 delivered significantly worse results. The basis set 
choice had a smaller impact, where we identified the contracted 
ANO-DK3/IGLO-III basis set as the one providing the highest error. 
ZORA, in conjunction with the uncontracted basis set, revealed to 
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outperform every other methodology, proving superior in g-value 
prediction within these systems (See Tables S8-S12). 

Based on these findings, we strongly recommend employing an 
uncontracted basis set, coupled with the B3LYP hybrid functional, 
demonstrating superior performance for these compounds. For 
relativistic treatment, ZORA provided an excellent balance between 
computational efficiency and accuracy, performing comparably to 
the x2c approach while reducing computational demands. To check 
how this computational procedure compares with experimental 
data, EPR parameters from best-performing methods were used to 
simulate continuous wave EPR (cw-EPR) and were compared against 
experimental EPR spectra for compound 2 in Figure 4. Experimental 
values reported in the literature were given as absolute magnitudes 
for most compounds as cw-EPR cannot determine the sign of HFC 
constants. To address this limitation, triple ENDOR (three-pulse) 
techniques73, 74 enable the unambiguous sign assignment of HFC 
constants. However, almost no experimental sign measurements are 
reported due to the complexity of conducting such techniques. 
Simulations using EasySpin75 were carried out to demonstrate no 
discernible impact of the HFC sign on EPR interpretation, as detailed 
in Section 4 of the Supporting Information. Compound 3 (Figure S3) 
raised significant discrepancies between the predicted and 
experimentally determined HFC constants, particularly for the 
perpendicular axes. This fact could be due to the fitting of the 
experimental EPR; it employed a single value for both perpendicular 
components. 

 
Figure 4. Simulated cw-EPR spectra of [V(dmit)3]2- (2) using EasySpin 
version 6.0. A. Comparison between DFT computed and 
experimental hyperfine coupling constants setting experimental g-
values. B. Comparison between computed and experimental EPR 
parameters. Simulated cw-EPR for the rest of the compounds can be 
found in Section 4 of Supporting Information. 

An additional set of reported first-row transition metal molecular 
qubits consisting of [Cu(Pc)], [V(C6Br4O2)3]2-, [V(C6H4O2)3]2-, 
[Cu(acacen)], [Cu(tmtaa)], [Cu(C6H4S2)2]2- and [Cu(C6H4Se2)2]2-  
(compounds 6-12) were selected to check how our computational 
proposal performed on a different set of molecules (Figure 5). For 
this second test, the B3LYP density functional was used with different 
choices of relativistic approximation (x2c and ZORA) and basis set 
(x2c-QZVPPall and ANO-DK3 uncontracted). EPR parameters for 
compounds 6-12 were also computed and gathered in Tables S13 and 
S14. Overall, ZORA managed to capture HFC arguably close to x2c 
results and exhibited superior accuracy for g-factor calculations. For 
compound 6, the observed error primarily stemmed from 
overestimating the perpendicular HFC constants. Thus, we conclude 
that the ZORA approach remains accurate for the extended molecule 
set. 

 

Figure 5. MAPLEs for computed HFC constants of compounds 6-12. 
Numerical details can be found in Table S14.  

Hyperfine Coupling Term Decomposition 

While the isotropic term often dominates discussions due to its 
significant contribution in many systems, the spin-dipole and spin-
orbit coupling terms can be of comparable magnitude under specific 
conditions. In systems with unpaired electrons primarily in p or d 
orbitals, the spin-dipole interaction becomes equally crucial. In 
molecules containing heavy atoms or those with significant orbital 
angular momentum, the spin-orbit coupling term, though sometimes 
overlooked, can contribute to hyperfine splitting of several MHz, 
particularly affecting g-tensor anisotropy, and zero-field splitting 
parameters. 

The simultaneous effect of the three hyperfine coupling 
contributions necessitates a comprehensive approach to hyperfine 
engineering; any attempt to precisely control spin dynamics or 
interpret spectroscopic data must account for the modulation of all 
three hyperfine components. Neglecting any single term would 
result in significant quantitative and sometimes qualitative errors in 
predicting molecular behaviour. In this paper, we propose a 
decomposition of HFC for compounds 1-12, enabling an in-depth 
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evaluation of how structural changes in these systems correspond to 
shifts for the three contributions. 

