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Abstract Image segmentation methods are usually trained with pixel-level
annotations, which require significant human effort to collect. Weakly-supervised
pipelines are the most common solution to address this constraint because
they are trained with lower forms of supervision, such as bounding boxes or
scribbles. Semi-supervised methods are another option, that leverage a large
amount of unlabeled data and a limited number of strongly-labeled samples.
In this second setup, samples to be strongly-annotated can be selected ran-
domly or with an active learning mechanism that chooses the ones that will
maximize the model performance. In this work, we propose a sample selection
approach to decide which samples to annotate for semi-supervised instance
segmentation. Our method consists in first predicting pseudo-masks for the
unlabeled pool of samples, together with a score predicting the quality of each
mask. This score is an estimate of the Intersection Over Union (IoU) of the
segment with the ground truth mask. We study which samples should be an-
notated based on the quality score, leading to an improved performance for
semi-supervised instance segmentation with low annotation budgets.
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1 Introduction

Instance segmentation is a popular task in computer vision in which a mask
and a class category are predicted for each target object in a given image.
Typically, high-performing models rely on large datasets of annotated data,
which are expensive to obtain. This work extends our previous study that
presented a semi-supervised scheme, which we refer as BASIS [3] (from Budget
Aware Semi-supervised semantic and Instance Segmentation). Given a low
annotation budget, BASIS outperforms previous works on weakly or semi-
supervised semantic and instance segmentation.

The BASIS approach for semi-supervised instance annotation is depicted
in Figure 1. The pipeline consists in firstly training an annotation network
that uses only a few strongly-annotated samples. This annotation network is
subsequently used to pseudo-annotate unlabeled or weakly-labeled samples.
Later, a second segmentation network is trained with both the few strongly-
annotated samples and the pseudo-annotations. In our previous solution [3],
the subset of strongly-annotated samples was chosen randomly. In this work,
we propose an alternative selection scheme based on active learning, which
leads to an improved performance given a fixed annotation budget.

Our active learning method for sample selection consists in firstly training
the annotation network with a random subset of very few strongly-annotated
images. This model is later used to obtain pseudo-annotation masks, as in
BASIS, but in this case a confidence score for the masks is predicted, too.
This additional information is leveraged to select more images to be strongly-
annotated by humans, allowing a more efficient usage of the available annota-
tion budget.

Our main contribution is the definition of a novel way to estimate the con-
fidence score. Specifically, our model is trained to predict an estimation of the
Intersection Over Union (IoU) of the pseudo-labels and their corresponding
ground truth masks. IoU prediction has been used in previous works on ob-
ject detection for filtering object proposals [23]. To the best of the authors’
knowledge, our work is the first one to use as a selection criterion for active
learning. We name our selection strategy Mask-guided sample selection.

The summary of our contributions is as follows: 1) a novel method to
estimate the mask confidence score based on IoU score, being the first work to
leverage IoU prediction for active learning, 2) a study of the selected images,
which concludes that the best images to annotate are those that are neither
the easiest nor the most complicated of our dataset. Finally, 3) with the Mask-
guided sample selection strategy we reach higher performance compared to our
BASIS baseline, leading to state-of-the-art results at low annotation budgets.

The remainder of this manuscript is structured as follows: Section 2 cov-
ers the previous works on weakly and semi-supervised segmentation, active
learning pipelines and IoU prediction. Next, the benchmark of budget-aware
segmentation is explained in Section 3. Following, the semi-supervised archi-
tecture that we extend is reviewed in Section 4. In Section 5, the IoU quality
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prediction pipeline is described. In Section 6 the experimental validation is
presented. Finally, Section 7 draws the conclusions of this work.

