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ABSTRACT | The current increase of spatial as well as spectral

resolutions of modern remote sensing sensors represents a

real opportunity for many practical applications but also

generates important challenges in terms of image processing.

In particular, the spatial correlation between pixels and/or the

spectral correlation between spectral bands of a given pixel

cannot be ignored. The traditional pixel-based representation

of images does not facilitate the handling of these correlations.

In this paper, we discuss the interest of a particular hierarchical

region-based representation of images based on binary

partition tree (BPT). This representation approach is very

flexible as it can be applied to any type of image. Here both

optical and radar images will be discussed. Moreover, once the

image representation is computed, it can be used for many

different applications. Filtering, segmentation, and classifica-

tion will be detailed in this paper. In all cases, the interest of the

BPT representation over the classical pixel-based representa-

tion will be highlighted.

KEYWORDS | Binary partition tree (BPT); classification; filtering;

hyperspectral images; segmentation; synthetic aperture radar

(SAR) images

I . INTRODUCTION

Optical as well as radar remote sensing technologies are

currently undergoing a very significant evolution in terms

of the quality and the quantity of information that is pro-

duced and made available for applications. In particular,

sensors are becoming more precise and can capture data at

a very high resolution. This can be observed both in terms

of spatial and spectral resolutions. This wealth of infor-
mation is, of course, very interesting from the application

viewpoint but it also generates real challenges with respect

to the signal processing tasks.

One of the major challenges can be formulated as the

proper handling of the signal correlation. As the number of

spatial samples for the same observed area or the number

of samples in the spectral domain increases, neighboring

samples cannot be considered as being independent. This
is in stark contrast with traditional processing approaches

that used to consider that neighboring pixels could be

processed independently, for example, for classification or

for detection purposes. Furthermore, most signal process-

ing approaches for multispectral images did not try to

assess and exploit the correlation between spectral bands

of the same pixel. As the number of spectral bands drama-

tically increases with hyperspectral sensors, the spectral
correlation cannot be ignored anymore.

Several strategies are currently being investigated to

tackle this issue of increased resolution and the subsequent
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difficulties related to spatial and spectral correlation [59],
[60]. Typical examples involve Markov models or multi-

resolution representations such as wavelets. Here we

follow a different approach that consists in redefining the

signal representation. Indeed, the traditional pixel-based

representation of images is not the most appropriate one to

deal with the huge amount of information produced by

high-resolution remote sensing sensors when seeking to

capture and use the signal correlation. A more appropriate
representation should somehow group pixels with high

correlation or similar properties into elementary entities

that could be precisely evaluated and on which one could

easily act. Moreover, in the context of a given application,

the signal representation should facilitate the access to the

relevant subset of elementary entities which should ideally

be of low cardinality. Finally, the signal representation

should be generic and support a wide range of applica-
tions. As a result, it cannot target the description of the

signal at a given resolution but should support multiple

resolutions.

In this paper, we discuss the interest of one such

representation known as the binary partition tree (BPT). It

is a region-based representation in which pixels are

grouped by similarity. It is a hierarchical representation

providing multiple resolutions of description. Finally, it is
also a structured representation supporting easy access to

subsets of regions. Recently, it has been studied in the

context of remote sensing data such as multidimensional

synthetic aperture radar (SAR) and hyperspectral images.

In both cases, the processing strategy is the same but the

specific tools used to build the image representation

depend on the signal nature. Once the representation has

been computed, it can be used for many applications such
as filtering, segmentation, classification, and object

detection. The goal of this paper is to discuss approaches

for creating the BPT for multidimensional SAR and

hyperspectral images and to illustrate its general applica-

bility over a wide range of problems.

The paper is organized as follows. Section II defines the

BPT notion and its corresponding processing strategy.

Section III focuses on SAR images. After a brief review of
the state of the art in this area, the region model and the

tree construction are detailed. Then, the representation is

used for speckle noise filtering and segmentation.

Hyperspectral images are discussed in Section IV. This

section has the same structure as the previous one: state of

the art, region model definition for hyperspectral data,

BPT construction and applications which cover classifica-

tion and segmentation. Finally, conclusions are drawn in
Section V.

II . IMAGE REPRESENTATION AND
PROCESSING WITH BPT

As discussed in the introduction, our goal is to discuss a

hierarchical region-based representation of images based

on BPTs [45] and its application to two major image

processing areas in remote sensing: multidimensional SAR

and hyperspectral images. The BPT is a hierarchical

region-based representation that has a rather generic

construction (to a large extent, application independent).

A BPT can be seen as a set of hierarchical regions stored in
a tree structure. Fig. 1 is an illustration of a BPT as well as

of its construction. The tree nodes represent image regions

and the tree branches describe the inclusion relationship

among the regions.

Three types of nodes can be distinguished: first, leaf

nodes representing the regions of an initial partition;

second, the root node representing the entire image

support; and finally, the remaining tree nodes represent-
ing regions formed by the merging of their two child nodes

corresponding to two adjacent regions. The BPT construc-

tion is often based on an iterative region-merging

algorithm (although other strategies such as recursive

splitting or combination of split and merge can be used).

Starting from an initial partition, the region-merging

algorithm is an iterative process in which the pair of most

similar neighboring regions is merged. Note that if the
preservation of the spatial resolution is an important issue,

the initial partition may consist of regions involving only

individual pixels. Each iteration implies three different

steps: 1) find and merge the pair of most similar

neighboring regions; 2) form a new node containing the

union of the merged regions; and 3) update the similarity

values between the newly created region and its neigh-

boring regions.
In order to completely specify the merging algorithm,

two important choices have to be made. The first one is the

region model. On the one hand, the model should be

precise enough in order to capture the important region

features independently of their scale (regions close to the

leaf nodes may represent a reduced set of pixels but

regions close to the root describe very large portions of the

image). But on the other hand, the model should be simple
enough to allow efficient processing. In this paper, we will

discuss two examples: the first one, used for SAR images,

Fig. 1. Example of BPT construction.
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will rely on a first-order statistical model, whereas the

second one, applied for hyperspectral images, will be based

on a nonparametric statistical model of the image

frequency bands. As can be seen, one of the interesting
features of the BPT approach is its flexibility in the sense

that it is not limited to any particular model. Once the

region model has been defined, the second important

choice concerns the region similarity. It is used to define

the order in which neighboring regions will merge and has

a strong influence on the tree structure and the usefulness

of the information represented by the tree nodes. This

similarity measure has to take into account the nature of
the data (for example, in multidimensional SAR data, pixel

values are matrices where diagonal and nondiagonal

elements are of different nature) and their possible

correlation (for example, in hyperspectral data, information

between adjacent spectral bands is often highly correlated).