Isotropic term: the isotropic contribution (Fermi contact) is 
correlated to the spin density within the nucleus (𝜌879(𝐑') from 
Equation 3), where internal 1s, 2s and 3s orbitals (inner shell) are the 
principal contributors.76, 77 Orbitals 1s and 2s exhibit opposite spin 
density to that of the 3d orbital,78, 79 whereas orbital 3s exhibited an 
opposite behaviour due to being closer to the 3d orbital space, as 
revealed in Table S15. The 1s orbital contributed minimally with β 
spin, suggesting negligible spin polarisation. Additionally, the 2s 
orbital significantly contributed to the β spin density, as the spin 
polarisation from the Singly Occupied Molecular Orbital (SOMO) is 
significantly enhanced by the exchange interaction between these 
orbitals.30  The 3s orbital, due to its orthogonality to the 2s orbital, 
overlaps with the 3d metal orbital, and contributes to α spin. 
Markedly, the isotropic term also saw fluctuations not only from 
inner shell contributions but also from valence shell contributions. 
The latter phenomena resulted from formal ligand p orbitals creating 
two main interactions: with the metal centre inner shell, specifically 
3s orbital, forming molecular orbitals with antibonding character and 
another with the metal centre 3d orbitals, forming a bonding 
molecular orbital where the corresponding non-bonding or anti-
bonding molecular orbital becomes the SOMO. In both cases, these 
interactions share the same symmetry (A1), making them permitted. 
The isotropic term for compounds 1-12 is depicted in Figure 6, split 
into inner (triangles), outer (squares), and total (circles) 
contributions. The results show a general trend with all compounds 
that there is a linear relationship between the Fermi contact and the 
nuclear spin density (see regression line in Fig. 6) according to Eq. 3. 
Overall, isotropic terms are negative except for the titanium 
compound (5, see Fig.  S6), which exhibited a positive term due to 

the negative sign of its 𝑔;
(') for the spin active nuclei (47Ti and 49Ti). 

Vanadium compounds (blues) showed a narrow isotropic term range 
of values, consisting of 5 compounds, from which 4 are octahedra, 
and one is a VOII square pyramid. Inner contributions exhibited 
relatively constant values in a range between -0.2 and -0.3 a. u.7?. 
Positive valence contributions are found; oxygen atoms in the first 
coordination sphere had lower values, whereas sulphur ligands led 
to higher valence contributions. Copper systems (reds) exhibited 
higher isotropic terms in a broader range. All CuII complexes 
presented a square planar geometry for the first coordination sphere 
reflected by a consistent valence shell contribution (around -0.2 
a. u.7?) as the coordination number remained the same. Inner shell 
contribution shifted to lower values as metal-ligand bond covalence 
increased, seeing how Cu-N and Cu-O exhibited the highest terms 
while Cu-S and Cu-Se showed the lowest inner contribution values 
not only for CuII but for the entire series of compounds. Covalence 
draws a trend on the inner contribution, reducing the strength of the 
isotropic term due to the delocalisation of spin density onto the 
ligands to which the metal is bonded. Interestingly, d1 metal centres 
(VIV and TiIII) showed a competitive tendency between contributions 
leading to overall lower magnitude isotropic terms, whereas d9 metal 

centres (CuII) exhibited higher isotropic magnitudes due to core and 
valence shell contributions enhancing each other. 

 
Figure 6. Correlation between isotropic term (Fermi contact) and 
nuclear spin density for compounds 1-12 (except compound 5). 
Squares represent valence shell contributions, triangles represent 
core shell contributions and circles show the total contribution. 
Calculations were carried out employing B3LYP/ANO-DK3 and using 
ZORA relativistic treatment. Numerical details can be found in Table 
S15. For clarity purposes, to reduce the limits of the Fermi contact 
values, the TiIII complex has not been included but can be checked in 
Figure S6. 

Spin-dipolar term: Since the isotropic term is equal for all axes, the 
contribution responsible for the different shifts in HFC is attributed 
to the dipolar term. This can be related to the SOMO character, 
which is defined by the metal centre and its coordination 
environment. Equation 6 explains how, through the integration of 
the SOMO using the electric field gradient integrals, we can get a 
general trend for each system captured in Table S16.21 Compound 1 
presented a square planar geometry where the metal centre is a 
CuII(d9), and the SOMO is a 3dx2-y2. According to our evaluation, it 
showed a -2:1:1 relation between axes, which agreed with ab initio 
results.  

Compounds 2 and 3 present pseudo-octahedral geometries with a 
VIV(d1) and non-axial HFC components (see Tables S3-S4), which is 
likely a result of a symmetry-breaking shift induced by a Jahn-Teller 
distortion. We validated this theory via distortion analysis, which 
revealed that both compounds display a trigonal distortion, shifting 
from a regular octahedral (OC) geometry to a trigonal prism (TPR) as 
continuous shape measurement S(OC) values of 2.222 and 2.767 
were obtained in contrast to S(TPR) values of 7.767 and 8.330. This 
distortion leads to a more stabilised dz2 orbital and shifts the ratio in 
function of the degree of distortion. Further analysis shows that in 
compounds 2 and 3, the SOMO is mostly a 3dyz orbital, which should 
show a -2:1:1 spin-dipolar contributions according to Table S16. 
However, Jahn-Teller structural distortion in these compounds 
induces significant mixing of the d orbitals, departing from the 
expected trend. Compound 4 presented a square-base pyramid 
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geometry with the metal out-of-plane and exhibited a similar trend 
as compound 1, as its SOMO orbital is 3dxy, which shows in the same 
pattern than complex 1 SOMO (3dx2-y2) (Table S16).  This difference 
in SOMO between VIV compounds, pseudo-octahedral 2 and 3 and 
vanadyl 4 complexes, explains the experimental and calculated 
values of the three HFC components (see Tables S3-S5), which are 
opposite between these two families of systems. The first ones 
present larger perpendicular HFC components, while the vanadyl 
axial component is the largest. 