2 Related Work

Weakly-Supervised Semantic Segmentation. Several works in the litera-
ture have proposed to use weak supervision to reduce the annotation cost. For
semantic segmentation, one of the most popular forms are image-level labels, as
they can be obtained with minimum human intervention. There are approaches
that treat image-level labels with multiple instance learning techniques [38][37]
[36], but these works achieve an accuracy far from their fully-supervised coun-
terparts. Other works develop Expectation-Maximization methods to learn
from weakly-annotated data [35]. More recently, a pool of works have focused
on localizing class-specific cues with Class Activation Maps (CAMs) [55] in
order to mine regions [49][22][1][50], while others obtain regions with atten-
tion mechanisms [53]. An alternative is to leverage noisy labels crawled from
the internet [19], and obtaining pseudo-annotations using low-level cues such
as saliency and edges.
Weakly-Supervised Instance Segmentation. The task that we address in
this work is instance segmentation with low annotation budgets. Few works
have addressed weakly-supervised instance segmentation in computer vision.
Bounding box labels have been exploited by [24][54][26] to recursively gener-
ate and refine pseudo-labels from a weak-labeled set. These methods typically
rely on bottom-up segment proposals [39][42]. In contrast with this approach,
[41] proposes an adversarial scheme that learns to segment without using any
object proposal technique. Although these works tackle weakly-supervised in-
stance segmentation, their weak supervision consists in using bounding boxes,
thus their main challenge resides in how to separate the foreground from the
background within a bounding box. The first work that uses image-level super-
vision for weakly-supervised instance segmentation [56] detects peaks of Class
Activation Maps (CAMs) [55], producing what they identify as Peak Response
Maps (PRMs). With them they generate a query to retrieve the best candi-
date among a set of pre-computed object proposals (MCG) [39]. Recently, [25]
builds on PRMs by using the pseudo-masks to train Mask R-CNN [17] in a
fully-supervised way, reaching better performance.
Semi-Supervised Segmentation. Semi-supervised learning has been widely
explored for image classification with techniques such as adversarial train-
ing [27,5], but to the authors knowledge, only [20][26] have tackled semi-
supervised instance segmentation in still images. However, they assume a huge
amount of weakly-labeled samples (using MSCOCO [28]). In details, [20] lever-
age bounding boxes as weak labels, and propose a weight transfer function to
predict the mask segmentation network weights from the bounding box pre-
diction network weights. On the other hand, [26] obtain pseudo-annotations
from bounding boxes relying on Grabcut [42] and MCG [39], and use these
annotations to train their models, which resembles to our pipeline.
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In our previous work [3], we focused on low-budget scenarios presenting
the first results for semi-supervised instance segmentation for the Pascal VOC
benchmark [7] with no extra images from other datasets, obtaining results
for very low annotation budgets. In this present work, we work with the same
pipeline but extend it to a better selection of samples to be strongly-annotated
for the semi-supervised scheme. We want to highlight that in contrast to pre-
vious works that have addressed semi-supervised instance segmentation, we
exploit image-level labels instead of bounding boxes, which is more challeng-
ing because no localization information is provided. On the other hand, our
annotations are easier and cheaper to obtain.
Active learning [45] consists in recursively selecting which samples to anno-
tate in order to train a network. The goal of this approach is the reduction
of the annotation cost, by only annotating those samples that will have more
impact to the learning of the model. This acquires special relevance in con-
texts where annotating samples is very expensive, e.g., in image segmentation
problems. Common active learning methods select samples according to two
main criteria: how uncertain and representative a sample is. The uncertainty
is related to how informative a sample is with respect to the learning process.

There are several methods that estimate the uncertainty, e.g., dropout
has been used to sample from the approximate posterior of a Bayesian CNN
to calculate the uncertainty of predictions when varying the model [11]. This
quantified metric can be used to request the annotation of subsequent training
batches of data [12][15]. More recent methods have also used Bayesian CNNs
to calculate the informativeness of images generated by a Generative Adver-
sarial Network (GAN) [31] in order to add these samples to the training set.
Another method [6] is based on bootstrapping, and consists in training several
networks with different subsets and calculate the variance in predictions across
the different networks in order to estimate uncertainty [52].

Some of the aforementioned methods not only base their selection on the
uncertainty criterion, but also on the representativeness of a sample. This
criterion is relevant to promote diversity among samples and to avoid redun-
dancy. One strategy used in computer vision is to extract image descriptors
with a CNN, and compare images with a cosine similarity metric [52] to avoid
picking very similar samples. Maximizing set coverage has also been stud-
ied [10]. Other metrics, such as content distance have been used to quantify
the distance between images to maximize content information [32][33].

Most of the above methods focus on image recognition and region label-
ing. The first works that handled active learning for large scale object detec-
tion [47] used as active learning criterion the simple margin selection method
for SVMs [46], which seeks points that most reduce the version space. More
recently, methods rely on modern object detectors [40][29], but still are based
on uncertainty indicators like least confidence or 1-vs-2 [4][43]. Notice that ob-
ject detection is very close to the instance segmentation task addressed in this
work. However, our sample selection criterion is based on the estimated quality
of the different masks predicted for each image, instead of using classification
scores as the previous approaches. We want to highlight that our method is the
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first one that proposes active learning for semi-supervised instance segmenta-
tion for Pascal VOC benchmark [7], and the first one to explore mask quality
prediction as an alternative to classification scores for active learning. Our
claim is that classification scores are suitable for object detection pipelines,
but do not reflect the quality of the actual pixel-wise annotation used to train
instance segmentation models.
IoU prediction IoU prediction has been used in recent works for filtering ob-
ject proposals in object detection tasks [23]. Precisely, in [23] the IoU between
predicted bounding boxes and ground truth bounding boxes is estimated, and
the authors argue that this score, in comparison to a class confidence score,
considers the localization accuracy. In their work they show how their ap-
proach leads to improved performance. Similarly to this work, [21] estimate
the IoU between the predicted masks and the ground truth masks, and use
this score to better filter object proposals for instance segmentation. In this
direction, we propose to also predict the Intersection Over Union of the pre-
dicted masks with respect to the ground truth as a measure of the confidence
of the prediction.

3 Benchmark for budget-aware segmentation

As in our previous work [3], we propose a unified analysis across different su-
pervision setups and supervision signals for instance segmentation. Our moti-
vation raises from the ultimate goal of weakly and semi-supervised techniques:
the reduction of the annotation burden. We adopt the analysis framework from
[2] and extend it to any supervision setup to compare to other works consid-
ering the total annotation cost.

