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Department of Signal Theory and Communications, Technical University of Catalonia UPC,

Campus Diagonal Nord, building D4 Jordi Girona 1-3 08034 Barcelona

mattia.bosio@upc.edu

A general framework for microarray data classification is proposed in this paper. It pro-
duces precise and reliable classifiers through a two-step approach. At first, the original
feature set is enhanced by a new set of features called metagenes. These new features
are obtained through a hierarchical clustering process on the original data. Two different
metagene generation rules have been analyzed, called Treelets clustering and Euclidean

clustering. Metagenes creation is attractive for several reasons: first, they can improve
the classification since they broaden the available feature space and capture the com-
mon behavior of similar genes reducing the residual measurement noise. Furthermore,
by analyzing some of the chosen metagenes for classification with gene set enrichment
analysis algorithms, it is shown how metagenes can summarize the behavior of func-
tionally related probe sets. Additionally, metagenes can point out, still undocumented,
highly discriminant probe sets numerically related to other probes endowed with prior
biological information in order to contribute to the knowledge discovery process.

The second step of the framework is the feature selection which applies the Improved
Sequential Floating Forward Selection algorithm (IFFS) to properly choose a subset from
the available feature set for classification composed of genes and metagenes. Considering
the microarray sample scarcity problem, besides the classical error rate, a reliability
measure is introduced to improve the feature selection process. Different scoring schemes
are studied to choose the best one using both error rate and reliability. The Linear
Discriminant Analysis classifier (LDA) has been used throughout this work, due to its
good characteristics, but the proposed framework can be used with almost any classifier.
The potential of the proposed framework has been evaluated analyzing all the publicly
available datasets offered by the Micro Array Quality Control Study, phase II (MAQC).
The comparative results showed that the proposed framework can compete with a wide
variety of state of the art alternatives and it can obtain the best mean performance
if a particular setup is chosen. A Monte Carlo simulation confirmed that the proposed
framework obtains stable and repeatable results.

Keywords: Microarray classification; metagenes; hierarchical representation; Treelets;
feature selection; LDA.

1. Introduction

Microarrays are an important technology for the exploration of biological data,

developed to allow researchers to gather a very large number of gene expressions
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simultaneously. Microarrays are commonly used to study the transcriptional re-

sponses of cells and tissues. By measuring the mRNA concentration levels, inference

about the phenomena inside a cell can be made27. A typical microarray experiment

measures thousands, or tens of thousands, gene expressions with a relatively small

sample number, at most a few hundreds. The relative difference between the sample

number and the gene expression number makes the microarrays a typical example

of sample scarcity, and it is commonly addressed as the curse of dimensionality1.

Microarray classification is a complicated task, not only due to the high dimen-

sionality of the feature set (thousands of gene expressions), but also due to the lack

of a known data structure which limits the applicability of signal processing tech-

niques, and due to residual measurement noise even after data normalization11,16.

In this article the microarray classification task is studied and a novel global

approach is proposed. It tackles the problems that make the prediction difficult

with a two-step framework to obtain a precise and reliable classifier.

A plethora of algorithms has been presented in the literature to address the

classification problems and produce reliable classifiers27,8. In almost every case,

feature selection algorithms have been applied to reduce the impact of the feature

number. In the proposed framework, three main classification issues (high feature

number, lack of structure and noise) are addressed by a two-step approach. In a

first phase, a structure from the data is inferred by the application of a hierarchical

clustering algorithm inspired by Lee’s work in18, assigning a binary tree structure

to unordered data. Afterwards, the original feature set is enriched by newly created

variables called metagenes, one for each node of the tree structure. Objective of this

first step is to give the data a structure and, from that, to produce new features

summarizing the common traits of gene clusters with a noise reducing effect.

The second step in the proposed framework is the development of an effective

wrapper feature selection method to choose a small set of features, including genes

and metagenes, with which a final classifier is trained. As a result, the final classifier

only relies on a reduced set of features and must be able to catch the key elements

that differentiate between the sample classes. The benefit of hierarchical clustering

by extracting interesting new variables to be used for classification has been studied

in different works in the literature12,7,18. In18 the Treelets multi-scale representa-

tion is used for microarray classification as a feature extraction and dimensionality

reduction tool prior to classification combined with a filter feature selection phase,

obtaining interesting results. In this paper, the produced metagenes are added to

the original feature set as a new group of features available for selection in the

classifier building process. Furthermore, the proposed framework offers additional

benefits concerning the results interpretability, the hypothesis generation and the

model flexibility. The results interpretation is eased by the inferred structure which

can group various genes with common numerical behavior and common shared bi-

ological knowledge, after an analysis with enrichment tools such as DAVID14 or

Gene Set Enrichment Analysis25 (GSEA). The same enrichment analysis can help
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in hypothesis generation to promote further studies to find the biological relevance

of selected features without previous knowledge (e.g. a chosen probe set with no

associated gene symbol in DAVID or GSEA analysis). Finally the model flexibility

is an advantage if the chosen features are unavailable for further clinical testing, for

example due to economic reasons or due to antibodies unavailability for immunohis-

tochemistry 26. The proposed framework allows easy finding of alternative features

by looking at the inferred data structure.

A suitable wrapper feature selection algorithm has been chosen in this work,

which is called improved sequential floating forward selection (IFFS)21. The pro-

posed framework introduces two main contributions for the feature selection task.

The first one is the introduction of a reliability parameter, which is combined with

the commonly used error rate to evaluate the predictive properties of a single clas-

sifier. The second contribution concerns the use of both the error rate and the

reliability at the same time to evaluate the predictive performance of a classifier.

In2, a two-level lexicographic sorting has been adopted and it showed good results

when applied on small samples datasets without an independent validation test set.

In this work, three scoring criteria have been evaluated on bigger datasets, endowed

with an independent validation dataset, to more precisely assess the predictive abil-

ity of the proposed approach. As well as the lexicographic sorting, two additional

scoring rules have been tested. Both combine the two sources of information, error

rate and reliability, into a scalar value representative of the classification perfor-

mance.

The potential of the proposed framework, considering the setup variants depend-

ing on the scoring rule and the metagene generation process, has been evaluated

on four publicly available datasets, classified with eight different endpoints. The

datasets are provided by the Micro Array Quality Control study, phase II, (MAQC)

as a common ground to test classification algorithms24. The analyzed data are all

the publicly available datasets of the MAQC II study data, for more details about

all the datasets analyzed in the MAQC study, refer to24.

This paper is organized as follows: in Section 2, the feature set enhancement

algorithm is introduced and the two implemented alternatives are detailed. In Sec-

tion 3, the feature selection algorithm is explained. The reliability measure and

the applied scoring rules are described there. In Section 4, the MAQC datasets are

described and the whole experimental protocol is detailed. In Section 5, the exper-

imental results are reported and discussed, while in Section 6, the conclusions of

this work are reported.