 

Figure 7. Spin-Dipolar term and SOMO visualisation for compounds 
1-5. Each colour bar represents an axis; blue, orange, and green 
display x, y and z, respectively. MOs were represented against the 
first coordination sphere. Compounds 2 and 3, which present Jahn-
Teller distortions, do not follow the axiality ratio in Table S16. 

As mentioned earlier, compound 5 counts with a TiIII(d1) metal centre 

(which has a negative 𝑔;
(')) and an antiprism-like geometry, which 

portrayed a 3dz2 SOMO, revealing an ideal relation in the spin-dipolar 
contributions, but with reversed signs. This leads to an almost 
vanishing contribution for this compound. Thus, we establish a clear 
relation between the pattern observed of the axial spin-dipolar terms 
and the nature of orbital bearing the unpaired electron, following the 
coefficients of the electric field gradient matrix elements (Table S16 
and Eq. 6) for the systems without important mixing of d orbitals in 
the SOMO.  

Spin-orbit term: The spin-orbit coupling contribution manifests 
through two distinct terms (as described in Equations 10 and 14), 
which, when summed, yield the total spin-orbit coupling 
contribution. The first term, as elaborated in the Hyperfine Coupling 
Contributions Section, directly depends on the g-factor shift (Eq. 12), 
while the second term originates from permitted excitations dictated 
by Hund’s rule of multiplicity. The second spin-orbit coupling 
interaction is potentially smaller than the first since it depends on the 
energy gap between ground and excited states. Our comparison of 
Δ𝑔)* against A)*123   (where 𝜇	 = 𝜈) for all experimental compounds 

presented in Figure 8, revealed a clear trend that supports the 
hypothesis of the first term dominating over the second (A)*1234 ≫
A)*1235). This way, A)*1235 may be considered negligible (or constant), 
making	A)*1234 as the variable term that mostly controls the 
differences in the spin-orbit coupling contribution to the HFC.  Thus, 
we can control the variation of this term by tuning the value of Δg.  

Figure 8 shows compounds 1-12, which fall into two distinct 
categories: d1 complexes (containing VIV and TiIII) and d9 complexes 
(containing CuII). Compounds with less than half-filled d-orbitals 
exhibited negative g-factor shifts and, consequently, negative spin-
orbit coupling terms. In contrast, compounds with more than half-
filled d-orbitals displayed positive g-shifts and positive spin-orbit 
coupling terms. Notably, CuII (d9) compounds (1, 6, 9-12) exhibited 
positive g shifts, which lead to positive spin-orbit coupling 
contribution on all axes. Conversely, VIV compounds (2-4, 7, 8) 
showed small negative g-shift values for every component and their 
𝐀)*𝑺𝑶𝑪values are either negative or small. As mentioned earlier, 
despite expecting negative spin-orbit coupling values for compound 
5, positive contributions were obtained due to having a negative g 

nuclear constant (𝑔;
(')). The compounds in Figure 8 demonstrate 

how two of the three g-shift components are positioned much closer 
together, revealing a general axiality pattern. Our findings indicate 
that distortions, such as those exhibited by compounds 2 and 3, 
disrupting this axiality. These distortions alter the spin-orbit coupling 
by changing the molecular anisotropy, resulting in more widely 
dispersed g values that reflect a more rhombic environment. 
Compounds 6 and 12 presented some deviation from the expected 
trend, possibly presenting a higher A)*1235 value as opposed to the 
positive  A)*1234 term. Metal centres also dictated the magnitude of 
the spin-orbit coupling term, since changes to the nucleus impact on 
the 𝜉(𝑟+') function (see Eq. 11), revealing higher spin-orbit coupling 
constants for heavier metals in Figure 8. 

Figure 8. Computed Δ𝑔)* against total A)*123   (where 𝜇	 = 𝜈) for 
compounds 1-12. All calculations were performed using a fully 
uncontracted ANO-DK3 basis set and B3LYP employing a ZORA 
relativistic treatment. 
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Based on the detailed analysis of HFC components, we can propose 
a strategy for modulating HFC by targeting its three main 
contributions. Manipulation of the coordination environment and 
metal-ligand interactions are key. For the isotropic term, the choice 
of donor atoms can control the degree of covalency in metal-ligand 
bonds, affecting the s shell contributions due to the subtle balance 
between spin delocalisation and polarisation mechanisms. Modifying 
the symmetry of the coordination sphere through distortions (like 
Jahn-Teller effects) can significantly impact the spin-dipolar term by 
altering the SOMO character and the electric field gradient around 
the metal centre. For example, introducing trigonal distortions in 
octahedral complexes can break the orbital occupancy pattern from 
the ideal 1:1:-2 axial ratio. For the spin-orbit coupling contribution, 
selection of the metal centre is crucial, as heavier metals exhibit 
larger spin-orbit coupling constants. Additionally, the electron 
configuration of the metal (d¹ vs d⁹) determines whether the g-shift 
and consequent spin-orbit coupling contribution will be negative or 
positive. Fine-tuning of the axiality or rhombicity in the three HFC 
parameters can be further modulated through the spin-orbit 
coupling term. 