Once the BPT representation has been computed, the

tree is a generic and scalable image representation. It

enables a very large range of applications. Most of the
application-dependent processing techniques can be for-

mulated as a tree pruning. The goal of the pruning is to

remove subtrees composed of nodes which are considered

to be irrelevant or homogeneous with respect to the

application. The pruning is defined through a criterion �R

which is evaluated on each node of the tree (which

represents a region R). As an example, assume that ideally

nodes (not) fulfilling the criterion have to be preserved
(removed). Unfortunately, the individual evaluation of a

criterion on the tree nodes does not generally define a

pruning strategy. A typical example is illustrated in Fig. 2.

The criterion is said to be nonincreasing.1 This can be

observed at node BA[: following the criterion evaluation,

this node has to be removed but its two children have to be

preserved. Therefore, the initial decisions do not directly

define a pruning. Several strategies can be used to
transform the individual criterion decisions into a pruning

[46]. In this paper, two of them will be used.

• The min rule follows a top–down approach.

Starting from the root node and going to the

leaves, all tree branches are explored and the

algorithm searches for the first node such that all

its ancestors have to be preserved and at least one

of its child nodes has to be removed. Then, the two

subtrees rooted at that node are pruned. As can be
seen in Fig. 2, this strategy guarantees that all the

leaves of the pruned tree correspond to regions

which had to be preserved following the criterion.

• The max rule follows a bottom–up approach. It

starts from the leaves and goes toward the root

node and prunes a node if all its descendants have

also to be pruned as well as its sibling (so that the

pruning generates a new BPT). This rule is less
strict than the min rule and preserves all details in

the image for which the initial decision was to be

preserved (see Fig. 2).

In order to show the usefulness and suitability of the BPT

for a wide range of applications, we will discuss in this

paper filtering, segmentation, classification, and object

detection tasks.

The image processing framework based on BPT relies

on two steps illustrated in Fig. 3. The first one corresponds

to the construction of a generic BPT and the second one is the

application-dependent pruning strategy. In the following
section, we start by discussing the application of this

framework to SAR images.

III . SYNTHETIC APERTURE RADAR

SARs that correspond to active microwave imaging systems

are important instruments for the observation of the Earth

Fig. 2. Nonincreasing criterion and pruning strategies. Gray squares: nodes fulfilling the criterion; white circles: nodes not fulfilling the criterion.

1Mathematically, a criterion �R is said to be increasing if the
following property holds: 8R1 � R2 ) �R1

� �R2
. Fig. 3. Image processing framework with BPT.
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surface, as its observation and analysis may be performed
independently from the day and night cycle and the

weather conditions, together with high spatial resolution

[25], [26]. In addition, when boarded into space platforms,

this type of systems allows global coverage.

In essence, a SAR system consists of a side-looking

radar boarded into a moving platform to induce a relative

motion between the radar and the target being observed by

the system, producing finally 2-D complex images of the
area of interest. In the dimension perpendicular to the

system motion, referred to as range, a SAR system basically

operates as a radar by transmitting an electromagnetic

wave and recording its echo. Measuring the delay between

them, a target may be located in this dimension. As in the

case of a radar, the range resolution, that is, the capability

to detect two close targets as being separated, depends on

the wave bandwidth, in such a way that the larger this
bandwidth, the higher the range resolution. On the con-

trary, the spatial resolution in the direction of the platform

motion, known as azimuth dimension, depends on the an-

tenna beamwidth in this dimension. In order to achieve a

comparable space resolution to the one in range, narrow

beamwidth antennas are necessary, but in the case of

airborne or spaceborne systems, this requirement leads to

very large and unpractical antennas. The way SAR systems
circumvent this important limitation is by making use of

the relative motion between the platform and the target.

As the system moves, a target is repeatedly illuminated by

the radar with electromagnetic pulses. The echoes are re-

ceived and recorded coherently by the radar at different

spatial positions. A postprocessing of the data allows to

coherently combine these echoes to resolve targets by

synthesizing a long array. From their conception in the
1950s to the early 1990s, SAR systems where basically 1-D

systems. Despite the capability of this technology to per-

form Earth remote sensing which was largely demon-

strated during this period, the speckle phenomenon [32],

[33], [38], due to the coherent addition of the scattered

electromagnetic waves, was also identified as one of the

main problems for the exploitation of SAR data. The true

potential of the SAR technology was realized in the early
1990s with the arrival of the multidimensional or multi-

channel SAR systems, based on acquiring several complex

SAR images under some sort of diversity. Among them, it

is important to emphasize SAR interferometry (InSAR)

[10], [35] and differential SAR interferometry (DInSAR)

[4], SAR polarimetry (PolSAR) [20], [40], polarimetric

differential SAR Interferometry [5], polarimetric SAR in-

terferometry (PolInSAR) [18], or SAR tomography [43].
The importance of these techniques lies in the fact that

multidimensional observations allow the quantitative esti-

mation of a larger number of biophysical and geophysical

parameters of the Earth surface. For instance, InSAR is

sensitive to the terrain topography, differential techniques

are able to retrieve terrain subsidence phenomena, PolSAR

allows the study of the scatterer geometry and its dielectric

properties, whereas PolInSAR or SAR tomography allows
the study of volumetric scatterers.

A multidimensional SAR system acquires m complex

SAR images under some type of diversity ½S1; S2; . . . ; Sm�,
where Sk for k ¼ 1; . . . ;m indicates the individual complex

SAR images. One of the most relevant types of diversity is

based on considering different polarization states for the

transmitted and received electromagnetic waves, making

SAR data to be sensitive to the target geometry, including
vegetation, and to the dielectric properties of the target.

Hence, PolSAR data have been employed in a wide range

of different applications: terrain classification and target

identification, quantitative humidity, terrain roughness

retrieval, etc. In addition, in conjunction with interfero-

metric sensitivity, PolSAR data have been demonstrated to

be useful for the observation and characterization of

volumetric targets such vegetation [9], forest [19], or even
urban areas. In general, a PolSAR system measures the

scattering matrix

S ¼ Shh Shv

Svh Svv

� �
(1)

for every resolution cell. The subindices h and v represent

the horizontal and vertical orthogonal linear polarization
states and Spq for p; q ¼ h; v represents a complex SAR

image where the polarization states employed in the re-

ception and transmission processes are indicated by the

first and second subindexes, respectively. The most promi-

nent characteristic of PolSAR data is the capability to syn-

thesize S to any pair of orthogonal polarization states,

giving its measurement in a single pair, which allows a

detailed characterization of the target under observation
[37], [58].

Since the dimensions of the resolution cell are nor-

mally larger than the wavelength of the electromagnetic

wave, the scattered wave results from the coherent combi-

nation of many waves. When the scattered wave is due to a

single target or a dominant target, S may be employed to

completely characterize the target under observation.