2. Feature set enhancement

The feature set enhancement is the first step in the proposed framework. The aim

of this phase is to apply an unsupervised learning technique to infer a hierarchical

structure from the original data. Then, such structure is used to produce new fea-

tures called metagenes that will be added to the original gene expression values.
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This processing step is included because the original data have no a priori structure

and suffer from residual noise on the measured values.

The newly created metagenes expand the feature space and can improve, after

a proper feature selection process, the classification ability. Metagenes can reduce

the residual noise by summarizing local clusters of similar genes. In order to infer

a hierarchical structure from the data, a hierarchical clustering algorithm has been

applied based on Lee’s work in18. Each resulting metagene is obtained as a linear

combination of the original feature set. A hierarchical clustering algorithm has been

chosen for organizing and grouping the dataset variables into an easily interpretable

description of the data structure.

This elaboration step focuses its attention on extracting new variables from

the gene expression values. This approach obtains relations among gene groups

while building new features from the original data. This strategy has already been

adopted by algorithms like Tree Harvesting12, or Pelora7, where the benefit of

hierarchical clustering to extract interesting new variables to expand the original

feature set is highlighted. The possibility to summarize gene clusters in a single

variable representing the common behavior as input for the classifier brings many

advantages. At first, the summarizing feature is easily interpreted as a combination

of the genes in the cluster. Relations among these genes can be inferred, for example

two genes may be involved in the same biological process due to their high numerical

similarity. One of the most important advantages is the noise reduction as a side

effect of the linear combination of similar genes particularly at the lower levels

of the hierarchical tree. The common behavior of a gene cluster is encoded into

a representing metagene. The metagene profile emphasizes the common traits of

a gene group, simultaneously reducing the residual noise on the measured values.

Furthermore, metagenes are more robust to chance because a metagene useful for

classification is less likely to be a product of chance rather than an individual gene.

The requirements to produce a hierarchical structure, organized into a tree,

are to define an aggregation rule to form the clusters (i.e. a similarity metric)

and to specify a generation rule for the metagene calculation as a combination of

individual genes. In this work, the chosen clustering process is a bottom-up, pairwise

hierarchical clustering based on Lee’s work in18, where an adaptive method for

multi-scale representation and eigen-analysis of the data called Treelets is presented.

2.1. Metagene generation algorithm

The feature set enhancement phase is based on a bottom-up, pairwise hierarchical

clustering algorithm, whose general pseudocode is outlined in Figure 1. The algo-

rithm on which it is based is called Treelets. It is an iterative process in which, at

each level, the two most similar features are replaced by two newly created fea-

tures, a coarse-grained approximation feature and a residual detail feature. Such

method outputs a multi-scale representation of the original data allowing a perfect

reconstruction of the original signal. In our case, the main interest lies in finding rep-
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Original feature set G
0
= {g

1
, . . . , gp}

Active feature set F = G
0

Metagene set M = ∅

For i = 1 : p-1

1. Calculate pairwise similarity metric d(fa, fb) for all features in F

2. Find a,b : d(fa, fb) = max(d(·, ·))

3. New metagene mi = g(fa, fb) generation:

mi = αa fa + αb fb =
∑p

i=1
βi gi;

α ∈ ℜ2 β ∈ ℜp

Each metagene can be seen either as a combination of its two child features

{fa, fb} or as a linear combination of all the original features gi

4. Add the new metagene to the active feature set

F := F ∪ {mi}

5. Remove the two features fa, fb from the active feature set

F := F\{fa, fb}

6. Join the metagene mi to the metagene set

M := M ∪ {mi}

end

Define the new expanded feature set:

F = G
0
∪M as the union of metagenes and original gene expression profiles.

Fig. 1. Pseudocode for the feature set enhancement algorithm adopted in this work.

resentative features for gene clusters and in generating a hierarchical tree structure.

To this end, at each level, the detail feature is discarded, while the coarse-grained

approximation feature is chosen as the metagene. Afterwards, the newly created

metagene is used as a feature to be compared in the next iterations. As outlined

in Figure 1, the two main elements defining the final output are the similarity

metric d(f
a
, f

b
) and the metagene generation rule g(f

a
, f

b
). In the current work,

the generation rule adopts the strategy proposed in18, by applying a local Princi-

pal Component Analysis (PCA) on the two child nodes for each metagene to be

calculated.

Two variants of the metagene generation algorithm have been studied in this

work. They are called Treelets clustering and Euclidean clustering, and are respec-

tively detailed in 2.1.1 and 2.1.2.
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2.1.1. Treelets clustering

The first studied alternative is called Treelets clustering and it owes its name to the

Treelets algorithm from18. As well as the basic hierarchical clustering algorithm, it

shares the similarity metric with Lee’s work in18. The feature similarity is measured

in terms of the Pearson correlation. It is a normalized correlation measure between

two features, it is defined as in Eq.(2.1) for two generic feature vectors f
a
and f

b
.

d(f
a
, f

b
) =

< f
a
, f

b
>

‖f
a
‖2‖fb

‖2
∈ [−1 . . . 1] (2.1)

This criterion captures the profile shape similarity of two features, so it is invariant

to any positive scale factor: d(f
a
, f

b
) = d(k f

a
, f

b
) with k ∈ ℜ+. The Pearson cor-

relation assumes value equal to 1 when two features have the same exact pattern. A

correlation value of -1 implies a perfect profile anticorrelation, defining the farthest

possible point in the similarity space spanned by the Pearson correlation.

An observation must be done about the metagene generation. Metagenes are

produced via a PCA, which is a unitary transform and it generates an orthonormal

basis for the spanned space. The coefficient vector has a l2 norm equal to one,

meaning that ‖α‖2 = 1 and ‖β‖2 = 1, where α is the coefficient vector applied to

the sons of a metagene, while β is the coefficient vector which can generate the same

metagene as a linear combination of all the individual genes (with nonzero values

for the leaves of the subtree hanging from the metagene node). This translates into

producing metagenes of growing dynamic range as the number of clustered genes

grows as showed in Figure 2 where, a toy example with an initial feature set of

three identical genes is considered. In this example, as f
1
= f

2
, we can see that

m
1
=

√
2f

1
and m

2
=

√
3f

1
. The growing dynamic range in Treelets clustering is

due to the PCA characteristic of being energy conservative and to the choice of the

approximation feature as metagene.

2.1.2. Euclidean clustering

The second metagene generation technique is called Euclidean clustering. The iter-

ative process is the same as in Figure 1 but it introduces some changes in both the

similarity metric d(f
a
, f

b
) and in the generation rule g(f

a
, f

b
) with respect to the

Treelets clustering.