The Role of Metal Coordination on the Hyperfine Coupling 

Variations in HFC depending on geometrical differences posed a 
question regarding the coordination environment and its 
implications. To explore this hypothesis further, we performed a 
computational study on VIV homoleptic models coordinated with 
NH3. The choice of nitrogen donor atoms instead of sulphur-based 
ligands as those analysed in the previous sections intends to avoid 
convergence problems due to highly negatively charged structures. 

 
Figure 9. Heatmap of computed VIV HFC components for [V(NH3)x]4+ 
(where x = 3-7) geometric model complexes. All calculations were 
performed using B3LYP/ANO-DK3 approach and using ZORA 
relativistic treatment. 

To visualize a general picture of computed HFC constants across the 
model structures, we generated a heatmap showing the magnitude 
and distribution of HFC constants for each geometric configuration 
(Figure 9). The highest Fermi contact terms were observed in trigonal 
planar, vacant tetrahedra, and square planar geometries. In low 
coordination systems (angular and linear), spin contamination 
aberrantly overestimated Fermi contact values, significantly 
degrading the accuracy of the results, which were discarded. While 
lower coordination geometries generally showed higher values, 

coordination number alone does not fully explain the trend, as 
evidenced by the low Fermi contact terms in trigonal bipyramidal and 
trigonal prismatic structures. Regardless, a common feature of the 
highest-yielding Fermi contact term compounds is their planar 
geometry. This term was further analysed in detail in Figure 10. 
Again, as we have previously seen in Fig. 6, there is a linear 
correlation between the isotropic contribution and the spin density 
in the metal nuclei centre. Inner-shell contributions comprise the 
sum of occupied core orbital (1s, 2s and 3s) contributions and 
consistently exhibited values found between -0.2 and -0.3 a. u.7? and 
remained relatively similar throughout all geometries, with no 
relevant trends observed. These valence shell effects can be 
predominantly attributed to the electronic contributions of the 
coordinating ligands. Notably, as metal-ligand distances increase, 
reduced molecular orbital overlap results in net positive 
contributions.79 What is remarkable is that although this term is 
smaller than the contributions of the inner shells, it is, in fact, the one 
that makes the difference between the different modes of 
coordination as it is the only one that varies considerably from one 
system to another (see Fig. 10). 

Analysis of the metal spin populations revealed values ranging from 
1.08 to 1.31, with low-coordination compounds on the higher end. 
VIV is a d1 electronic configuration metal centre, and its SOMO has 
mainly non-bonding character, spin polarisation dominates over 
delocalisation, and there is no mixing with ligand orbitals. This α spin 
metal density could induce opposite spin density onto ligands, 
subsequently generating additional	 α spin density on the metal 
centre through a spin polarisation mechanism.  

 
Figure 10. Correlation between Fermi contact contribution and total 
nuclear spin density for [V(NH3)x]4+ (where x = 3-7) compounds. 
Squares, triangles, and circles represent the valence shell, core-shell 
and total contributions, respectively. Numerical details can be found 
in Table S17. 
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All systems showed relatively consistent spin-dipolar values, 
revealing axial ratios (1:1:2) between axis components in each 
system (as illustrated in Figure 9). Positive axial HFC values only were 
exhibited by the tetrahedra and trigonal prism compounds with a dz2 

SOMO, as expected from the one-centre reduced field integral values 
in Table S16. While Fermi contact interaction is isotropic, allowing 
only magnitude adjustments, the spin-dipolar interaction could 
selectively nullify one component while enhancing the others based 
on the SOMO configuration, which is determined by molecular 
geometry. Finally, the spin-orbit coupling component for all model 
compounds follows the same rule expressed in the previous section. 
The A)*1234 term seems to correlate directly with the Δg shift in a 
rather proportional manner (Figure S7). It could be assumed that this 
term dominates the changes in the spin-orbit coupling component, 
making the anisotropy the principal contributor. Overall, calculations 
on idealised [V(NH3)x]4+ are consistent with the main factors 
determining the three terms for the hyperfine tensor identified for 
1-12 real compounds. In addition, results on model systems provide 
new hints on how the coordination geometry can influence the Fermi 
contact term, as a lower coordination environment tends to enhance 
this contribution.  

Conclusions 
In the first part of this study employing DFT methods a benchmarking 
of hyperfine coupling has been performed using mononuclear 
transition metal complexes of the first series proposed as spin qubits. 
The best results are obtained by DFT methods employing the hybrid 
functional B3LYP together with methods including relativistic effects 
such as x2c or ZORA and quadruple-ζ or decontracted basis sets to 
provide a good description of the internal s orbitals. This 
methodology also provides good values for g, which can be 
considered predictive of the two essential quantities obtained from 
the continuous-wave EPR spectra. Larger discrepancies with the 
experimental values are obtained if other hybrid functionals such as 
PBE0 or ωB97X and basis sets of a lower quality are used. 