Nevertheless, in the case of distributed targets, the scat-
tered wave is due to the coherent addition of waves ori-

ginated by many elementary targets within the resolution

cell. This coherent addition process is referred to as spec-

kle. Due to the complexity of the scattering process, the

value of S cannot be predicted in advance, as it depends on

the type and internal arrangement of the individual targets

in the resolution cell. Therefore, even though speckle re-

presents a true electromagnetic measurement, its complex-
ity makes it necessary to consider it as a random process.

Considering k as a vectorization of the S matrix [17]

k ¼ ½Shh;
ffiffiffi
2
p

Shv; Svv�T (2)
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and on the basis of the central limit theorem (CLT), k is
characterized by 3-D, zero-mean, complex Gaussian proba-

bility density function (pdf)

pkðkÞ ¼
1

�3jCj expð�kHC�1kÞ: (3)

Equivalently to (2), other vectorizations of S are possible

[17]. As may be seen from (3), the distribution of k is

completely described by the Hermitian positive-definite
covariance matrix

C ¼ EfkkHg

¼
E ShhSH

hh

� � ffiffiffi
2
p

E ShhSH
hv

� �
E ShhSH

vv

� �ffiffiffi
2
p

E ShvSH
hh

� �
2E ShvSH

hv

� � ffiffiffi
2
p

E ShvSH
vv

� �
E SvvSH

hh

� � ffiffiffi
2
p

E SvvSH
hv

� �
E SvvSH

vv

� �
2664

3775 (4)

where Efxg indicates the statistical expectation of the

stochastic process x. The previous stochastic model is valid

for describing stationary multidimensional SAR data, and

indeed it represents a general purpose model. Nevertheless,

(3) is not able to account for data texture or for situations

where the CLT does not apply, for instance, high-frequency

data [55]. From a general point of view, the presence of data
texture may be modeled as a multiplicative factor [57]

k ¼
ffiffiffi
�
p

z (5)

where z represents a Gaussian vector characterized by (3)

and � is a random variable that accounts for data texture.

One of the most extended stochastic models to character-

ize k is to assume � to be described by a Gamma pdf,

leading to the K-distribution [57]. This model was ex-

tended in [30] to the family of distributions G0 with the
objective to model highly heterogeneous data. In [55],

under the hypothesis of the previous multiplicative model,

a generalization of the K-distribution based on the spher-

ically invariant random vectors (SIRVs) was presented.

Another generalization was presented by [28], and re-

ferred to as scale mixture of Gaussians (SMoG). As may be

seen, all these generalizations assume the same texture in

all the channels of the SAR data, therefore they are unable
to model those situations in which the channels may

present a different texture. Additionally, all these models

describe the pdf of a sample. Hence, they are unable to

characterize data texture considering spatial correlation.

In general, all these generalized data models require

additional moments, beyond the covariance matrix, to fully

characterize the data distribution.

When considering the Gaussian model defined in (3),
the covariance matrix represents the most important radar

observable. Therefore, this matrix needs to be estimated

from the data, or equivalently, the speckle noise must be

filtered to have access to C. The maximum-likelihood

(ML) estimator of C, also referred to as multilook filter,

under the assumption of statistical ergodicity and homo-

geneity, is obtained by substituting the statistical expec-

tation by a spatial averaging

Z ¼ hkkHin ¼
1

n

Xn

i¼1

kik
H
i (6)

where n indicates the number of looks or samples

employed to estimate C and ki corresponds to the target

vector of the ith sample. The estimated covariance matrix

Z is known as the sample covariance matrix, which is

statistically determined by the complex Wishart pdf [31],

[39], [50]

pZðZÞ ¼
n3njZjn�3

jCjne�3ðnÞ
etrð�nC�1ZÞ (7)

where jXj denotes the determinant of the matrix X,

etrðXÞ is the exponential of the matrix trace, and

e�3ðnÞ ¼ �3
Y3

i¼1

�ðn� iþ 1Þ: (8)

Finally, it is important to indicate that the pdf given by (7)
is only valid for n � 3, that is, if the matrix Z is not

singular or jZj 6¼ 0.

A. Model Selection
As indicated in Section II, the use of a BPT structure

requires the selection of a region model able to describe, in

a precise way, the information of the image region re-

presented by a particular node of the tree. In this paper, we

will consider that the BPT represents stationary regions of

the data according to (3). Consequently, the pixels of a

particular region of the SAR image are fully characterized

by the covariance matrix C. Therefore, for every tree node,
the sample covariance matrix Z (6) will be estimated from

the pixels of the region represented by the tree node [6],

[7]. It is important to indicate that this matrix contains two

types of information. On the one hand, there are the real

diagonal elements of the matrix that represent the back-

scattered power for a given combination of transmitted

and received polarization states. On the other hand, there
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are the complex off-diagonal elements that contain the
correlation structure of the complex SAR images in k.

When considering Z as the region model, its applica-

tion in the case of the leaf nodes, i.e., single pixels, must be

carefully addressed. For an individual pixel, the covariance

matrix is defined as the Hermitian product kkH, resulting

in a singular covariance matrix. Consequently, prior to the

BPT construction, it is necessary to consider a regulariza-

tion process to assure that for individual pixels jZj 6¼ 0.
The way to regularize the data is to apply an initial filtering

of a minimum of three independent pixels in order to

assure the validity of (7). The most simple filtering that

may be considered is a multilook filter [see (6)], within a

3 � 3 pixels window. In case of distributed targets, this

filtering represents the ML estimator of the signal and no

spatial resolution issues appear. However, in the case of

point targets, this initial filtering leads to a reduction of the
spatial resolution. The way to minimize this resolution loss

is to apply a more elaborated initial filtering capable to

adapt to the data morphology. The multilook filter exploits

only the spatial locality of the data, assuming that nearby

pixels will have a similar distribution. Nevertheless, the

polarimetric locality may also be taken into account. In

this sense, pixels with the same statistical distribution will

be close in both the spatial and polarimetric domains.
Bilateral filtering [49] applies this concept to compute a

weighted average from the pixel vicinity having weights

increasing with closeness in both domains. The filtered

covariance matrix Zij at position ði; jÞ can be expressed as

Zij ¼ k�1ði; jÞ
X

m

X
n

~Zmnwsði; j;m; nÞwpð~Zmn; ~ZijÞ (9)

where m; n 2 Vði; jÞ and Vði; jÞ represents the local window

around the pixel located at ði; jÞ, ~Zij represents the input

image covariance matrix of that pixel, ws is a weighting

function depending on the spatial domain, wp is a

weighting function depending on the polarimetric domain,

and k is the normalization factor to preserve the image

power information

kði; jÞ ¼
X

m

X
n

wsði; j;m; nÞwpð~Zmn; ~ZijÞ (10)

wsði; j;m; nÞ ¼ 1

1þ dsðm� i; n� jÞ
�2

s

(11)

wpð~Zmn; ~ZijÞ ¼ 1

1þ dpð~Zmn; ~ZijÞ
�2

p

(12)

where �s and �p represent the weights sensitivity in the

spatial and polarimetric domains, respectively, and ds is

the squared Euclidean distance in the spatial domain
ðdsða; bÞ ¼ a2 þ b2Þ. In order to be coherent with the BPT

construction which also relies on the estimation of

covariance matrix similarity, dp can be any of the similarity

measures that will be defined in Section III-B.