We estimate the annotation cost of an image from a well-known dataset for
semantic and instance segmentation: the Pascal VOC dataset [7]. Our study
considers four level of supervision: image-level, image-level labels + object
counts, bounding boxes, and full supervision (i.e. pixel-wise masks). The esti-
mated costs are inferred from three statistical figures about the Pascal VOC
dataset drawn from [2]: a) on average 1.5 class categories are present in each
image, b) on average there are 2.8 objects per image, and c) there is a total
of 20 class categories. Hence, the budgets needed for each level of supervision
are:
Image-Level (IL): According to [2], the time to verify the presence of a class
in an image is of 1 second. The annotation cost per image is determined by
the total number of possible class categories (20 in Pascal VOC). Then, the
cost is of tIL = 20 classes/image × 1s/class = 20 s/image.
Image-Level + Counts (IL+C): IL annotations can be enriched by the
amount of instances of each object class. This scheme was proposed in for
weakly-supervised object localization [13], in which they estimate that the
counting increases the annotation time to 1.48s per class.
Hence, the time to annotate an image with image labels and counts is tIL+C =
tIL + 1.5 classes/image × 1.48 s/class = 22.22 s/image.
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Table 1 Average annotation cost per image when using different types of supervision.

IL IL+C Full BB

Cost (s/image) 20 22.22 239.7 38.1

Full supervision (Full): We consider the annotation time reported in [2] for
instance segmentation: tFull = 18.5 classes/image×1s/class + 2.8 mask/image×
79 s/mask = 239.7 s/image.
Bounding Boxes (BB): Recent techniques have cut the cost of annotating
a bounding box to 7.0 s/box by clicking the most extreme points of the ob-
jects [34]. Following the same reasoning as for dense predictions, the cost of an-
notating a Pascal VOC image with bounding boxes is tbb = 18.5 classes/image×
1s/class + 2.8 bb/image × 7 s/bb = 38.1 s/image.

Table 1 summarizes the average cost of the different supervision signals for
a single Pascal VOC image. In this work these annotation costs will be used
as reference to compare between different configurations or to other works.

4 BASIS

Our sample selection approach is implemented over the semi-supervised scheme
we introduced in [3]. Budget-Aware Semi-Supervised Semantic and Instance
Segmentation (BASIS) pipeline consists of two different networks. A first
fully supervised model fθ is trained with strong-labeled samples from the
ground truth (X,Y ) = {(x1, y1), ..., (xN , yN )}, being N the total number
of strong samples. The network fθ is an annotation network used to pre-
dict pseudo-labels Y ′ = {y′1, ..., y′M} for M unlabeled/weakly-labeled sam-
ples X ′ = {x′1, ..., x′M}. A second segmentation network gϕ is trained with
(X,Y ) ∪ (X ′, Y ′), as depicted in Figure 1.

Our setup consists in working with heterogeneous annotations: strongly-
annotated samples (with pixel-level annotations) and weakly-annotated sam-
ples with image-level plus counts (IL+C). This type of weak annotation con-
sists in indicating the class labels in each image, and the counts of how many
times each category appears.

The architecture for the segmentation network gϕ that we use is the recur-
rent architecture for instance segmentation RSIS [44]. We use the open-source
code released by the authors. RSIS [44] consists in an encoder-decoder archi-
tecture. The encoder is a ResNet-101 [18], and the decoder is composed of a
set of stacked ConvLSTM’s [51]. At each time step, a binary mask and a class
category for each object of the image is predicted by the decoder. The architec-
ture also includes a stop branch that indicates if all objects have been covered.
The main feature of this architecture is that its output does not need any post-
processing as in object proposal-based methods, where proposals need to be
filtered a posteriori. This way, the pseudo-annotations are directly the output
of the network itself.
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Fig. 1 BASIS pipeline from [3] consists of two networks, an annotation network trained
with strong supervision, and a segmentation network trained with the union of pseudo-labels
and strong-labeled samples (GT).

Training annotation network

GT LABELS
Annotation of unlabeled or 
weak-labeled images1

Training segmentation network with the GT and the pseudo-labels 

PSEUDO-LABELS

GT + PSEUDO-LABELS

2

3

Regarding the annotation network fθ, we modify the RSIS architecture to
adapt it to the weakly-supervised setup. The main difference is that, besides
the features extracted by the encoder, the decoder receives at each time step
a one-hot encoding of a class category representing each of the annotated
instances of the objects in the image. If there are several instances belonging
to the same class, a one-hot encoding of that class will be given as input at
several time steps, as many as the counts of instances of each depicted class.
As we did in our previous work [3], we call this architecture W-RSIS, where
W- refers to the weakly supervised approach.