The second part is devoted to a comprehensive analysis of HFC 
modulation in CuII and VIV molecular spin qubits, examining the 
distinct contributions of Fermi contact, spin-dipolar, and spin-orbit-
coupling terms across various coordination environments. Our 
results reveal that geometric configuration plays a critical role in 
determining HFC behaviour. This is evidenced by compounds 2, 3 
(pseudo-octahedral coordination) and 4 (vanadyl) which, despite 
sharing VIV centres, exhibited markedly different HFC characteristics, 
non-axial and axial, respectively, due to their different coordination 
spheres and resulting SOMO orbitals.  

We identified that pseudo-octahedral VIV systems, as 2 and 3, 
undergoing Jahn-Teller distortions serve as particularly promising 
candidates for spin qubit applications by breaking spin-Hamiltonian 
axiality. Systems with trigonal distortion demonstrate enhanced 
potential for orbital mixing with dz2, potentially leading to improved 
coherence properties. Our extended model analysis further revealed 

that trigonal planar, trigonal prismatic, and square planar 
configurations, where the z-axis remains relatively unperturbed by 
ligand interactions, offer favourable conditions for low-energy dz2 
orbitals to be the SOMO for d1 configuration. 

The HFC components exhibited distinctive patterns: Fermi contact 
contributions were predominantly negative, reflecting spin 
polarisation of inner-shell s electrons respect to the positive spin 
density of the SOMO. Their magnitude decreases in VIV systems as 
coordination number increases due to nullifying effects from valence 
shell contributions.  Spin-dipolar interactions displayed axial relation 
dependence on the SOMO, which could be disrupted through Jahn-
Teller distortions. Spin-orbit coupling contributions showed direct 
correlation with Δg, with highly anisotropic molecules that could 
produce greater HFC shifts with more rhombic character. Based on 
these findings, we propose strategic approaches for HFC engineering 
in molecular spin qubits or quantum sensors. Previous work by Luis 
and colleagues demonstrated that achieving universal quantum 
operations requires hyperfine interactions that are neither purely 
axial nor purely isotropic, establishing specific relationships between 
the anisotropic parameters.80 One promising strategy would involve 
enhancing the perpendicular HFC component while leveraging spin-
dipolar contributions to differentiate the perpendicular axes. The 
metal centre can then be selected to fine-tune spin-orbit coupling 
effects through g-value modulation, with careful consideration of the 
anisotropy of the system. Alternatively, symmetry breaking via Jahn-
Teller distortion offers a pathway to unequal spin-dipolar 
contributions, leading to rhombic systems where spin-orbit coupling 
further differentiates the three HFC components. These insights 
provide a foundation for the rational design of molecular spin qubits 
and quantum sensors with tailored HFC properties by understanding 
the interplay between geometric structure, electronic configuration, 
and the various contributions to HFC. 
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 2 

S1. Solvation Effects  
 
EPR measurements can be performed using either a diamagnetic matrix or a frozen solution. 
When using a diamagnetic matrix, the central transition metal in the compound of interest is 
substituted with a diamagnetic element to create an isostructural complex. This approach 
eliminates contributions from the metal centre to the EPR spectrum. However, measurements 
in frozen solution are also possible. In such cases, careful consideration of external stimuli is 
crucial for reproducing experimental values. For instance. [CpTi(cot)] and [V(C8S8)3]2- were 
measured in frozen solutions of toluene and CS2, respectively. To achieve such effects, first an 
optimization of both structures was done using Gaussian 16, employing BP86/def2-TZVP and 
the Polarized Continuum Model (PCM). Then, HFC constants were calculated as indicated in 
the Computational Details section employing the Conductor-like Screening Model (COSMO). 
In conclusion, no significant changes were observed in the EPR spectra of the modified 
compounds. According to other compound references, diamagnetic matrices were prepared for 
compounds [V(dmit)3]2-, [Cu(mnt)2]2- and [VO(dmit)2]2- to conduct EPR measurements. 
 
Table S1. HFC constants comparison between solvent-free, solvation model and experimental 
values. 

Compound Method A⟂ (MHz) A⟂ (MHz) A∥	(MHz) 

[V(C8S8)3]2- 
Solvent-freea -294.7 -134.7 -5.7 

Solvation Model -265.1 -158.1 25.7 
Experimental -258.0 -258.0 6.0 

[CpTi(cot)] 
Solvent-freea 42.4 42.5 -5.8 

Solvation Model 40.8 40.8 -6.9 
Experimental 52.4 52.4 ca. 5 

a Solvent-free approach calculation was performed using uncontracted ANO-DK3 basis set alongside B3LYP functional. 
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S2. Hyperfine Benchmark Assessment 
 
Table S2. Computed hyperfine coupling constant values split into both perpendicular (⟂) and 
parallel (∥) components and the mean absolute percentage logarithmic error of [Cu(mnt)2]2-. 
Experimental values reported in the literature were given as absolute magnitudes. 
 