In this paper, we consider PolSAR data as an example

of multidimensional SAR data, whose characterization is

performed via the covariance matrix. This data model

may be extended to any other type of multidimensional
SAR data, as for instance InSAR or PolInSAR. The main

difference between the different multidimensional con-

figurations lies in the physical interpretation of the

information contained in the covariance matrix. Finally,

as indicated, this model may present some limitations in

order to represent the texture or high-frequency data. In

these cases, the BPT nodes may be populated with the

different parameters necessary to completely describe
the data, showing the versatility of the BPT to account

for any model able to describe the multidimensional

SAR data.

B. BPT Construction for SAR Data Processing
Once the region model has been defined, it is necessary

to establish a merging criterion that specifies the merging
order of neighboring regions. This criterion must indicate

which is the best merging among all the possible merging

of neighboring regions that can be defined at every step of

the BPT construction process. This criterion is referred to

as region similarity.

In the case of PolSAR data, the similarity criterion must

be defined in the space of the Hermitian positive-definite

matrices, considering the information of the diagonal as
well as off-diagonal elements. As mentioned before, the

similarity criterion measures the similarity between two

covariance matrices, where each one represents a partic-

ular BPT node.

In this paper, three different similarity measures are

proposed and analyzed for the BPT construction process.

These measures highlight the fact that different proper-

ties of the underlying region model may be exploited.
Additionally, note that the similarity measures have to

take into account the fact that regions may have arbitrary

sizes.

The similarity measures are defined between two

adjacent regions Ri and Rj, having estimated covariance

matrices Zi and Zj and sizes of ni and nj pixels,

respectively.

• Revised Wishart similarity (RWS): The revised
Wishart similarity measure was defined in [36],

and it is based on a statistical test assuming that the

two regions under consideration follow a Wishart

pdf and that one pdf is known. Thus, it is not

symmetric as it depends on which region pdf is

assumed to be known. In order to generate a sim-

ilarity measure, a modified symmetric version is
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proposed using SsðRi; RjÞ ¼ SðRi; RjÞ þ SðRj; RiÞ
and multiplying by the region size term [6], [7]

SRWSðRi;RjÞ ¼ tr
�
Z�1

i Zj

�
þ tr

�
Z�1

j Zi

�	 

ðni þ njÞ (13)

where trðXÞ denotes the trace of the X matrix and

X�1 its inverse. As one may observe, this similarity

measure considers the stochastic nature of the

PolSAR data.

• Diagonal revised Wishart similarity (DWS): This

similarity measure is based on the SRWS previously

defined in (13), but only considering the diagonal
elements and setting all off-diagonal elements to 0.

This simplifies the matrix inversion as being the

inverse of the diagonal elements. After some

mathematical manipulation, it may be expressed

as [6], [7]

SDWSðRi; RjÞ ¼
X3

k¼1

Z2
ikk
þ Z2

jkk

Zikk
Zjkk

 ! !
ðni þ njÞ: (14)

This measure is useful to determine the benefit of

employing all the elements of Z, in front of em-

ploying only the diagonal ones. Note that some of

the PolSAR speckle filters defined in the literature

only consider the diagonal information of Z. Addi-

tionally, since this measure does not require a full-

rank matrix, it can be directly applied over the
original data. Consequently, this measure will be

applied also to perform the initial bilateral filtering

into (12).

• Geodesic similarity (GS): The geodesic similarity is

based on a distance adapted to the cone of positive–

definite Hermitian matrices [11], that is, this mea-

sure exploits the geometry of the subset of the

vector space defined by the covariance matrices
that is closed under multiplication by positive

scalars [8]

SGSðRi; RjÞ¼ log Z
�1=2
i ZjZ

�1=2
i

	 
��� ���
F
þ ln

2ninj

ni þ nj

� 

(15)

where k:kF represents the Frobenius matrix norm;

logð:Þ represents the matrix logarithm; and lnð:Þ
represents the natural logarithm [3].

C. BPT Pruning for SAR Data Applications

The BPT is a multiscale data representation in a set of

hierarchical regions. Once the BPT has been constructed,

one application may be interested in a particular set of

regions of the BPT. In this context, the BPT pruning
process can be considered as the selection of this particular

set of regions. This process is usually defined by the final

application. In what follows, two applications will be

considered: PolSAR speckle noise filtering and PolSAR

data segmentation.

1) Speckle Noise Filtering: Speckle represents one of the

main issues for the correct interpretation of SAR data.
Hence, speckle noise filtering is crucial for the correct

analysis of multidimensional SAR data. In the following, a

BPT pruning strategy for the multidimensional speckle

noise filtering application will be defined and evaluated.

The pruning criterion considered consists of selecting

from the BPT a set of regions corresponding to the largest

homogeneous regions. The region homogeneity is mea-

sured by �R, which may be interpreted as the average rela-
tive error when representing each region Ri by its model Zi

�RðRiÞ ¼
1

ni

Xni

k¼1

Zk
i � Zi

�� ��2

F

kZik2
F

¼ 1

nikZik2
F

Xni

k¼1

Zk
i � Zi

�� ��2

F
(16)

where Zk
i represents the covariance matrix of the kth pixel

of the region Ri.

The pruning process can be implemented by the min
rule, which is a top–down approach that prunes first nodes

Ri that fulfill the homogeneity criterion �RðRiÞ G �. Start-

ing from the root node, the homogeneity of every node is
tested according to (16). If the node is not homogeneous,

having �RðRiÞ � �, the corresponding child nodes will be

studied in order to detect the first homogeneous nodes.

Finally, the leaves of the pruned tree are homogeneous re-

gions according to �R that form a partition of the image. Note

that this pruning criterion is independent of the region size.

Hence, the resulting filtered image may be composed of large

regions corresponding to distributed targets with an accurate
estimation of the polarimetric information, but also very

small regions due to point targets where the spatial resolu-

tion is preserved.

In order to analyze the performance in terms of speckle

filtering, the previously defined pruning strategy is ana-

lyzed in the following. One important aspect about speckle

is that SAR data cannot be obtained without this com-

ponent. Therefore, the evaluation of the performance of
any type of application, based on real SAR data, relies on

external information or ground truth. In many situations,

the objective is the quantitative estimation of a certain

biophysical or geophysical parameter that may be obtained

through alternative techniques. Hence, a measure of error

can be easily defined. On the contrary, when the objective

is to obtain the response of the scene without noise, since
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this information is almost impossible to obtain externally,

a measure of error is complex to implement. Therefore, a

quantitative evaluation of a PolSAR speckle filter must be

performed in terms of simulated PolSAR data.