5 IoU quality prediction

The main contribution of this work is proposing an additional output to the
W-RSIS annotation network that predicts the quality of each predicted mask.
This confidence score can guide an active learning algorithm in choosing which
images should be strongly-annotated given a limited budget. We propose to
predict the Intersection over Union (IoU) of the predicted masks over a hypo-
thetical ground truth as the guiding signal. As ground truth masks are avail-
able for the training data, the model can be trained and the confidence score
estimated. The pipeline can be seen in Figure 2. We call this new architecture
IoU-W-RSIS. The IoU measures the intersection between two regions divided
by its union, and it is a common metric to assess segmentation performance
(Equation 1).
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Fig. 2 IoU-W-RSIS model with the IoU branch. The model consists of an encoder for the
image, that is a ResNet-101, and a recurrent decoder that receives at each time step a class
category label, in this example, it receives at the first time step the label sheep, and in the
second time step it receives the same label, as in the image there are two instances of the
sheep category. The decoder also receives the features obtained by the encoder, and at each
time step produces a binary mask with the segmented instance, and a prediction of the IoU
of the produced mask.

t=0

t=1

sheep f

sheep f

fencoder

decoder
0.89

decoder
0.78

IoU(A,B) =
|A ∩B|

|A|+ |B| − |A ∩B|
(1)

IoU-W-RSIS will segment an object mask of the category fed in the input
and predict a confidence score of the segmentation quality at each time step.

The architecture that predicts the IoU is depicted in Figure 3. A branch
for IoU prediction is added to the decoder of the network, indicated in the
Figure as Mask IoU. This branch aggregates features of the decoder at different
spatial resolutions, concatenates them, and computes global average pooling.
Afterwards, we add a fully connected layer that predicts the IoU using an L1
regression loss. This loss term is introduced once the segmentation loss has
already converged. At that point, the network weights are frozen and only the
additional IoU branch is trained for a few epochs. To give more relevance to
the predictions of low IoUs, we predict the squared IoU, as suggested in other
scenarios in which small values have important relevance, as bounding box
offset regression for object detection [40].

With the proposed architecture, an IoU Score for each mask is predicted.
In our methodology we use an overall IoU per image instead of individual
IoU scores per object. This means that a human annotator will be asked to
annotate all object instances from the selected images. Therefore, to compute
the IoU Score for an image with M objects, we simply average the scores
predicted per each object, as seen in Equation 2.

IoU Score =
1

M

∑
iεM

IoUi (2)
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Fig. 3 IoU-W-RSIS model with the IoU branch for a single time step. The class label is
omitted in this figure for clarity. The input image is fed into the encoder and the features at
different resolutions are fed at different levels of the decoder. Each level of the decoder has a
convolutional LSTM (Conv LSTM) layer that receives a hidden state from the previous time
step, and produces features for the current time step. The features of the different levels
are pooled and concatenated, and are the input of a fully connected layer that predicts the
mask IoU. On the other hand, the features of higher resolution are the ones that produce
the binary mask that corresponds to the segment.
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6 Experiments

The IoU-W-RSIS annotation network presented in Section 5 is tested consid-
ering one active learning iteration for the task of instance segmentation. Our
experiments aimed at measuring the gain of a IoU-guided selection of the im-
ages to strongly-annotate, compared with a baseline of random selection as in
[3], and with baseline techniques for active learning based on Dropout [11]. We
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Table 2 Mean Absolute Error (MAE) of IoU prediction. Each column indicates the number
of samples used to train the IoU prediction branch, and each row is a different configuration
that we test. The one that yields best performance is when we freeze the segmentation
network and when the prediction of the model is the squared root of the IoU.

100 200 400 800 1464

Baseline 31.1 39.8 49.3 47.7 51.0
+ Freeze Seg. Network 24.8 16.7 19.0 17.1 16.6
+ Sqrt Loss 23.6 19.5 18.0 17.0 16.6

present experiments for the instance segmentation task for the Pascal VOC
2012 benchmark [7].

The standard semi-supervised setup adopted for this benchmark consists
in using the Pascal VOC 2012 train images (1464 images) as strong-labeled
images, and an additional set (9118 images) from [16] as unlabeled/weak-
labeled. In our work, we select which samples to strongly-annotate from the
Pascal VOC 2012 train images. The additional set of Pascal is used to obtain
pseudo-annotations for the semi-supervised pipeline.

This section is divided in two subsections, first we focus on the IoU predic-
tion task (Section 6.1), and then we study how to use this score for tackling
sample selection (Section 6.2).

6.1 IoU Prediction

In this first set of experiments we try several configurations to train the IoU
branch of the IoU-W-RSIS architecture. We train our proposed annotation
network IoU-W-RSIS with N ∈ {100, 200, 400, 800, 1464}, where N is the
amount of strongly-annotated samples. These N samples are randomly se-
lected from the Pascal VOC 2012 train set (that has a total of 1464 images).
Table 2 contains the Mean Absolute Error (MAE) computed as the mean of
the MAE of IoU Scores (Eq. 2) of the dataset for the different configurations.
The Baseline configuration consists in training the IoU branch at the same
time as the segmentation branch. In the next row, we freeze the weights of
the segmentation network after 150 epochs and only train the IoU branch (for
250 epochs). Finally, we optimize the squared root of the IoU, as small values
are specially relevant for this task, and this option leads to the best results.
As expected, the MAE tends to decrease from left to right in the table, which
corresponds to considering more strongly annotated images.