Functional Basis A⟂ (MHz) A⟂ (MHz) A∥ (MHz) MAPLE (%) 
B3LYP ANO-DK3/IGLO-III -20.3 -28.7 -305.5 24.8 

x2c-TZVPPall/IGLO-III 168.7 163.0 -251.7 8.4 
x2c-TZVPPall 165.9 160.2 -253.2 8.2 
x2c-TZVPall 162.1 156.6 -249.9 7.9 

x2c-QZVPPall -103.3 -97.9 -504.0 2.3 
x2c-QZVPPall-s -103.5 -98.0 -500.4 2.2 

def2-QZVPP -42.6 -48.0 -464.7 13.8 
UGBS unc. -80.3 -85.9 -495.8 5.0 

ANO-DK3 unc. -85.7 -91.5 -497.9 4.0 
ANO-DK3 s unc. -177.7 -189.8 -453.8 6.7 

 ZORA – ANO-DK3 unc. -80.1 -85.3 -520.4 5.2 
 Non-relativistic – Def2-QZVPP -87.2 -92.3 -537.7 4.2 

⍵B97X ANO-DK3/IGLO-III -63.9 -69.6 -390.6 9.3 
x2c-TZVPPall/IGLO-III 96.5 92.5 -367.1 4.8 

x2c-TZVPPall 93.6 89.6 -368.5 5.2 
x2c-QZVPPall -183.0 -178.7 -627.7 7.2 
def2-QZVPP -104.9 -108.8 -572.1 2.1 

ANO-DK3 Unc. -161.0 -165.5 -611.7 5.6 
PBE40 ANO-DK3/IGLO-III -53.1 -59.3 -377.9 11.9 

x2c-TZVPPall/IGLO-III 212.4 207.7 -287.4 11.0 
x2c-TZVPPall 208.7 204.0 -289.7 10.7 
x2c-QZVPPall -138.8 -143.6 -617.5 3.6 
def2-QZVPP -61.3 -65.9 -564.5 9.3 

ANO-DK3 Unc. -124.4 -129.1 -597.9 2.0 
PBE0 ANO-DK3/IGLO-III -34.0 -41.3 -331.2 18.2 

x2c-TZVPPall/IGLO-III 158.9 154.1 -283.2 7.0 
x2c-TZVPPall 155.6 150.8 -285.1 6.7 
x2c-QZVPPall -134.4 -129.8 -555.6 2.1 
def2-QZVPP -64.5 -69.0 -509.0 8.1 

ANO-DK3 Unc. -114.5 -119.1 -544.6 0.7 
Experimental  118.0 118.0 500.0  



 4 

Table S3. Computed hyperfine coupling constant values split into both perpendicular (⟂) and 
parallel (∥) components and the mean absolute percentage logarithmic error of [V(dmit)3]2-. 
Experimental values reported in the literature were given as absolute magnitudes. 
 

Functional Basis A⟂ (MHz) A⟂ (MHz) A∥ (MHz) MAPLE (%) 
B3LYP ANO-DK3/IGLO-III 227.4 67.9 -2.4 34.5 

x2c-TZVPPall/IGLO-III 236.9 54.0 -26.8 13.9 
x2c-TZVPPall 242.7 57.0 -24.7 14.1 
x2c-TZVPall 254.8 71.6 -8.7 21.9 

x2c-QZVPPall -260.7 -182.2 -3.6 23.9 
x2c-QZVPPall-s -257.4 -179.7 -2.9 26.2 

def2-QZVPP -253.7 -169.8 20.6 8.8 
UGBS Unc. -273.2 -200.1 -26.5 5.1 

ANO-DK3 Unc. -275.9 -204.1 -31.9 3.3 
ANO-DK3 s Unc. -311.1 -247.6 -93.8 8.4 

 ZORA – ANO-DK3 Unc. -273.8 -203.1 -32.4 3.2 
 Non-relativistic – Def2-QZVPP -269.7 -187.1 2.1 28.7 

⍵B97X ANO-DK3/IGLO-III 262.6 79.8 5.0 26.0 
x2c-TZVPPall/IGLO-III 279.9 61.6 -27.7 11.8 

x2c-TZVPPall 287.3 66.3 -24.3 12.4 
x2c-QZVPPall -220.2 -132.2 82.4 11.7 
def2-QZVPP -221.4 -128.2 99.1 13.5 

ANO-DK3 Unc. -240.5 -161.7 40.0 3.4 
PBE40 ANO-DK3/IGLO-III 204.8 88.5 41.0 8.3 

x2c-TZVPPall/IGLO-III 236.9 54.0 -26.7 13.9 
x2c-TZVPPall 180.6 -72.1 6.0 27.2 
x2c-QZVPPall -316.6 -242.3 -76.9 6.6 
def2-QZVPP -305.5 -225.9 -48.4 2.0 

ANO-DK3 Unc. -339.6 -279.4 -141.9 13.4 
PBE0 ANO-DK3/IGLO-III 233.0 83.9 17.6 15.1 

x2c-TZVPPall/IGLO-III 187.4 -63.8 13.4 20.5 
x2c-TZVPPall 194.4 -60.9 17.4 18.2 
x2c-QZVPPall -284.1 -209.2 -39.7 1.0 
def2-QZVPP -273.8 -193.7 -12.5 12.1 

ANO-DK3 Unc. -304.0 -236.1 -75.3 6.0 
Experimental  299.0 230.0 40.0  
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Table S4. Computed hyperfine coupling constant values split into both perpendicular (⟂) and 
parallel (∥) components and the mean absolute percentage logarithmic error of [V(C8S8)3]2-. 
 