The Euclidean clustering adopts the negative Euclidean distance as similarity

metric defined as in Eq.(2.2). Such measure has its maximum in zero when the two

compared features are equal, while its minimum is unlimited. It has been chosen

because it represents a different point of view with respect to the Pearson corre-

lation. The Euclidean distance captures the point-wise closeness rather than the

profile shape similarity.

d(f
a
, f

b
) = −‖f

a
− f

b
‖2 (2.2)
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Changing the similarity measure implies a modification in the metagene gen-

eration rule too. Due to the modification of the dynamic range introduced by the

iterative application of the PCA transformation, the produced metagenes have an

energy amount proportional to the number of clustered genes. This metagenes

increasing energy is a problem if the Euclidean distance is considered because

d(f
a
, f

b
) 6= d(k f

a
, f

b
), thus biasing the merging phase to initially join genes with

genes and only afterwards to include the metagenes in the merging process. To

properly compare genes with metagenes, the latter must be a pure weighted aver-

age of the clustered genes. As a result, when a metagene m
x
is created, two versions

of it are defined. The first one, m
x
, is the one described in the Treelets case, that

is the first principal component from the local PCA transformation, while the sec-

ond, m
xscaled

is a scaled version of the former. The scale factor is the l1 norm of

the coefficient vector β : m
xscaled

= m
x
/‖β‖1. In this way, the scaled version of the

metagene results to be a pure weighted average of the merged genes and it is used for

the pairwise similarity calculation as metagene. Note however that the non-scaled

version of the metagene is not eliminated. It is maintained and used when a new

metagene is built from m
x
to preserve the energy distribution among the individual

components.

An illustration of the metagene generation process is included in Figure 2. The

obtained metagenes through the sole use of the local PCA transformation are scaled

weighted averages of the original features. As discussed in Section 2.1.1, the scaling

factor is proportional to the number of joined genes. It can be observed how the

introduction of the scaled versions m
xscaled

allows a direct comparison between the

metagene and the original features. For example, one can see how the non-scaled

metagene does not produce a zero Euclidean distance d(m
1
, f

1
) = (

√
2 − 1)‖f

1
‖2,

while d(m
1scaled

, f
1
) = 0. The desired feature, in this case, must be an exact replica

of the original features, as they are all equal to each other. In Figure 2, the usefulness

of preserving the m
x
version is showed in the creation of the second metagene.

Without this non-scaled metagene, the obtained feature would have been m
2
=

1/2m
1
+1/2 f

3
, obtaining an undesired bias towards the f

3
feature. If this process

is repeated in a real-case scenario, the result will be metagenes resembling more

and more the last added components rather than the first joined ones, frustrating

the original meaning of the whole process to capture the common behavior of gene

clusters.

With both the Euclidean and Treelets clustering techniques, a new feature set is

produced. It is obtained as a hierarchical tree, in which the non-leaf nodes are formed

by metagenes. Subsequently, the newly created features are added to the original

feature to improve the prediction capabilities. The metagenes can improve the next

steps in the classification framework in different ways. They expand the feature

space, thus increasing the probability to find suitable features for classification and

they reduce the noise impact when clustering groups of similar genes.
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Initial feature set of three equal genes

F
0
=

{

f1, f2, f3
}

with f1 = f2 = f3

Two metagenes will be created

1. metagene m1 joining f1 and f2

m1 =
√

1/2f1 +
√

1/2f2

m1scaled = 1/2f1 + 1/2f2

2. metagene m2 joining m1 and f3

m2 =
√

2/3m1 +
√

1/3f3

m2 =
√

1/3f1 +
√

1/3f2 +
√

1/3f3

m2scaled = 1/3f1 + 1/3f2 + 1/3f3

Scaled versions m1scaled and m2scaled are used to define the similarity
with the Euclidean distance because they preserve the components dy-
namic ranges. These versions are then used as metagenes, enhancing
the original feature set.

The non-scaled versions, m1 and m2 preserve the energy distribution
among the elementary components. They are used as child nodes when
a new metagene is built either from m1scaled or m2scaled.

Fig. 2. Example of metagene creation with Euclidean clustering.

3. Feature selection algorithm

After the metagene creation step, the feature set has been enriched with a whole new

group of alternatives. The main problem now is to choose an appropriate subset for

classification. This task is more compelling after the metagene introduction, which

has almost doubled the features number, while the sample number is still the same.

In this work, a wrapper algorithm has been implemented, because of its mul-

tivariate potential and of its ability to be used with virtually any classifier17,8.

The chosen algorithm is called Improved Sequential Floating Forward Selection

(IFFS)21. It is an evolution of the Sequential Floating Forward Selection (SFFS)23

which adds a replacing step to the original algorithm. The choice has fallen on the

IFFS algorithm since our aim was to find an algorithm to choose good subsets and

able to reproduce its results over time if the initial conditions do not change. IFFS

adds more evolution ability to the SFFS algorithm and evolution has proven to be

useful in feature selection when dealing with high dimensional feature sets. Evolu-

tionary search algorithms like the genetic algorithm15, genetic programming10 or

NSGAA II6 have shown good predictive power thanks to the mutation possibility of

the selected feature set throughout the learning process. However, these algorithms
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Fig. 3. IFFS feature selection algorithm.

are for their own nature random and strongly depend on the initial population,

thus limiting the solution space. Many parallel runs are then needed to obtain a

final solution as stated in23, where it is also noticed that evolutionary algorithms

performances tend to degrade as the feature number increases.

In Figure 3, the flowchart of the IFFS algorithm is illustrated. The search process

starts with an empty set and ends when a threshold value is reached. The threshold

is either the maximum accepted number of features or a maximum number of iter-

ations in case the algorithm has entered in an infinite loop. After the initialization,

the selection process enters in a loop of tasks. At first there is the add phase, where

all those features not yet selected are added to the current set one at a time. For

each one, a classifier is trained and the correspondent classification score J(·) is

calculated. The feature obtaining the best J(·) is added to the current set. Then, if

the threshold has not been reached yet, the algorithm starts a backtracking phase.

In this step the weakest feature in the subset (i.e. the feature whose elimination

implies the minimum performance loss or the maximum performance gain) can be

eliminated. If the elimination improves J(·), the weak feature is removed and a new

backtracking phase is performed. Otherwise, the algorithm looks for substituting

one feature in the replacing phase. In this last phase, a substitute is chosen for

each feature in the current set via an analysis similar to the add phase. If the best

substitution has proven useful, (i.e. the J(·) value with the substitution is better
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than without), the current set is updated and a new backtracking phase takes place.

Otherwise, the algorithm goes back to the add phase.

3.1. Feature ranking criterion

Throughout the feature selection process a major role is played by the J(·) score. It
estimates the classification ability of the proposed strategy. Being IFFS a wrapper

algorithm, the classifier rule is iteratively applied in each step. The chosen classifier

in this work is the Linear Discriminant Analysis (LDA), due to its good properties

of simplicity, interpretability and precision3,24. During the feature selection LDA is

applied multiple times and, in every case, a J(·) score is extracted.