6.2 Mask-guided sample selection

The second set of experiments exploit the estimated IoU to select which images
should be manually annotated and used as supervision to train the annotation
network in the BASIS pipeline.
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Fig. 4 Active Learning pipeline to select next samples to be labeled by a human annotator.
The first step consists in training the annotation network with few strongly-labeled samples.
The second step consists in using the annotation network to obtain pseudo-masks for the
unlabeled samples, together with the masks quality score. Based on this score, some samples
are selected to be manually annotated by a human, and added to the pool of labeled samples
to re-train the annotation network.

Annotation 
network
(training)

Annotation 
network

(inference)

1 2

Unlabeled 
samples

pseudo-masks
masks quality

SelectionHuman 
annotation

Labeled 
samples

new annotated samples

Training of annotation net. with labeled images Prediction of estimated quality given an unlabeled image

Considering a fixed set of 1464 images from Pascal VOC 2012, our proposal
firstly trains an IoU-W-RSIS annotation network with a few randomly selected
samples (100), and later pseudo-annotates the remaining samples (1364) with
it. Together with the pseudo-annotations, the IoU-W-RSIS annotation net-
work predicts the IoU for each pseudo-label. With the estimated IoU for each
predicted mask we explore different approaches to select which subset of sam-
ples should be manually annotated. Finally, the manually annotated samples
are added to the training of the annotation network. This pipeline is depicted
in Figure 4. We follow the classic active learning setup, in which the samples
to be annotated are iteratively selected. In our case, we experiment with a
single iteration, but it could be easily extended to a looped pipeline.

6.2.1 Criterion for sample selection based on IoU:

The experiment in this section explores a criterion for selecting which images
should be strongly annotated by a human given their estimated IoU Scores.
As we want our analysis to focus on the selection criterion only, in this section
we will not use the IoU value predicted by our model but the real ground truth
value (oracle).

Our experiments start with an IoU-W-RSIS annotation network trained
with only 100 samples, which obtains a performance of 19.0 Average Precision
(threshold=0.5). After that, we select another N’ samples to be manually an-
notated, being N ′ ∈ {100, 300, 700} to make a total of N ∈ {200, 400, 800}
strongly-annotated samples. The criterion used to select these N’ samples con-
sists in first defining a set of IoU Scores (from 0 to 1.0 in steps of 0.1), that
we name β, and select the N’ images (being N ′ ∈ {100, 300, 700}) whose IoU
Scores are closest to these β values. Finally, the samples used to train the
annotation networks are the 100 initial random images plus these N’ selected
images. The performance obtained with these different subsets is presented in
Table 3, which reports the Average Precision (threshold=0.5). All configura-
tions have been trained 5 times, and the reported results are the average with
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Table 3 Oracle: mean Average Precision (th=0.5) for different selection criteria (5 runs
for each configuration). Each column indicates the number of images used to train the
segmentation models. The first row shows the results obtained with random selection of
samples, the second and third rows show a baseline sample selection method, whereas the
following rows show different selection criteria with our method. If β = 0.0 and the number
of training samples is 200, means that the first 100 samples are randomly-selected and the
next 100 are the ones that have a IoU closer to 0.0.

200 400 800

Random subset 22.7 ± 1.8 27.1 ± 0.8 34.5 ± 2.0
Dropout Baseline (highest) 21.4 ± 1.4 23.9 ± 1.3 28.1 ± 1.9
Dropout Baseline (lowest) 20.0 ± 0.9 24.8 ± 1.5 32.2 ± 1.4

β = 0.0 20.9 ± 1.5 24.1 ± 0.7 29.1 ± 1.3
β = 0.1 22.3 ± 1.5 23.8 ± 0.6 28.6 ± 0.7
β = 0.2 23.3 ± 0.8 24.4 ± 0.3 31.6 ± 1.1
β = 0.3 23.9 ± 0.8 26.5 ± 2.6 32.9 ± 1.4
β = 0.4 23.4 ± 2.7 29.0 ± 1.3 35.0 ± 0.6
β = 0.5 22.2 ± 1.1 28.9 ± 0.7 35.1 ± 0.9
β = 0.6 22.2 ± 2.4 28.6 ± 1.3 35.4 ± 2.4
β = 0.7 22.3 ± 1.2 26.7 ± 1.3 35.4 ± 1.4
β = 0.8 21.9 ± 2.0 25.3 ± 1.2 33.4 ± 3.1
β = 0.9 20.4 ± 1.1 25.9 ± 1.1 34.8 ± 1.9
β = 1.0 20.3 ± 1.1 25.2 ± 2.3 34.5 ± 1.3

the standard deviation of the performance of these different models. Notice
that we compare our approach to a random selection and to two baseline se-
lection criteria. These baselines consist in adding a dropout layer at the end
of the encoder of our model, with 50% of probability of dropping out the neu-
rons. Following, we test each of the trained models 5 different times with the
dropout, and obtain the predicted masks for each run. We compute the stan-
dard deviation of the pixels from the masks predicted, to see which samples
vary significantly between different runs when different neurons are dropped,
as a way to estimate the uncertainty of the predictions. Finally, we select the
images related to the lowest standard deviation values (Dropout Baseline low-
est) or the highest values (Dropout Baseline highest), similarly to previous
works [12][15].