Functional Basis A⟂ (MHz) A⟂ (MHz) A∥ (MHz) MAPLE (%) 
B3LYP ANO-DK3/IGLO-III 216.0 93.6 -61.8 50.5 

x2c-TZVPPall/IGLO-III 225.6 94.2 -76.8 54.3 
x2c-TZVPPall 228.3 96.1 -75.7 53.8 
x2c-TZVPall 240.1 108.8 -60.3 48.5 

x2c-QZVPPall -281.9 -116.2 10.7 16.1 
x2c-QZVPPall-s -278.5 -114.5 11.0 16.6 

def2-QZVPP -279.6 -102.6 33.0 37.7 
UGBS Unc. -291.3 -132.8 -3.0 17.6 

ANO-DK3 Unc. -294.7 -134.7 -5.7 5.5 
ANO-DK3 s Unc. -323.8 -171.4 -48.4 42.6 

 ZORA – ANO-DK3 Unc. -292.2 -134.6 -6.8 7.0 
 Non-relativistic – Def2-QZVPP -292.8 -118.3 16.1 23.8 

⍵B97X ANO-DK3/IGLO-III 247.5 107.8 -63.2 49.3 
x2c-TZVPPall/IGLO-III 260.5 109.0 -81.5 53.8 

x2c-TZVPPall 263.5 111.7 -79.6 53.3 
x2c-QZVPPall -254.0 79.5 -67.3 52.1 
def2-QZVPP -258.2 95.0 -60.6 49.0 

ANO-DK3 Unc. -273.0 -96.1 51.3 46.2 
PBE40 ANO-DK3/IGLO-III 227.8 106.8 -47.4 44.5 

x2c-TZVPPall/IGLO-III 190.2 -125.9 51.1 46.0 
x2c-TZVPPall 263.5 111.9 -79.8 53.3 
x2c-QZVPPall -331.3 -158.3 -26.1 31.8 
def2-QZVPP -327.7 -143.1 1.0 37.6 

ANO-DK3 Unc. -347.7 -187.5 -56.3 45.4 
PBE0 ANO-DK3/IGLO-III 224.0 103.0 -49.3 45.6 

x2c-TZVPPall/IGLO-III 186.1 -110.0 57.0 49.0 
x2c-TZVPPall 189.3 -108.2 59.6 49.8 
x2c-QZVPPall -301.3 -140.1 -15.0 21.6 
def2-QZVPP -296.4 -123.5 9.9 14.6 

ANO-DK3 Unc. -316.8 -161.9 -36.6 37.7 
Experimental  -258.0 -258.0 6.0  
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Table S5. Computed hyperfine coupling constant values split into both perpendicular (⟂) and 
parallel (∥) components, and the mean absolute percentage logarithmic error of [VO(dmit)2]2-. 
Experimental values reported in the literature were given as absolute magnitudes. 
 
Functional Basis A⟂ (MHz) A⟂ (MHz) A∥ (MHz) MAPLE (%) 

B3LYP ANO-DK3/IGLO-III 135.6 124.9 -163.3 5.4 
x2c-TZVPPall/IGLO-III 130.5 122.3 -180.4 5.3 

x2c-TZVPPall 132.5 124.6 -178.3 5.1 
x2c-TZVPall 147.0 139.1 -159.9 6.3 

x2c-QZVPPall -77.4 -70.4 -369.5 8.6 
x2c-QZVPPall-s -69.8 -76.5 -365.7 8.8 

def2-QZVPP -53.4 -45.6 -363.2 14.2 
WTBS/UGBS Unc. -81.9 -74.5 -376.3 7.8 

ANO-DK3 Unc. -86.0 -78.2 -379.8 7.1 
ANO-DK3 s Unc. -130.2 -118.3 -426.6 1.1 

 ZORA – ANO-DK3 Unc. -86.7 -79.0 -376.8 7.0 
 Non-relativistic – Def2-QZVPP -75.4 -68.0 -382.5 8.9 

⍵B97X ANO-DK3/IGLO-III 136.5 126.8 -174.8 4.9 
x2c-TZVPPall/IGLO-III 138.2 129.9 -189.7 4.4 

x2c-TZVPPall 91.7 83.9 -214.2 9.3 
x2c-QZVPPall -42.6 -35.1 -353.5 17.8 
def2-QZVPP -23.1 -15.4 -349.9 27.6 

ANO-DK3 Unc. -61.8 -54.5 -369.9 11.9 
PBE40 ANO-DK3/IGLO-III 131.5 120.2 -179.2 5.4 

x2c-TZVPPall/IGLO-III 76.5 68.7 -246.3 11.1 
x2c-TZVPPall 78.7 71.2 -244.2 10.7 
x2c-QZVPPall -131.8 -125.0 -434.8 0.8 
def2-QZVPP -101.8 -94.1 -423.8 4.3 

ANO-DK3 Unc. -145.6 -138.6 -446.3 1.3 
PBE0 ANO-DK3/IGLO-III 138.3 126.9 -161.9 5.3 

x2c-TZVPPall/IGLO-III 89.7 81.7 -216.2 9.6 
x2c-TZVPPall 91.7 83.9 -214.2 9.3 
x2c-QZVPPall -102.3 -95.3 -389.2 4.4 
def2-QZVPP -75.8 -67.9 -380.8 8.9 

ANO-DK3 Unc. -114.0 -106.5 -401.8 2.7 
Experimental  138.0 128.0 413.0  



 7 

Table S6. Computed hyperfine coupling constant values split into both perpendicular (⟂) and 
parallel (∥) components, and the mean absolute percentage logarithmic error of [CpTi(cot)]. 
Experimental values reported in the literature were given as absolute magnitudes. 
 