The most popular J(·) score is the classification error rate. When sample scarcity

is not a problem, usually the error rate is estimated on thousands of samples and

a reliable (generalizable) estimation is obtained. In the current microarray clas-

sification scenario, no such sample abundance is available, so different error rate

estimation techniques have been developed like cross-validation, bagging, boosting

or bolstered resubstitution3,9,5. Among the possible alternatives, the ten times five

fold stratified cross validation estimator20 has been chosen for the training phase.

3.1.1. The reliability parameter

To integrate the error rate as a fitness estimator in a small sample scenario, an

additional value is introduced to define the J(·) score: the reliability. This parameter

considers that a feature obtaining well separated classes is better than a feature in

which the class separation is very thin. It tries to transfer the univariate t-tests

concept (i.e. give more importance to features having large mean class separation

and small intra class variance) to a multivariate scenario by considering the classifier

point of view.

The reliability parameter, r, measures a weighted sum of sample distances from

the classification boundary as goodness estimation. It is calculated on the test set

samples and the final value is the mean through the cross validation iterations.

Inside each iteration, the reliability parameter is defined as in Eq.(3.1) for a binary

classifier. In Eq.(3.1), ntest is the test set dimension, cl is the class of sample l (it

can be 1 or 2), and p(cl) is the probability of class cl in the test set. The value dl is

the Euclidean distance of sample l from the classifier boundary with positive sign

in case of correct classification or negative sign otherwise.

r =
1

ntest · σ̂d

ntest
∑

l=1

dl
p(cl)

(3.1)

Finally, σ̂d =
√

σ̂2

1

n1

+
σ̂2

2

n2

, is an estimation of intra class variance of the sample dis-

tances from the classification boundary. In order to get a more complete estimation,

the intra-class variance is estimated using all the samples from both the training

and the test sets; n1 and n2 are the number of samples in class 1 and 2 respectively.
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The σ̂d parameter is defined as in the independent two-sample t-test denominator

with classes of different size and variance. In detail σ̂1 and σ̂2 are the estimated

variances of sample distances from the boundary for all the samples of class 1 and 2

respectively. Dividing r by σ̂d guarantees that it is invariant to a scaling factor, thus

r(f
a
) = r(kf

a
) k ∈ ℜ+. Dividing by p(cl) assigns to each class the same relative

weight and it is useful when the class distribution is highly skewed. The reliability

value, r ∈ [−∞ ∞], is positively influenced by large mean class separation in the

perpendicular direction to the classifier boundary, and by small intra class data

variance. On the other hand, it is negatively influenced by the error number and

intensity, making greater errors inducing greater penalizations.

3.1.2. Scoring rules

The final J(·) value is determined by both the reliability measure introduced in the

previous section and the error rate along the cross validation iterations. A particular

classifier is ranked to be better than another if its J(e, r) score is higher, where e

is the error rate and r is the reliability. The score definition is the key point for

the feature selection. An effective scoring rule using error rate and reliability can

highly improve the final classifier. In this work, three different scoring rules have

been studied to explore several combinations of e and r.

The first scoring scheme is a two-step ranking process introduced in2. Features

are firstly sorted by increasing error rate value, and then, reliability is taken into

account to break ties among features with equal error rate. This criterion produces

a lexicographic sorting of the features in which the reliability parameter has a

secondary role. The lexicographic sorting has obtained interesting results classifying

small, publicly available datasets2, reducing the number of needed features to get

a 0 estimated error rate with respect to state of the art alternatives. Nevertheless,

the lexicographic sorting is a rigid scheme. The benefits of the introduction of the

reliability parameter can fade when the test set cardinality grows. In such a case it

is less probable to have error ties, thus reducing the reliability contribution.

To make better use of the reliability information, two scoring rules have been

studied. Both of them unify in a scalar value the two sources of information. The

proposed score definition rules are influenced by error rate and reliability simulta-

neously, allowing a feature with higher reliability and slightly higher error rate to be

considered better than another with poor reliability but with a smaller error rate.

This flexibility can be useful for small sample datasets like microarrays. The first of

the two rules compares features in terms of the reliability value, properly penalized

depending on the estimated error rate. The aim of the penalization is to introduce a

fixed penalization factor to the reliability value for a constant error difference. Such

a behavior is obtained with an exponential penalization to the reliability value as

detailed in Eq.(3.2) where r is the reliability value, e is the error rate value, and α

is a penalization parameter.

J = r · exp
(

−sign(r) · 100
α

· e
)

(3.2)
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Fig. 4. Score surfaces in the error-reliability space depending on the three scoring rules.

J(e, r) is a product of the reliability value with a penalization coefficient ≤ 1 with

an exponential behavior depending on the error rate value. The −sign(r) factor in

the exponent has been included to highly penalize features with negative reliability,

while the α parameter defines the steepness of the penalization. The α value defines

the e−1 penalization interval: between two features with equal reliability value, a

α% difference in the error rate induces a e−1 penalization factor in the final score.

So, when α is small, the dominant parameter is the error rate (an extreme case

is when α → 0 the reliability has no influence at all), while when α is large the

dominant parameter becomes the reliability (when α → ∞ the error rate is not

taken into account).

The last introduced scoring rule is a linear combination of error rate and nor-

malized reliability. The linear combination score is defined in Eq.(3.3) as a weighted

sum of error rate e and a normalized reliability value rn = (r − min(r))/max(r),

where min(r) and max(r) are respectively the minimum and the maximum values of

the reliability obtained in the current search iteration. The α parameter is bounded

between 0 and 1 and it defines the relative importance of reliability with respect to

the error rate.

J = α · rn + (1− α) · (1− e) α ∈ [0, 1] (3.3)

The scoring surface has a linear trend both in the error rate and in the reliability

direction. The main change with respect to the exponential penalization scoring is

that, here, a constant penalization is added (not multiplied) to a constant error rate

increase. To visualize how the possible score surface changes with the scoring rule,

Figure 4 is introduced. It shows the assigned score values to points in the Error-

Reliability space for the exponential combination, the linear combination and the

lexicographic sorting.
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Table 1. Microarray datasets used for classification.

Training set Validation set

Dataset
Endpoint description

Affymetrix

Platform
Tot Pos. Neg. Tot Pos. Neg.