The results in Table 3 show that there are multiple subsets that outperform
the random and the baseline selections. This means that our selection strategy
based on IoU is effective to reach better performance. We also notice that the
optimal predefined IoU Score is not fully consistent across different subsets
sizes (at N = 800 the optimal score is 0.6, whereas at N = 200 the optimal
score is 0.3). Interestingly, these optimal IoU Score values suggest that the best
options are the ones that select images that are neither the most challenging
of the dataset nor the easiest ones. We also observe that the dropout baselines
do not surpass our method. As our results with IoU Score indicate, the best
options for the dropout baselines may be related to neither the highest nor
lowest standard deviations. However, choosing a mid-range option for standard
deviation is not as intuitive as it is with IoU Score. In the latter case, we
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Table 4 Predicted IoU: mean Average Precision (th=0.5) for different selection criteria (5
runs for each configuration). Each column indicates the number of images used to train the
segmentation models. The first row shows the results obtained with random selection of
samples, the second and third rows show a baseline sample selection method, whereas the
following rows show different selection criteria with our method. If β = 0.0 and the number
of training samples is 200, means that the first 100 samples are randomly-selected and the
next 100 are the ones that have a predicted IoU closer to 0.0.

200 400 800

Random subset 22.7 ± 1.8 27.1 ± 0.8 34.5 ± 2.0
Dropout Baseline (highest) 21.4 ± 1.4 23.9 ± 1.3 28.1 ± 1.9
Dropout Baseline (lowest) 20.0 ± 0.9 24.8 ± 1.5 32.2 ± 1.4

β = 0.0 21.5 ± 1.1 23.7 ± 0.6 30.1 ± 1.7
β = 0.1 21.8 ± 1.6 23.7 ± 0.7 30.3 ± 1.7
β = 0.2 22.6 ± 0.9 25.0 ± 0.8 29,9 ± 2.2
β = 0.3 24.0 ± 1.3 26.9 ± 3.2 33,5 ± 3.1
β = 0.4 23.2 ± 0.4 24.8 ± 2.2 35.3 ± 0.9
β = 0.5 20.9 ± 3.1 25.0 ± 0.9 37.0 ± 2.0
β = 0.6 20.6 ± 1.2 27.5 ± 2.7 34.8 ± 3.0
β = 0.7 20.3 ± 1.0 26.2 ± 3.1 36.3 ± 1.1
β = 0.8 20.7 ± 2.1 26.9 ± 1.6 35,9 ± 2.5
β = 0.9 20.8 ± 0.8 26.1 ± 1.2 35,5 ± 1.1
β = 1.0 21.1 ± 1.5 24.8 ± 1.5 34.6 ± 2.1

only need to select an IoU which directly reflects the quality of the predicted
masks. Moreover, our method does not need to run the model several times
to select the samples, as it happens with the dropout baselines, thus it is
computationally more efficient.

6.2.2 Predicted IoU-selection:

The experiments in Section 6.2.1 with the real ground truth IoU (the oracle
experiment) showed that choosing samples based on the IoU quality metric
leads to better results than performing a random selection or a baseline active
learning selection.

In this section, we address the realistic case in which the IoU is predicted
by the same annotation network, instead of using the ground truth value as in
Section 6.2.1. Table 4 shows that for the three set sizes (N = 200, 400, 800)
better results are also obtained by selecting with the IoU criterion instead of
performing a random selection or using the dropout baseline defined previ-
ously. The optimal IoU scores are between 0.3 and 0.6. In fact, we observe
a tendency that for smaller subsets, a lower IoU score is optimal, whereas
for larger subsets, a higher IoU score works better. We also observe there is
no significant difference between the results obtained with the oracle and the
predicted IoU configuration.
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6.2.3 Sets analysis:

In this section we will analyse the properties of the N’ samples selected based
on the sample selection criterion when considering different IoU Scores pre-
defined values. We compare the subsets obtained from the oracle and the
predicted IoU configurations. In Figure 5 we depict an histogram of the aver-
age number of objects per image and the mean size of objects per image for
each of the subsets, depending on the predefined IoU Scores. The plot has two
different columns, the first one belongs to the oracle configuration and the
second one to the predicted IoU configuration. For both the oracle and the
predicted IoU configurations, we observe that lower IoU scores are related to
images with more objects per image and smaller objects. These two scenarios
correspond to very challenging cases in object detection, as pointed out by
previous works [14]. Finally, we can observe that the subsets created by the
predicted IoU follow a similar distribution to the oracle one.

As we observed in Section 6.2.2, the optimal IoU Scores are between 0.3
and 0.6. In Figure 5 we can see how images associated to these values tend to
have a close to the average number of objects per image (2.8 objects/image).
Regarding object size, we observe that objects tend to be neither the largest
ones nor the smallest.

Figure 6 shows some of the selected images when different IoU Scores are
considered. We observe that at high IoU Scores values (0.8 or 1.0), images
selected are easy, with only one or two large objects in the image. On the
other hand, at low IoU Scores (0.0 or 0.2) images have multiple, rather small,
instances. As our results indicate, the optimal selected samples to be strongly
annotated are those in the middle of the range. These are images that have
multiple instances but that are not too complicated to segment. We hypothe-
size that training with very difficult images can be inefficient if the model is
not capable to learn from them, while easy cases do not add much value to
the learning process.