To address this evaluation, simulated PolSAR data are

generated from a filtered real PolSAR image. This reference
image could be obtained from real data by manually segment-

ing it into homogeneous regions and estimating the ground

truth employing the pixels within these regions. Neverthe-

less, the limitations of this approach, as for instance a limited

number of regions or straight divisions among regions, would

limit the generality of the evaluation. In this study, a 512 �
512 pixel portion of the RADARSAT-2 data set will be em-

ployed, shown in Fig. 4(a). The simulated ground truth,
shown in Fig. 4(b), has been generated using a BPT pruning

with the SGS similarity measure, 3 � 3 multilook initial fil-

tering, and � ¼ �3 dB as a pruning factor. This ground truth

represents 5851 different regions. It has been used to gene-

rate simulated PolSAR images, with realistic polarimetric

and spatial information. Several different realizations of the

speckle noise process are generated, for instance Fig. 4(c),

according to the synthetic ground truth, and processed with

the proposed BPT-based filtering, as shown in Fig. 4(d).

The filtering results are compared with the ground
truth to assess numerically the goodness of the filtering

technique. As an error measure, ERðX; YÞ is defined be-

tween two images X and Y

ERðX; YÞ ¼ 1

nhnw

Xnh

i¼1

Xnw

j¼1

Z
ij
X � Z

ij
Y

��� ���
F

Z
ij
Y

��� ���
F

(17)

where nh and nw are the image height and width in pixels,

respectively, and Z
ij
X represents the ði; jÞth pixel value of

Fig. 4. Simulated data generation from a real image segmentation. (a) Original image. (b) Ground truth for simulation.

(c) One generated realization. (d) Filtered realization.
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image X. Note that the relative error measure defined in

(17) is based on the inverse signal-to-noise ratio (SNR�1)

averaged for all the pixels in the image.

Fig. 5(a) details the evolution of ERðX; YÞ with respect

to the pruning factor �, for the different similarity criteria

employed in the BPT construction process and the two

approaches considered for the initial regularization pro-

cess: a 3 � 3 multilook filtering and three-iterations 3 � 3
bilateral filtering with �s ¼ 1:5, �p ¼ 1. With respect to

the similarity measure employed for BPT construction, the

behavior of the error as a function of � is very similar for all

of them. In particular, there is always a minimum in terms

of ERðX; YÞ located almost at the same value of �. This

closeness indicates that there is an optimum threshold

almost independent from the similarity measure. In addi-

tion, Fig. 5(b) shows the number of leaves of the pruned
BPT as a function of �. In general, it may be observed that

the use of the bilateral filtering approach leads to the

lowest error for a similar number of regions of the filtered

data. Even for very low values of �, when the filtering

process is mainly selecting nodes close to the BPT leaves,

the use of this bilateral approach gives a lower error than

the multilook approach, indicating a better performance

for the preservation of spatial resolution and details. Look-
ing at the results obtained by different similarity measures,

some differences can be observed depending on the initial

filtering step. Whereas in the case of the multilook, the

lowest error is achieved by SDWS, in the case of the

bilateral approach, the minimum is achieved by SGS. Nev-
ertheless, according to Fig. 5(b), a smaller number of re-

gions for a fixed value of pruning factor are obtained by

SGS. That is, for a given level of region homogeneity, the

geodesic similarity results in the largest homogeneous re-

gions. For instance, when considering the multilook and

SGS, the minimum appears at � ¼ �6.4 dB, leading to

9498 regions, whereas in the case of the bilateral

approach, the minimum is at � ¼ �6 dB, leading to
7848 regions.

In order to assess the proposed BPT-based speckle fil-

tering technique with real data, it has been employed to

process a RADARSAT-2 Fine Quad-Pol 5300 � 3100 pixel

image corresponding to a test site in Flevoland, The

Netherlands. The data set was acquired during the ESA

AgriSAR 2009 campaign, devoted to analyze the agricul-

tural fields temporal evolution with PolSAR data. The
scene, covering an area of 25 � 25 km2 with a spatial

resolution of 5.2 m in range and 7.6 m in azimuth, is

mainly composed of agricultural fields, sea, and urban

areas. The PolSAR image, presented in Fig. 6(a),

corresponds to an acquisition with a mean incidence

angle of 33�, in ascending pass, acquired in April 4, 2009.

Fig. 6(b) presents the filtered image with the proposed

method, employing the SGS similarity measure for BPT
construction and a pruning factor � ¼ �3 dB. After a

visual evaluation, the same contours can be seen over the

image, while a large amount of speckle noise has been

filtered out. The filtering process results in a contrast en-

hancement, but it must be highlighted that the colors are

not altered indicating that polarimetric information is

preserved. In order to observe the results in detail, the

512� 512 pixels portion seen in Fig. 7(a) has been selected
from the whole image. For comparison purposes, data have

been filtered out with a 7� 7 multilook [see Fig. 7(b)], the

refined Lee filter [Fig. 7(c)] [1], and the IDAN filter

[Fig. 7(d)] [2]. It is worth indicating that these filtering

approaches are based on a pixel-based processing, whereas

the BPT approach considers a region-based processing.

The data set presented in Fig. 7(a) has been processed

with the BPT approach considering different alternatives
for the initial filtering, the similarity measure, and the

homogeneity threshold, as shown in Fig. 8. As may be

seen, the BPT approach is able to preserve the spatial

resolution and spatial details associated to point targets,

present in urban areas for instance, while eliminating the

speckle noise over large agricultural fields. This is possible

because the presented pruning strategy selects, for the

former case, those nodes close to the leaves ones, whereas
in the latter case, intermediate nodes according to the

region homogeneity level selected by �. A closer analysis of

the images shows that if the multilook filter is used to

regularize the covariance matrix, the results present a

small resolution loss over small details compared with

those obtained with the bilateral approach. In addition, a

better preservation of the contours is shown in the second

Fig. 5. (a) Relative error and (b) number of regions as a function of the

pruning threshold for simulated PolSAR data.
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case. These observations corroborate the results presented

in Fig. 5(a) and (b), where it is shown that results em-

ploying a bilateral approach as initial filtering obtain lower

error values. The closeness of the different plots in the

previous figures also appears in Fig. 8 as all the images are

very similar. Even in the case of selecting a similarity

measure that considers only the diagonal elements of the
covariance matrix SDWS the filtering can be considered as

correct. In our opinion, the performances of the BPT

approach for speckle filtering must not be attributed

exclusively to the use of the similarity concept, but also to

its systematic use by the BPT, leading to a hierarchical

representation of the information contained in the data.