Hamner Lung tumorigen vs.
non tumorigen

A Mouse 430.2.0
70 26 44 88 28 60

NIEHS
Liver toxicant vs. non
toxicant

C
Rat 230.2.0 214 79 135 204 78 126

Breast
cancer

Pre operative treat-
ment response

D Human
U133A

130 33 97 100 15 85

Estrogen receptor
status

E
130 80 50 100 61 39

Multiple
Myeloma

Overall survival mile-
stone outcome

F Human
U133Plus2.0

340 51 289 214 27 187

Event-free survival
milestone outcome

G
340 84 256 214 34 180

Sex of the patient
H

340 194 146 214 140 74

Negative control, ran-
dom assignation

I 340 200 140 214 122 92

From Figure 4 it can be observed how in the exponential combination case, the

score has an exponential decrease along the Error dimension, while it has a linear

trend in the Reliability dimension. The scores with the linear combination rule lie

onto a rotated plane in the space with the rotation axis passing through the (0, 1)

and (1, 0) points. It shows linear trends in both dimensions (Error and Reliability)

with slopes equal to 1 − α and α respectively. The lexicographic scoring in Figure

4 is visualized in a very coarse scenario formed by only 10 allowed error values

(imagine a test set composed of 10 samples only) in order to show its behavior. It

is a stairway-like surface showing how the main dimension is the Error value. Only

if two features share the same error value the reliability is taken into account (it

shows a linear trend in the reliability direction). Otherwise the score of a feature

with smaller error rate is higher, regardless of the reliability value. From Figure 4

it can be observed how both the scoring rules combining reliability and error rate

in a scalar value radically change the score surface. From a stairway-like surface

(with discontinuities between possible error rates), the score surface is transformed

into a continuous surface in which the reliability gains more decisional power. This

change is more noticeable when the test set cardinality grows. In such a scenario,

the lexicographic scoring would be like a stairway with many small steps, making

the reliability parameter almost useless.
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4. Experimental protocol

In this section, the datasets used to evaluate the predictive potential of classifiers

built with the proposed framework are presented. Afterwards, the experimental

protocol is detailed, from the data preprocessing steps to the adopted parameter

setup for the classification analysis.

4.1. Data

The predictive properties of the proposed framework have been evaluated on a sub-

set of the six datasets provided by the MAQC consortium24. There, six datasets

containing 13 preclinical and clinical endpoints coded from A through M have been

made available to a selected group of analysis teams24. Each coded endpoint repre-

sents a different sample classification implying that the same dataset can be classi-

fied following various criteria like treatment, outcome, sex, random, etc.

Out of the six original datasets, four of them have been considered in this work,

corresponding to endpoints A, C to I. These datasets have been chosen because

they are publicly available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE16716, and a detailed explanation of the endpoint composition is given in

Table 1. The remaining dataset have not been analyzed because, up to now, not all

the necessary data are publicly available.

The MAQC data are highly reliable, selected after a quality control process,

with the specific aim to provide a common test ground for prediction algorithms.

For each endpoint, two datasets are provided. The first one called the Training set

is meant to be used for the classifier training, while the second one is named Vali-

dation set and it is to be used as an independent test set to validate the prediction

performance. An additional advantage when analyzing the MAQC data is that a

diverse collection of analysis teams has worked on the same data, following the same

evaluation procedure and publishing their results24,22,19. An accurate benchmark of

a new algorithm can be done to understand how well it performs when compared

to a considerable number of state of the art alternatives.

4.2. Experimental protocol

The experimental setup to validate the potential of the proposed framework is

outlined here. The first step is the input data preprocessing. It consists in verifying

that the data are already in a logarithmic scale and, if not, simply computing the

base two logarithm of the data. After that, a minimum threshold equal to log210

is applied in order to remove small valued probe sets since they are considered

unreliable11. Subsequently, each probe set is forced to have a zero mean.

Afterwards, each training dataset is processed to create the metagenes, gener-

ated either with Treelets clustering, or with Euclidean clustering as explained in

Section 2.1. Finally, the enriched training dataset is then analyzed by the feature

selection algorithm to properly choose a small number of features, genes and meta-
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genes, with the algorithm explained in Section 3 to produce a prediction model to

be tested on the corresponding validation dataset.

The performances have been evaluated in terms of the Matthews Correlation

Coefficient (MCC) and in terms of prediction accuracy. The accuracy measures the

proportion of correctly predicted samples. In is defined by:

TP + TN

TP + TN + FP + FN
(4.1)

where TP is the number of the true positives identified by the classifier, TN are

the true negatives, FP are the false positives and FN are the false negatives. With

true positive it is meant a sample categorized as positive, P, in Table1 and correctly

classified as positive by the classifier. The remaining values of TN, FP and FN

are consequently defined. Whilst the accuracy is the most common performance

indicator, it can be not informative enough when the class distribution is highly

skewed. High accuracy values can be obtained by assigning all the samples to one

class only. On the contrary, the MCC is not influenced by the class distribution

skewness and, for this reason it has been adopted as the principal performance

measure in the MAQC study24. The MCC is defined by:

TP · TN − FP · FN
√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4.2)

The MCC can assume values from 1 (perfect classification) to −1 (perfect inverse

classification).

In the final performance evaluation step, the proposed algorithm is applied to

develop prediction models over the training datasets. The predictive ability is mea-

sured over the independent validation sets extracting the respective MCC and ac-

curacy values. Inside each training phase, a ten times five-fold stratified cross val-

idation has been adopted20. Furthermore, in order to reduce the cross validation

variance, a different dataset partition has been applied at each iteration of the

feature selection (add, replacing or subtracting phase).

The proposed framework has been tested in different configurations to assess its

predictive potential, to confirm that the metagene addition is beneficial for classi-

fication and to verify that a scoring rule, J(·), using both the error rate and the

reliability can improve the final result. Experiments have been conducted applying

the Treelets and the Euclidean clustering algorithms. These results have also been

compared with the case in which no metagenes are added to the original feature set.

In this way it is possible to evaluate the best enrichment technique and to quantify

the improvements resulting from the use of metagenes. For each case, the three scor-

ing rules J(e, r) have been studied alternatively. For the exponential penalization

rule and the linear combination rule, three different α parameter values have been

tested. The three values are chosen after a previous optimization study. In detail,

for the exponential penalization case, the chosen α values are [5 10 15], while for

the linear combination rule, α can be [0.05 0.10 0.15].
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5. Results and discussion

The experimental results following the protocol defined in Section 4 are presented

and discussed here. The proposed framework has been tested in different configu-

rations and compared with state of the art alternatives from MAQC study24.

In Table 2, the mean MCC and accuracy results across the analyzed endpoints

from24, A C D E F G H I, are showed. Each datXX expression identifies a different

classifier developed by a different research group involved in the MAQC study. The

datXX values are those whose results are reported in24. As it can be observed,

the MCC results in Figure 2 span a range from 0.284 corresponding to dat3, to

the 0.490 obtained by dat24 group, while the accuracy values span from 65.43% of

Dat3 to 83.86% of Dat20. The best alternative is different depending on the chosen

measure. This variation is linked to the class distribution skewness which can lead

an algorithm to have a high accuracy but a very low or null MCC value. This

is exactly what happens to Dat20 analyzing endpoint F: it has 87.38% accuracy

while MCC= 0 because it considers all the samples pertaining to a single class

which corresponds to 87.38% of the validation set samples. The MCC value better

evaluates the performances of the scheme, particularly in cases of uninformative

classification. The I endpoint is not considered in the mean calculations because

it is a negative control dataset on which algorithms should produce bad results

because class memberships have been randomly defined (see Table 1). Results in

Table 2 are organized by increasing MCC value along each column.