6.2.4 Training of segmentation network:

In this section we focus on the final goal of the pipeline: training the segmenta-
tion network. As a first step, an annotation network of N = 200 is trained with
100 random samples and 100 selected samples (the ones that are closest to the
IoU score of 0.3, which is the optimal for this set size). The same procedure ap-
plies for N = 400 and N = 800, with thresholds 0.6 and 0.5 respectively. Once
the annotation network has been trained with the optimal selection of samples
given our mask-guided criterion, we use the network to pseudo-annotate the
additional Pascal set from [16], a total of 9118 images. Finally, we train the
segmentation network with the obtained pseudo-annotations and the available
strongly-labeled samples.

Table 5 compares the random selection of samples with the mask-guided
selection in terms of mean Average Precision (threshold 0.5). We observe that,
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Fig. 5 Analysis of the mean object size (first row) and number of objects (second row) of
the selected images when considering the oracle and the predicted IoU. We consider three
different scenarios, when 100, 300 or 700 samples are added to the initial 100 randomly-
selected set of samples.

Oracle IoU guidance

Oracle IoU guidance

Oracle IoU guidance Predicted IoU guidance

Predicted IoU guidance

for both the annotation and the segmentation networks, the mask-guided se-
lection reaches better results. Notice that the results obtained with the an-
notation network correspond to a case without semi-supervision, when only
strong labels are used to train W-RSIS or IoU-W-RSIS architectures. On the
other hand, the semi-supervised solution would correspond to the segmen-
tation network, with the RSIS architecture, whose results are significantly
better. The fully-supervised setup, when approximately 10k strongly-labeled
images are used for training, corresponds to an Average Precision at threshold
0.5 of 57.0, as reported in [44].

The annotation budgets for each configuration in Table 5 are reported
in Table 6. We observe that the mask-guided selection options have a slight
higher budget compared to the random ones. This is because the IoU-W-
RSIS annotation network takes as input the image-level labels plus counts.
We first predict the IoU score for all samples from the Pascal VOC 2012 train-
ing set (1464 samples), and then use those scores to perform the mask-guided
selection. Therefore, we need to add the cost for the image-level plus counts
labels for 1464-N samples (as N will be strongly-annotated and already con-
sidered in the annotation budget). Figure 7 provides a qualitative comparison
between the models obtained from the annotation and segmentation networks.
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Fig. 6 Examples of images of each subset. Each column are images related to different
predicted IoUs. For instance, the first column belongs to the images that have a mean IoU
closer to 1, and we can see that effectively these images look easy, with a single and big
instance appearing.

1.0 0.8 0.6 0.4 0.2 0.0

We observe that the more strongly-annotated samples (N), the better quality
for the obtained masks. We also observe that the results for the segmentation
networks are higher than those from the annotation networks, proving that
the pseudo-annotations are beneficial.

In Table 7 we report the mean Average Precision at threshold 0.5 when
only the 50% of the additional set of Pascal VOC [16] is weakly-annotated, and
therefore the associated budget (Table 8) is lower. In this case we also observe
how the configuration with mask-guided selection outperforms the random
one. We lead this experimentation to show that at lower annotation budgets,
this configuration still works better.

The final results obtained by the segmentation network are presented in
Tables 9 and 10 with three complementary metrics: Average Precision and
Recall at different thresholds, the F measure at threshold 0.5, which corre-
sponds to F = 2 ∗ (precision ∗ recall)/(precision+ recall), and the Structural
Similarity Index (SSI), as an effort to have a metric that considers the overall
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Table 5 Comparison of annotation and segmentation networks mean Average Preci-
sion (th=0.5) on Pascal VOC depending on the selection strategy and the number of
strongly-annotated samples used to train the annotation network. Notice that the segmen-
tation network is trained with both the strongly-annotated samples and the pseudo-labels
obtained with the annotation network. The pseudo-labeled samples are the complete addi-
tional set of Pascal (9118 images).

Selection Annotation Network Segmentation Network
Strong labels 200 400 800 200 400 800
Pseudo-labels - - - 9118 9118 9118
Random (W-RSIS) 22.7 27.1 34.5 33.3 36.8 43.8
Mask-guided (IoU-W-RSIS) 24.0 27.5 37.0 34.4 41.8 47.1

Table 6 Comparison of annotation and segmentation networks annotation budget in days
depending on the selection strategy and the number of strongly-annotated samples used to
train the annotation network. Notice that the segmentation network is trained with both the
strongly-annotated samples and the pseudo-labels obtained with the annotation network.
The samples pseudo-labeled are the complete additional set of Pascal (9118 images).