Functional Basis A⟂ (MHz) A⟂ (MHz) A∥ (MHz) MAPLE (%) 

B3LYP ANO-DK3/IGLO-III -3.6 -3.5 -51.8 93.8 
x2c-TZVPPall/IGLO-III 16.0 16.1 -33.9 59.6 

x2c-TZVPPall 16.4 16.5 -32.3 58.1 
x2c-TZVPall 9.0 9.1 -40.3 72.8 

x2c-QZVPPall 39.2 39.3 -9.1 17.3 
x2c-QZVPPall-s 73.2 73.3 19.7 34.0 

def2-QZVPP -13.1 38.0 38.1 56.4 
WTBS/UGBS Unc. 41.8 41.9 -6.4 8.9 

ANO-DK3 Unc. 42.4 42.5 -5.8 6.7 
ANO-DK3 s Unc. 47.4 47.2 -3.4 10.0 

 ZORA – ANO-DK3 Unc. 42.0 42.1 -5.5 5.5 
 Non-relativistic – Def2-QZVPP 40.6 40.7 -10.1 18.8 

⍵B97X ANO-DK3/IGLO-III -7.2 -7.1 -57.1 83.9 
x2c-TZVPPall/IGLO-III 9.8 9.9 -41.2 71.9 

x2c-TZVPPall 10.2 10.3 -40.5 70.9 
x2c-QZVPPall 26.9 27.1 -23.2 43.0 
def2-QZVPP 27.0 27.1 -25.6 45.0 

ANO-DK3 Unc. 31.7 31.8 -17.4 34.3 
PBE40 ANO-DK3/IGLO-III 2.1 2.2 -46.8 100.0 

x2c-TZVPPall/IGLO-III 29.4 29.6 -20.7 39.1 
x2c-TZVPPall 29.9 30.1 -20.0 38.1 
x2c-QZVPPall 50.1 50.3 2.0 19.8 
def2-QZVPP 48.0 48.1 2.9 12.6 

ANO-DK3 Unc. 53.5 53.6 6.0 4.3 
PBE0 ANO-DK3/IGLO-III -2.1 -2.0 -49.4 101.8 

x2c-TZVPPall/IGLO-III 24.8 24.9 -23.4 44.5 
x2c-TZVPPall 25.4 25.4 -22.7 43.5 
x2c-QZVPPall 44.4 44.5 -2.1 21.1 
def2-QZVPP 42.7 42.8 -6.8 9.6 

ANO-DK3 Unc. 47.7 47.8 1.6 24.8 
Experimental  52.4 52.4 ca. 5  
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Table S7. Mean absolute percentile logarithmic error (MAPLE) for the methodologies shown 
in Figure 2. 
 

Relativistic 
Treatment Functional Basis MAPLE 

x2c B3LYP ANO-DK3/IGLO-III 41.8 
x2c B3LYP x2c –TZVPPall 27.9 
x2c B3LYP x2c – QZVPPall 13.6 
x2c B3LYP def2 – QZVPP 26.2 
x2c B3LYP ANO – DK3 unc. 5.3 
x2c ⍵B97X ANO-DK3|IGLO-III 34.7 
x2c ⍵B97X x2c-TZVPPall|IGLO-III 29.3 
x2c ⍵B97X x2c-TZVPPall 30.2 
x2c ⍵B97X x2c-QZVPPall 26.4 
x2c ⍵B97X def2-QZVPP 27.4 
x2c ⍵B97X ANO-DK3 Unc. 20.3 
x2c PBE40 ANO-DK3|IGLO-III 34.0 
x2c PBE40 x2c-TZVPPall|IGLO-III 24.2 
x2c PBE40 x2c-TZVPPall 28.0 
x2c PBE40 x2c-QZVPPall 12.5 
x2c PBE40 def2-QZVPP 13.2 
x2c PBE40 ANO-DK3 Unc. 13.3 
x2c PBE0 ANO-DK3|IGLO-III 37.2 
x2c PBE0 x2c-TZVPPall|IGLO-III 26.1 
x2c PBE0 x2c-TZVPPall 25.5 
x2c PBE0 x2c-QZVPPall 10.0 
x2c PBE0 def2-QZVPP 10.7 
x2c PBE0 ANO-DK3 Unc. 14.4 

ZORA B3LYP ANO-DK3U 5.5 
Non-Rel. B3LYP Def2-QZVPP 16.9 