Table 2. MAQC mean MCC and mean Accuracy results

Group MCC Accuracy Group MCC Accuracy

dat3 0.284 65.43% dat11 0.453 75.59%

dat33 0.300 66.04% dat36 0.457 79.18%

dat7 0.307 71.04% dat10 0.458 78.39%

dat19 0.384 79.52% dat4 0.468 81.49%

dat29 0.397 81.78% dat12 0.476 82.54%

dat35 0.419 77.69% dat25 0.477 80.81%

dat18 0.428 77.29% dat13 0.488 80.67%

dat32 0.431 78.89% dat24 0.490 81.13%

dat20 0.443 83.86%

In Tables 3, 4 and 5 the results applying the proposed framework on the datasets

from Table 1 are presented. Each table includes the results pertaining to a different

scoring rule: the lexicographic sorting, the exponential penalization or the linear

combination.

In Table 3, the mean MCC and accuracy values with the lexicographic scoring are

showed. In each column the results corresponding to a different metagene generation

method are reported: Treelets clustering, Euclidean clustering, or None. The None

column corresponds to the results when no metagene has been considered. As for
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Table 3. Mean results adopting the lexicographic scoring scheme

Lexicographic sorting

Treelets Euclidean None

MCC Accuracy MCC Accuracy MCC Accuracy

0.423 77.46% 0.418 76.18% 0.381 75.48%

Table 4. Mean results adopting the exponential penalization scoring scheme

Exponential penalization

α Treelets Euclidean None

MCC Accuracy MCC Accuracy MCC Accuracy

5 0.475 84.02% 0.457 81.57& 0.442 82.99%

10 0.495 83.95% 0.460 83.61% 0.421 82.66%

15 0.483 83.67% 0.451 83.187% 0.457 83.30%

the method reported in24, the I endpoint is not considered in the mean calculation

due to its random nature. As can be seen, the introduction of metagenes allows

obtaining higher mean MCC and accuracy values, thus producing better classifiers.

With the lexicographic sorting the best MCC result is 0.423, with 77.46% accuracy,

if Treelets clustering as metagene generation method is chosen.

Table 4 contains the collected values applying the exponential penalization scor-

ing rule. Results are organized in four columns. The left column specifies the α

parameter, while the remaining three columns are organized as in Table 3. Chang-

ing the scoring rule leads to remarkably better results than those in Table 3. The

simultaneous use of both the error rate and the reliability allows us to reach better

performances. Here also, results with metagenes are better than without and the

best result is obtained when Treelets clustering is adopted and α is equal to 10.

Finally, the best mean MCC value is even higher than the best one of Table 2 from

Dat24. There, the best MCC is 0.490, while here 0.495 is reached, supporting the

proposed framework as an excellent alternative to state of the art methods. Con-

cerning the accuracy values, with Treelets clustering and α = [5, 10], better results

than those in Table 2 are obtained. The highest accuracy value is 84.02%, obtained

with α = 5.

In Table 5, the results relative to the linear combination score are showed. The

organization is the same as in Table 4. In this case too, the metagenes have confirmed

Table 5. Mean results adopting the linear combination scoring scheme.

Linear combination

α Treelets Euclidean None

MCC Accuracy MCC Accuracy MCC Accuracy

0.05 0.483 83.45% 0.437 81.58% 0.444 81.46%

0.10 0.468 83.31% 0.486 83.60% 0.444 81.46%

0.15 0.469 83.25% 0.486 83.19% 0.444 81.46%
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Fig. 5. Mean MCC values comparison between MAQC results and the best alternatives for the
different scoring techniques adopted.

to be useful for classification because the results obtained with Treelets or Euclidean

clustering are better than without. A comparison with the lexicographic sorting

shows how, generally, the mean results are higher. In this case, the best mean MCC

is 0.486 when Euclidean clustering is adopted and the α parameter is between 0.1

and 0.15, while the highest accuracy value is 83.60% when α is set to 10. Observing

the results using both linear combination and exponential penalization rule, the

MCC values are quite stable to small variation of the α parameter. This is a good

property because there is no need to precisely optimize the alpha value.

To visualize the proposed algorithm performance in comparison with the state

of the art alternatives from24, Figure 5 and 6 are introduced. In Figure 5, the results

are sorted by increasing meanMCC value and are represented as columns. The MCC

value for each alternative is printed above each column, and below the corresponding

method is indicated. In Figure 6, the accuracy values are presented, sorted by

increasing values. All the results from Table 2 are included and painted as uniform

light gray bars. For space and clarity reasons, not all the results obtained with the

proposed framework are included. A selection of them is proposed representing only

the best three results for the exponential penalization and for the linear combination

rule, and the overall best result with the lexicographic sorting. The result from

the lexicographic sorting scheme is painted as a black bar and is identified by the

Lexicographic label. Results applying the linear combination scheme are highlighted

by a black and white horizontal lines pattern. The labels start with lin xx E, where

xx is the α value multiplied by 100 and E indicates that the Euclidean clustering

has been used. The values corresponding to the exponential penalization scoring

rules are coded as dark gray columns. The labels are coded by exp xx T, where xx

is the α value and T indicates that the Treelets clustering has been adopted. As

can be observed in Figure 5, the proposed framework obtains results comparable

to the best state of the art alternatives when the linear combination scoring or the
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Fig. 6. Mean accuracy values comparison between MAQC results and the best alternatives for the
different scoring techniques adopted.

exponential penalization rule are used. Furthermore, the exp 10 T obtains the best

overall mean MCC value. From Figure 6 it can be observed how both exp 10 T

and exp 5 T obtain better values than the compared state of the art alternatives.

Furthermore, it is shown how the accuracy value too is robust to small α variations.

The mean number of chosen features by all the presented alternatives spans

between 2.14 of exp 10 T to 3.43 of lin 10 E. As can be seen, the metagene creation

process has almost doubled the number of features compared to the original number

of genes, but the final classifier actually uses a very low number of features to

perform the classification.

The proposed framework provides competitive performances with respect to

the state of the art alternatives. To validate this result, a further study has been

performed to assess the robustness of the obtained performance. The study consists

in a 50 runs Monte Carlo analysis of the classification endpoints. This 50 run setup

has been proposed to have a broader range of experiments to assess the performance

stability linked to the use of cross validation as performance estimation method,

which is known to have a large variance4. In each run, the framework setup is the

same as the best alternative: Treelets clustering as metagene generation method

and exponential penalization with α = 10 as scoring rule for feature selection.

The results are shown in Figure 7 as a boxplot, and some results statistics are

presented in Table 6. Each column in Figure 7 corresponds to a different endpoint,

labeled along the x axis. For each column, an asterisk identifies the MCC value

obtained in the previous study (the values used to obtain the mean MCC value in

Figure 5), whose values are included in the last column of Table 6 under the label

of run 0.