This hierarchical representation may be observed in Fig. 9,

where filtering results for different values of � are pre-
sented. As may be observed, as the value of this threshold

increases, larger regions appear as the homogeneity cri-

terion is relaxed. Concerning Fig. 9, it is important to

highlight that despite increasing the amount of filtering,

no new contours or artifacts appear in the filtered data. In

particular, increasing � reduces the number of contours by

removing some of them while the others are preserved. In

fact, the speckle filter presented here employing the BPT
structure belongs to a larger class of filters having this

contour preservation property. They are called connected
operators [44], [46].

Comparing the results obtained with simulated and

real data, an important point arises. Similar results are

obtained by means of the BPT-based filtering in Figs. 8

and 4 in real and simulated images. However, the pruning

threshold in both cases differs significantly:�4 and�6 dB,
respectively. This difference may be related to additional

region features in real data not considered by the Gaussian

model, which can be considered as the region texture. The

homogeneity threshold has to be increased to absorb these

modeling errors with real data. For the simulated data,

since this texture is not reproduced, it is not necessary to

increase � and the same results are obtained with lower

homogeneity thresholds.
Up to now, we have only considered an evaluation of

the filtering results in morphological terms. One of the

most important aspects when considering PolSAR speckle

filtering is the correct estimation of the polarimetric infor-

mation, i.e., the covariance matrix, without introducing

any type of bias on the estimated data. In order to perform

this analysis, the entropy H and the mean alpha angle �� are

examined, obtained though the eigenanalysis of the esti-
mated covariance matrix [17]. Entropy gives information

Fig. 6. (a) Original PolSAR image and (b) filtered image applying the BPT-based filtering employing the SGS similarity measure for BPT

construction and a pruning factor � ¼ �3 dB. A 3 � 3 multilook has been employed as initial filtering.
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concerning the degree of randomness of the scattering

process (the entropy H ¼ 0 for deterministic and H ¼ 1

for completely random scattering mechanisms), whereas ��
contains information about the type of scattering: �� ¼ 0
for surface scattering, �� ¼ �=4 for volume scattering, and
�� ¼ �=2 for dihedral scattering. Fig. 10(a) and (b) shows

the estimated values of H and ��, respectively, considering

a 7 � 7 multilook filter. The rest of the plots in this figure

show the estimated values for the BPT-based proposed fil-

tering employing SGS and considering a multilook ap-

proach and a bilateral approach as initial filters. In general,

it may be observed that the estimated values are basically
the same as in the case of the 7 � 7 multilook filter, which

corresponds to the MLE of the data. Nevertheless, it may

be observed that when considering the BPT approach these

parameters are estimated with a higher spatial accuracy,

which is specially noticeable when considering the bila-

teral approach as initial filtering.

2) SAR Data Segmentation: The speckle filtering appli-

cation detailed in Section III-C1 was focused primarily on

homogeneous regions. They usually correspond to BPT

nodes relatively close to the leaves. Nevertheless, the
hierarchical structure of the BPT may contain a lot more

information about the structure and morphology of the

image. In what follows, the information contained in the

nodes close to the root node, which may contain infor-

mation concerning large structures of the image, will be

considered. In order to perform this selection, a second tree

pruning based on selecting a fixed number of regions nr

corresponding to the most different regions is proposed. If
the difference between regions is evaluated using the same

similarity measure as for the construction of the BPT, the

pruning process is equivalent to stop the tree construction

process when nr regions are obtained. Fig. 11 shows an

example where this pruning process has been employed to

generate a segmentation result having 20 regions. The SGS

Fig. 7. (a) Original detail of the PolSAR image and the same detail after applying (b) the 7 � 7 multilook, (c) the refined Lee filter, and

(d) the IDAN filter.
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Fig. 8. Details of the PolSAR image processed with different similarity measures and initial filtering. (a) SDWS, � ¼ �4 dB, multilook;

(b) SDWS, � ¼ �4 dB, bilateral; (c) SRWS, � ¼ �4 dB, multilook; (d) SRWS, � ¼ �4 dB, bilateral; (e) SGS, � ¼ �4 dB, multilook; (f) SGS, � ¼ �4 dB, bilateral.
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similarity measure has been employed for the BPT con-

struction process and a 3 � 3 multilook has been used as

initial filtering. In this case, it may be observed that the

resulting regions contain information regarding the sea, the

lagoons, several regions grouping the agricultural fields,
and the urban areas. It is worth noting that the information

of these regions may be employed to segment the different

parts of the image with a very high spatial resolution. For

instance, the detail image presented in Fig. 12 shows that

the different regions could be used to detect the coastline,

preserving the small details and the structures on it.

IV. HYPERSPECTRAL IMAGES

Hyperspectral passive remote sensing is based on the il-

lumination of Earth objects by the sun. Solar photons

travel through the atmosphere, reflect on the surface and

reach the sensor after a second path through the atmos-

phere. The physical interactions that happen along this

path modulate the signal sensed by passive scanners pro-

viding clues on the composition of materials at the surface

and the atmospheric components. Several decades ago,

technological improvements in the field of spectroscopy
and traditional imaging gave rise to the birth of a passive

technique named as hyperspectral imaging coupling spec-

troscopy and imaging to determine the spatial distribution

of the materials and of their properties. Hyperspectral

imaging expands traditional imagery to the range of the

electromagnetic spectrum that is invisible to the human

eye. In this way, hyperspectral sensors have the ability to

discriminate very precisely between different materials
that may look similar in the visible range.

A hyperspectral image I�ðpÞ is typically a compilation of

a few hundred spectral images, each one expressing the

sensed radiance coming from a given scene at a given

wavelength. The stacking of spectral images produces

Fig. 9. Details of the PolSAR image processed with different pruning factors. (a) SGS, � ¼ �7 dB, bilateral; (b) SGS, � ¼ �5 dB, bilateral;

(c) SGS, � ¼ �3 dB, bilateral; (d) SGS, � ¼ �1 dB, bilateral.
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hyperspectral images, generally seen as a cube, in which

two axes correspond to the two spatial dimensions and the

third axis to the spectral dimension according to the wave-

length. Generally, hyperspectral images cover the visible

(400 G � G 700 nm), the near-infrared range (0.7 G � G
3:5 	m), and the shorter wavelengths of the thermal

infrared (3.5 G � G 5 	m). Each image composed of a set

of pixels corresponding to a given wavelength is called a

spectral band. The term spectrum is used for the spectral

data contained in a given spatial position. A spectrum ex-

presses the variation according to the wavelength of the
measured radiance.