Selection Annotation Network Segmentation Network
Strong labels 200 400 800 200 400 800
Pseudo-labels - - - 9118 9118 9118
Random (W-RSIS) 0.55 1.11 2.22 2.90 3.45 4.56
Mask-guided (IoU-W-RSIS) 0.90 1.38 2.39 3.25 3.73 4.73

structure of the mask instead of pixel-wise errors. Observing these metrics, we
see that for N = 400 and N = 800, using more pseudo-labels (9118 vs. 4559)
leads to better performance, while for N = 200 it is not the case. This may be
produced by the different ratio of pseudo-labeled samples vs. strongly-labeled
samples, which is significantly larger for N = 200. Having a large ratio of noisy
labels compared to reliable ones, could damage the training of the model. We
also observe that when varying the number of pseudo-labels (9118 vs. 4559),
the SSIM does not change as much as we see for the other metrics. Interest-
ingly, the SSIM for N = 200 is higher than for N = 400. The reason could be
that with N = 200 the blobs obtained in the masks are coarser and this could
favour this metric because it is based on structural similarity. Nevertheless,
the difference is not very significant between both configurations.

7 Conclusion and Future Work

We have proposed a novel method to select which samples to strongly-annotate
in the semi-supervised instance segmentation setup. Our method, based on IoU
prediction, outperforms the baseline random selection and a solution based
on neural dropout to estimate pixel-wise uncertainty. We guided a thorough
analysis of which samples are best to annotate given the confidence score of
the predictions, and we observe that the best samples are those that fall in
the mid-range of the IoU scores. With our pipeline, we present a very simple
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Table 7 Comparison of annotation and segmentation networks mean Average Preci-
sion (th=0.5) on Pascal VOC depending on the selection strategy and the number of
strongly-annotated samples used to train the annotation network. Notice that the segmen-
tation network is trained with both the strongly-annotated samples and the pseudo-labels
obtained with the annotation network. The samples pseudo-labeled are 50% of the additional
set of Pascal (4559 images).

Selection Annotation Network Segmentation Network
Strong labels 200 400 800 200 400 800
Pseudo-labels - - - 4559 4559 4559
Random (W-RSIS) 22.7 27.1 34.5 33.3 36.8 43.8
Mask-guided (IoU-W-RSIS) 24.0 27.5 37.0 34.6 38.8 46.2

Table 8 Comparison of annotation and segmentation networks annotation budget in days
depending on the selection strategy and the number of strongly-annotated samples used to
train the annotation network. Notice that the segmentation network is trained with both the
strongly-annotated samples and the pseudo-labels obtained with the annotation network.
The samples pseudo-labeled are 50% of the additional set of Pascal (4559 images).

Selection Annotation Network Segmentation Network
Strong labels 200 400 800 200 400 800
Pseudo-labels - - - 4559 4559 4559
Random (W-RSIS) 0.55 1.11 2.22 1.73 2.28 3.39
Mask-guided (IoU-W-RSIS) 0.90 1.38 2.39 2.08 2.55 3.56

Table 9 Average Precision and Average Recall at different thresholds, F measure and SSIM
for the segmentation networks with the Mask-guided criterion. The samples pseudo-labeled
are the complete additional set of Pascal (9118 images).

AP @[0.5:0.95] AP @[0.5] AP @[0.7] AR @[0.5:0.95] AR @[0.5] AR @[0.7] F@[0.5] SSIM

200 18.7 34.4 20.6 26.1 41.6 28.7 37.7 84.0
400 24.8 41.8 28.2 33.6 50.2 37.5 45.6 83.6
800 29.2 47.1 32.7 38.7 55.4 42.9 50.9 85.8

Table 10 Average Precision and Average Recall at different thresholds, F measure and
SSIM for the segmentation networks with the Mask-guided criterion. The samples pseudo-
labeled are 50% of the additional set of Pascal (4559 images).

AP @[0.5:0.95] AP @[0.5] AP @[0.7] AR @[0.5:0.95] AR @[0.5] AR @[0.7] F@[0.5] SSIM

200 19.5 34.6 21.7 27.3 42.8 30.1 38.3 84.4
400 22.8 38.8 26.4 32.5 48.2 37.0 43.0 83.7
800 29.0 46.2 33.0 37.9 54.2 42.4 49.9 85.9

but effective manner to perform sample selection to improve performance at
a negligible annotation cost.

To conclude, instance segmentation is a very challenging task in the field
of scene understanding, and our experimental validation proves that the task
can be addressed with low annotation budgets, and that exploiting few but
interesting samples can lead to better results. As an improvement for our
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Fig. 7 Visualization of Pascal VOC test set for the annotation fθN (A-) and segmentation
networks gϕN (S-), depending on the number of strong labels used N ∈ {200, 400, 800}.

A-200 S-200 A-400 S-400 A-800 S-800

method, in the future we would like to add samples to the training pipeline in
an iterative way, similar to traditional active learning pipelines.

As future work we think that IoU prediction for sample selection can be ex-
ploited in other tasks, such as semantic segmentation and object detection. In
addition, the impact of our semi-supervised methodology can be particularly
relevant for video-related tasks, such as video object segmentation, as videos
require significant effort to be annotated pixel-wise due to the large amount
of data. Previous works on video object segmentation with low annotation
budgets have focused on unsupervised approaches [30] leveraging attention
and salient cues, widely used for video [48]. We believe that a semi-supervised
pipeline can reach significant better performance with a low annotation cost.
Another task worth exploring is salient object detection, as our sample se-
lection strategy of predicting the segmentation quality can also be applied to
salient segments [48][9][8].
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