The values are collected in the same way as the run 0 iteration, for each end-

point, classifiers have been built up to five features and the best one is then con-

sidered in the mean calculation. Results for each endpoint are presented separately

to better identify how the algorithm performance can change depending on the

analyzed data.
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Fig. 7. Boxplot of the obtained results along the 50 independent runs. Each column corresponds
to a different endpoint.

Table 6. Statistical properties of the Monte Carlo simulation.

Endpoint MCC Accuracy Run 0 Run 0
MCC Accuracy

A 0.2176 67.37% 0.2750 65.91%

C 0.7949 90.25% 0.7700 89.22%

D 0.3869 80.49% 0.3690 80.00%

E 0.7732 89.17% 0.7680 89.00%

F 0.1147 86.3% 0.1800 87.85%

G 0.1723 79.57% 0.2430 82.71%

H 0.8609 93.21% 0.8550 92.99%

I 0.0564 55.14% 0.0510 52.68%

What can be observed from both Figure 7 and Table 6 is that the results show

a high robustness in the analysis of most endpoints. The obtained values are tight

around their mean value for the endpoints A,C,D,E,H,G and I. The mean values are

very close to the run 0 results. The mean values in all these endpoints are slightly

higher than the run 0 results, except for the G and A endpoints, where the run 0

results are well above the mean in the upper tail of the MCC distribution. About

the F endpoint, it shows a considerably higher variability in the MCC distribution

and this is mainly due to the class distribution skewness. In this endpoint, the pos-

itive class represents about the 15% of the training set. This eases the choice of

uninformative features during the feature selection phase. The choice of an uninfor-
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mative feature (a feature classifying all the samples to one class) biases the feature

selection process and can lead to very different results. The Monte Carlo simulation

confirmed that the predictive power is mainly determined by the analyzed dataset24.

About the G endpoint, the Monte Carlo results are quite robust but inferior to the

run 0 result. This lead to think that the formerly obtained MCC value is due to

some fortunate cross validation partition that allowed the selection of more useful

features. Such lucky case is not unique as other runs may obtain even better values

in the 50 run simulation (marked by the crosses outside the box). These results can

be interpreted as “outliers” in the population distribution which underlines how the

cross validation partition can change the final results. The MCC and accuracy val-

ues for the remaining endpoints are good and very consistent. This is an important

feature of the proposed framework because it produces robust results. The results

stability seems to be connected with the class distribution skewness which can lead

to the choice of uninformative features.

To analyze how the class distribution skewness influences the prediction per-

formances, a final test with synthetic data has been performed. The experimental

process follows the protocol introduced in13, limiting the total feature number to

1000 and the Monte Carlo iterations to 30 due to calculation time reasons. More-

over, a skewness dimension has been introduced. In13, the two classes have the same

number of samples, while here three different setups have been tested. Class 1 may

represent 50%, 70% or 90% of all the available samples. For each Monte Carlo itera-

tion, a different dataset is built, the hierarchical tree is built with Treelets clustering

and classifiers up to 10 features are trained with the exponential penalization rule

and α = 10. For each iteration, the best classifier in terms of MCC is used for the

following analysis.

Table 7 contains the summary of the study based on synthetic data. Results

are organized in three subtables, one for each data generation model. In13, three

data generation models have been proposed: Redundant, Synergetic and Marginal,

producing data with different distributions. Each subtable presents the results or-

ganized by size of the training set because it is an important variable about the

possible overfitting, and organized by skewness, which is the main variable in this

study. For each, skewness-training set size, the mean MCC value, the standard de-

viation of the MCC (Std), and the mean feature number (# F) are presented. The

mean is calculated not only along the Monte Carlo iterations, but also along the

other varying parameters. This is done for sake of synthesis and because the focus is

on the skewness. In a complete algorithm assessment, many more results should be

presented taking into account dependencies while varying each one of the possible

parameters.

Analyzing the results in Table 7, it can be observed how in both the Redundant

and the Synergetic models, the high class skewness has a negative effect over the

MCC value. When the training set size is not too small, 120 and 180 samples, the

MCC and skewness are inversely proportional along all the studied values. The
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Table 7. Results of the study based on synthetic data. The three subtables correspond to the
three different data distributions. Each subtable is organized showing the values depending on the
skewness value and the different size of the training set. The Train column contains the size of
the training set, the MCC columns shows the mean MCC value across the different experimental
conditions and Monte Carlo iterations while Std and #F columns contain the MCC standard
deviation and the mean number of selected features respectively.

Skewness - Class 1 percentage -

50% 70% 90%

Redundant model

Train MCC Std # F MCC Std # F MCC Std # F

60 0.509 0.120 4.50 0.431 0.140 4.83 0.319 0.193 3.58

120 0.532 0.086 2.58 0.468 0.117 4.67 0.323 0.143 3.50

180 0.545 0.071 2.75 0.492 0.086 3.33 0.346 0.120 7.33

Synergetic model

Train MCC Std # F MCC Std # F MCC Std # F

60 0.343 0.184 4.58 0.315 0.187 2.92 0.325 0.239 1.83

120 0.431 0.133 5.42 0.351 0.143 5.83 0.266 0.221 4.75

180 0.475 0.108 5.50 0.407 0.109 5.92 0.257 0.189 6.50

Marginal model

Train MCC Std # F MCC Std # F MCC Std # F

60 0.509 0.159 6.58 0.555 0.150 3.25 0.490 0.193 2.17

120 0.549 0.148 7.50 0.610 0.135 4.92 0.542 0.211 2.92

180 0.570 0.139 7.75 0.631 0.137 8.17 0.572 0.193 4.00

marginal model instead presents a different behavior in which the best MCC values

are constantly obtained with the intermediate skewness value and in one case, 180

training samples, the 50% case is the one obtaining the, slightly, worse performance.

It can be stated how the skewness negatively influences the performance when the

data have a redundant or synergetic model distribution, while with data represented

by the marginal model, such direct relation does not hold.

What holds throughout all the results in Table 7 is the mean standard deviation

of the MCC values. When the distribution is highly skewed (the 90% case) the

standard deviation is always higher than the other cases, regardless of the mean

MCC, whether it is better or worse. This is similar to what has been observed in

the MAQC Monte Carlo study where the F endpoint results showed a much higher

variability than any other endpoint.

About the mean selected feature number, the values span from 1.83 to 8.17. The

best classifiers obtained by the proposed algorithm use also a reduced number of

features in the synthetic case. This behavior helps in the training phase since the

maximum feature number can be bounded by values of small magnitude.

The proposed analysis framework offers additional benefits other than the pre-

diction accuracy thanks to the introduction of the hierarchical metagene structure.