Fig. 10. H=� decomposition for different filtering strategies. (a) H, 7 � 7 multilook; (b) �, 7 � 7 multilook; (c) H, SGS, � ¼ �3 dB, multilook;

(d) �, SGS, � ¼ �3 dB, multilook; (e) H, SGS, � ¼ �3 dB, bilateral; (f) �, SGS, � ¼ �3 dB, bilateral.
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The price of the wealth of information provided by

hyperspectral images is a huge amount of data that cannot

be fully exploited using traditional image analysis tools. On

the one hand, the spectral space is important because it

contains much more information about the surface of
target objects than what can be perceived by human vision.

One of the main difficulties to exploit this space is the

important redundancy or equivalently the high correlation

between consecutive values of the spectra explained by the

small difference between two consecutive wavelengths.

Another significant drawback is the large spectral variabi-

lity introduced by several factors such as the noise result-

ing from atmospheric conditions, the sensor influence,
indirect reflection, or the illumination effects. On the

other hand, the spatial space is also important because it

describes the spatial variations and correlation in the

image and this information is essential to interpret objects

in natural scenes. Accordingly, hyperspectral analysis tools

should take into account both the spatial and spectral

spaces in order to be robust and efficient. However, the

number of wavelengths per pixel and the number of pixels
per image, as well as the complexity of jointly handling

spatial and spectral correlation, explain why this approach

is still a largely open research issue for effective and

efficient hyperspectral data processing.

A. Model Selection
In the case of hyperspectral images, a spectrum I�ðpÞ ¼

fI�1
ðpÞ; . . . ; I�N�

ðpÞg of hundreds of bands is associated to

each pixel p. As the sampling of the frequency axis is rather

dense, most spectral bands are highly correlated. More-
over, in many situations, the relevant information is the

shape of the spectrum more than its absolute value. This

phenomenon is often due to illumination variations that

reduce the material reflectance but preserve the shape of

the spectral response. Furthermore, one of the difficulties

in hyperspectral imaging is that often the difference be-

tween specific materials is only noticeable in a reduced

number of bands. Finally, areas of homogeneous material

Fig. 12. Detail of the PolSAR image segmentation result where the coastline contours can be clearly identified. (a) Original. (b) Segmentation.

Fig. 11. Full PolSAR image segmentation results in 20 regions.
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cannot be assumed to be homogenous due to texture and

intraclass variability. As a result, a first-order model, which

would correspond to the average spectrum, is not accurate

enough to precisely describe hyperspectral regions and to
discriminate between different materials [51], [52]. In

order to get a more precise region description, nonpara-

metric models of the pixel pdf such as histograms must be

used.

The first alternative would be to use the full multidi-

mensional histogram. Although, it would be able to cap-

ture the signal correlation, it is very difficult to estimate

because of its sparseness and to handle because of the very
high number of dimensions. As a compromise following

the contribution of [13] for color images, a hyperspectral

region model made of the set of spatial histograms for each

spectral band was proposed in [51]

MR ¼ H�1
R ; . . . ;H

�N�
R

n o
(18)

where each H�i
R represents the histogram of the reflec-

tance value at wavelength �i of pixels belonging to region

R. As histograms are used, no assumption is made about

the nature of the pdfs. Fig. 13 illustrates this model. In
Fig. 13, NR and NBins, respectively, represent the number

of pixels in the region R and the number of bins of each

histogram.

At the beginning of the merging process, the pdf of the

regions of the initial partition should be estimated and

assigned to the tree leaves. As in Section III-A, the initial

partition is composed of single pixel regions. One simple

solution is to define the pdf of individual pixels as being
equal to zero except for the observed value for each spec-

tral band. This solution gives already very good results,

however, the pdf estimation can be improved using self-

similarity ideas [12]. More precisely, assume that a patch is

a local neighborhood around the pixel whose pdf has to be

estimated. If similar patches are found in the image, it can

be assumed that the central pixel of these patches tells

something about other potential realizations of the pixel

and these realization can be used to improve the pixel pdf

estimation [27], [53]. Finally, when two regions are

merged, a new region is created and its corresponding
model is simply computed by adding the histograms of the

two regions.

B. BPT Construction for Hyperspectral
Image Processing

Once the region model has been selected, a region

similarity measure should be defined. This issue has been

studied in [52] and [53], where various region models and

similarity measures for hyperspectral images are compared

and analyzed. The main conclusions are that similarity

measures relying on the first-order model (average

spectrum) do not provide accurate region contours and

precise BPT structures. Concerning the similarity using
the region model defined by (18), many approaches mea-

suring the difference between two distributions or histo-

grams have been proposed in the literature. They can be

classified in two different categories: bin-by-bin and cross-
bin similarity measures. Bin-by-bin similarity measures

only compare contents of corresponding histogram bins,

that is, they compare the probabilities of occurrence of the

same value in both histograms but do not study the proba-
bilities of occurrence of different values. By contrast, the

cross-bin measures contain terms that compare noncorre-

sponding bins. One of the important conclusions of [52]

and [53] is that cross-bin similarity measures provide

better BPT structure and region contours. Here, two such

similarity measures are presented: the diffusion distance

SDiff and the association measure via multidimensional

scaling SMDS.

1) Similarity Measure Based on Diffusion Distance: The

main idea behind the diffusion distance [41] is to study the

relationship between histograms with the help of a dif-

fusion process. The diffusion process allows the evaluation

of the similarity across various scales and is robust to

histogram quantization and deformation. The diffusion

Fig. 13. Hyperspectral region model.
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distance is computed as the sum of dissimilarities over

scales.
Let us denote by H�k

Ri
ðanÞ and H�k

Rj
ðanÞ the two histo-

grams of regions Ri and Rj in the spectral band �k that have

to be compared. The histogram bins correspond to the

values an for 1 � n � NBins. The diffusion process is im-

plemented through the iterative convolution with a

Gaussian filter hGausðanÞ and downsampling applied on

the histogram difference dlðanÞ

d0ðanÞ¼H�k
Ri
ðanÞ�H�k

Rj
ðanÞ

dlðanÞ¼ dl�1ðanÞ	hGausðanÞ½ � #2; l 2 ½1; . . . ; L�: (19)

The notation #2 denotes downsampling by a factor of

two. l is the number of scales which corresponds to the

first level where
P

n jdlðanÞj is lower than 0.01. The stan-

dard deviation for the Gaussian filter has been set equal to

0.5 according to [41]. From the diffusion process, the dis-

tance DDiff between the histograms is defined as follows:

DDiff H�k
Ri
;H�k

Rj

	 

¼
XL

l¼0

X
n

dlðanÞj j: (20)

Finally, the overall region similarity is derived as [52]

SDiffðRi; RjÞ ¼
XN�

k¼1

DDiff H�k
Ri
;H�k

Rj

	 

: (21)

Note that the hyperspectral bands are processed sepa-

rately. As a result, the correlation between bands is not

taken into account by this similarity measure. In order to

solve this problem, a new similarity measure that exploits

the distances between wavebands to remove redundant
information contained in each region model was proposed

in [53]. This new similarity measure is based on distances

between observations and canonical correlations [23].