These benefits can make the use of this framework even more appealing from an

analysis and hypothesis generation point of view. To illustrate them, a more detailed

look to the Run 0 results is provided. From Tables 3, 4 and 5, it is shown how using

metagenes improves the classification results. Almost 15% of the chosen features in
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Run 0 and in the Monte Carlo simulation are metagenes. These features extract

the common behavior of gene clusters, reducing the noise thanks to the linear com-

bination of individual genes. An example comes from the E endpoint classification,

obtained applying LDA on two features: an individual probe set, 205225 at, and a

metagene merging three probe sets named: 213462 at, 39548 at and 39549 at. These

three probes show high pairwise correlation, higher than 90%, and, after a gene list

analysis with DAVID14 and GSEA25, all refer to the neuronal PAS domain protein

2 (NPAS2). The chosen metagene is a summary of the NPAS2 behavior by merging

three different probes expressing the same biological element.

Furthermore, the metagene structure can be useful for hypothesis formulation

to infer biological relations between probe sets. An example of this potential in

Run 0 is the endpoint C analysis where the chosen metagene is formed by two

elements, 13763271 at and 1379381 at. The first one, 13763271 at, corresponds to

the tumor necrosis factor receptor superfamily member 14, (TNFRSF14), while

no additional information can be found about the 1379381 at probe set neither in

DAVID nor in GSEA. As a result, this metagene may suggest that further analysis

and experiments on the 1379381 at probe set in relation with the tumor necrosis

factor receptor superfamily could be initiated.

Finally, the proposed framework offers a model flexibility to deal with unpre-

dictable problems during the numerical analysis and feature selection such as the

probe set availability for further validating experiments. A practical case is when

one of the chosen features is not available for a further validation with immuno-

histochemistry (IHC), due to the unavailability of the respective antibodies26. In

that condition, the inferred hierarchical structure offers an efficient way to find

alternatives to the best proposed model. Two cases are discussed here:

1. One of the metagene components is not available for validation;

2. An individual gene is not available for validation.

Both cases are studied analyzing the Run 0 results about the E endpoint classifica-

tion. The final system is a two dimensional classifier composed of a metagene and

the 205225 at probe set. In the first scenario, assume that the metagene cannot be

used because one of its three probe sets is unavailable for validation. In such case,

the chosen metagene could be substituted by any of the available descendants in

the hierarchical tree without loosing too much in terms of the prediction perfor-

mance: at worst, an error rate of 11% and an MCC = 0.770 can be obtained instead

that an error rate of 9% and MCC = 0.812 (see Figure 8). The second scenario is

complementary to the first one. In this case, assume that the unavailable feature

for validation is an individual probe set, 205225 at, used jointly with the previously

chosen metagene. In this case, the hierarchical structure may be used to find the

closest available nodes to the originally selected feature. The obtained results are

shown in Figure 9. As can be seen, the best results (obtained with the 205225 at

probe set) correspond to MCC = 0.812 and error rate = 9 %. The best alternative

is obtained with the brother node which is a metagene. It gives a MCC = 0.756
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Chosen Metagene 

MCC = 0.812 

Error rate = 9% 

Metagene 

MCC = 0.770 

Error rate = 11% 

213462_at 

MCC = 0.770 

Error rate = 11% 

39548_at 

MCC = 0.770 

Error rate = 11% 

39549_at 

MCC = 0.789 

Error rate = 10% 

Fig. 8. Hierarchical structure with the chosen metagene as root. In each node, the obtained MCC
value and error rate are showed when the node is used instead of the chosen metagene. The
best values are obtained with the original feature, root node, but the substitution with one of its
descendant does not severely degrade the performances.

Father node 

205225_at

MCC = 0.812

Error rate = 9%

Brother Metagene

MCC = 0.756

Error rate =13%

Metagene

MCC = 0.7018

Error rate = 15%

Metagene

MCC = 0.7391

Error rate = 13%

Fig. 9. Substitution results for the 205225 at probe set. In each node the obtained MCC value
and error rate are showed when the node is used instead of the chosen probe set. The best values
are obtained with the original feature, 205225 at and the best substitution is with the brother
node, Brother Metagene. The root node has no available values because it cannot be chosen as a
substitute for the 205225 at node.

and an error rate = 13%. The brother node is a metagene composed of five probe

sets, 209602 at, 209603 at, 209604 at, 212956 at and 212960 at and obtains better

performance than any of its descendants in the hierarchical structure.

6. Conclusions

In this work, a new classification framework to analyze microarray data has been

studied. It has been developed as an improvement to the microarray classification

method presented in2. There are two key elements in the proposed framework. The

feature set enhancement through hierarchical clustering and the introduction of the

reliability in the score evaluation during the feature selection stage.

The feature set enhancement with the addition of metagenes has confirmed its

usefulness. The mean predictive performance has always improved when metagenes

are used. Concerning the two studied metagene generation techniques, the Treelets
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clustering has allowed to reach the best results even when compared with a wide

variety of state of the art alternatives. Moreover, a deeper look at the chosen meta-

genes composition showed how metagenes can also be useful in summarizing com-

mon behavior of probe sets sharing the same biological function. Furthermore, the

metagenes can help in the knowledge/hypothesis generation, focusing the attention

for a further study on probe sets not endowed with previous biological knowledge

but that are useful for classification.

The feature selection phase improvements are related to the introduction of the

reliability measure, defined in2. Scoring rules making a simultaneous use of both

the classification error rate and the reliability in the training phase allowed to reach

better results than using the lexicographic sorting introduced in2. When compared

to the results obtained with the lexicographic criterion, both the linear combination

rule and the exponential penalization rule improve the prediction results.

In the linear combination and the exponential penalization scores there is a

dependence on the α parameter which weights the relative importance of the error

rate and the reliability. It has been shown that the mean results are robust with

respect to small α parameter changes.

A Monte Carlo study has been performed to analyze the repeatability of the

best results. It showed how the results are consistent with those previously ob-

tained. The performance distribution is well concentrated around the mean values

in all the cases where the class distribution is not highly skewed. This behavior has

been studied analyzing synthetic data. This study has confirmed how the results

variability increases when the class distribution skewness is very high.

The proposed framework has proven to be a valid alternative for microarray

classification. It has a good predictive power, competing with a wide variety of

state of the art techniques and is consistent along repeated runs. Finally, an efficient

way to produce alternative classifiers to the proposed one is given by the inferred

structure, in case the chosen features are unavailable for further validation studies

or clinical applications.

The proposed algorithm has the potential to be straightforwardly applied to

the analysis of epigenetic data like methylation arrays, or to the analysis of gene

expression values obtained with Next Generation Sequencing: RNA-seq. In the latter

case, the input data must be the numerical values obtained after the application of

data processing techniques to assign expression values to individual genes. Future

studies will assess the predictive power of the proposed algorithm applied in both

scenarios in order to have a broader evaluation of its potential.
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