2) Similarity Measure Based on Multidimensional Scaling:
The proposed similarity measure is based on distances be-

tween wavebands and canonical correlations [22]. Two

different steps highlighted in Fig. 14 can be distinguished
in the approach. The first step corresponds to a local di-

mensionality reduction. For each region, the frequency

interband similarity relationship is analyzed in order to

remove the redundant hyperspectral information. A mul-

tidimensional scaling technique is performed which sum-

marizes the important region information in a reduced

number of components called the principal components.

The second step defines the similarity measure based on
the principal components of the two regions Ri and Rj to be

compared. This similarity measure is derived from a

statistical test based on the multivariate analysis of variance

(MANOVA). The idea is to test whether a dependence or

correlation between the principal components of the

regions exists. Let us describe more precisely each step

[24], [53].

Step 1VDimensionality Reduction: Multidimensional

scaling (MDS) [21] represents a set of objects as a set of

points in a map of chosen dimensionality, based on their

interpoint distances. The goal is to maximize the agree-

ment between the displayed interpoint distances and the

given ones. Thus, MDS attempts to locate No objects as

points in a Euclidean space E where the geometric differ-

ences between pairs of points in E agree, as closely as
possible, with the true differences between the No objects.

In our case, the No objects are the N� probability distribu-

tions of each region.

Fig. 14. Similarity measure based on multidimensional scaling.
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Hence, the probability distribution similarities of a
region R can be represented by an N� � N� distance matrix

�R ¼ ð�klÞ, where �kl ¼ �lk � 0 represents the difference

between histograms of wavelength �k and �l. In our case,

the diffusion distance defined by (20) to measure this

difference is used, that is, �kl ¼ DDiffðH�k
R ;H�l

R Þ.
Then, let A denote the matrix with entries A ¼

�ð1=2Þ�2
kl and H the centering matrix H ¼ IN �

ð1=NÞ11t, where 1 denotes a multidimensional vector
with unitary components. The so-called inner product

matrix BR associated to �R can be computed by

BR ¼ HAH for each region R [21]. The inner product

matrix BR is an N� � N� symmetric matrix which can be

spectrally decomposed as BR ¼ UR�2
RUt

R. Assuming

that the eigenvalues eR;t in �2
R are arranged in descending

order, the matrices UR�R and UR contain, respectively,

the principal and the standard coordinates of region R. As
mentioned above, the MDS aims at representing the region

with a reduced number of dimensions. This is achieved by

taking the first Ds most representative principal or

standard coordinates.

Now, given two regions Ri and Rj, the goal of the first

step of Fig. 14 is to compute the first Ds standard coor-

dinates of Ri and Rj. Therefore, two distance matrices �Ri

and �Rj
are computed to find BRi

¼ URi
�2

Ri
Ut

Ri
and

BRj
¼ URj

�2
Rj

Ut
Rj

. Finally, two sets of principal compo-

nents are obtained.

The number Ds of dimensions is an important aspect in

most multivariate analysis methods. In MDS, the number

of dimensions is based on the percentage of variability

accounted for by the first dimensions. Here, a criterion

which extends a sequence c defined and studied in [23] is

used to set the value of Ds. First, a maximum dimension
number Ns suggested by the data is defined. It is the

dimension for which
PNs

t¼1 e2
R;t=
PN�

t¼1 e2
R;t 
 1 if the

eigenvalues are denoted by eR;t.

Then, if uRi;t for t ¼ 1; . . . ;Ns and uRj;p for p ¼ 1; . . . ;Ns

are, respectively, the first Ns columns of URi
and URj

, the

sequence Ck is defined by

Ck ¼
Pk

t¼1

Pk
p¼1 e2

Ri;t
u0Ri;t

uRj;p

	 
2

e2
Rj;tPNs

t¼1

PNs

p¼1 e2
Ri;t

u0Ri;t
uRj;p

	 
2

e2
Rj;t

; k 2 ½1; . . . ;Ns�

(22)

where e2
Ri;t

e2
Rj;t

are the eigenvalues of BRi
and BRj

, which
are proportional to the variances of the corresponding

principal axes. Note that ðu0Ri;t
uRj;pÞ

2 is the correlation co-

efficient between the tth and pth coordinates. Thus, the

numerator of ck is a weighted average of the relationships

between principal axes. Clearly, 0 � C1 � . . . � CDs
�

. . . � CNs
¼ 1. The dimension Ds is then chosen such that

CDs
is high, for instance, CDs

¼ 0:9.

Step 2VSimilarity Measure Based on the Principal Axis of
Ri and Rj: Once the number of dimensions representing Ri

and Rj has been reduced, our goal is to measure the cor-

relation, also called dependency, between their principal

coordinates. To this end, the Ds columns of URi
�Ri

and

URj
�Rj

are, respectively, considered as a predictor X and

a response variable Y of a multivariate linear regression

model expressed as

Y ¼ X
 þ e (23)

where B is the matrix of regression coefficients and e is

the matrix of residual errors. The B matrix reflects wheth-
er X and Y are correlated, in other words, if Y is a linear

combination of X. If there is no relationship between X
and Y, the B matrix is equal to 0. Our approach consists

in testing the multivariate general linear hypothesis

B ¼ 0.

One of the simplest methods to estimate the matrix B̂ is

the least square method which leads to B̂ ¼
ðXtXÞ�1

XtY. In order to test whether the hypothesis
B ¼ 0 is true or false, a classical statistical test known as

Wilks’ lambda test W is used here. It can be written as

WðX;YÞ ¼
det ðY�X
̂ÞtðY�X
̂Þ

	 

detðYtYÞ

: (24)

The Wilks test computed by (24) gives a value between

0 and 1. The zero value indicates that the hypothesis B ¼ 0

is false and that X and Y are highly correlated. In our case,

X ¼ URi
�Ri

and Y ¼ URj
�Rj

. After some manipula-

tions, the test, used as a similarity measure between re-

gions, can be expressed as

SMDSðRi; RjÞ ¼W URi
�Ri

;URj
�Rj

� �
¼ det I�Ut

Rj
URi

Ut
Ri

URj

	 

: (25)

To conclude this section, it should be remarked that

the area of the regions is not included in the merging order

defined by (21) and (25). As a result, some small regions

may only be merged at a very late stage of the construction.
This is most of the time inappropriate as mainly large

regions should appear on the upper part of the tree. To

solve this issue, the strategy proposed in [13] is used. The

idea consists in forcing, in-between the merging iterations,

the merging of regions that have an area smaller than a

given percentage (typically 15%) of the average size of the

regions currently created by the merging process.
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C. BPT Punning for Hyperspectral
Image Applications

1) Classification: In this section, the first application

example dealing with supervised classification is de-

scribed. The strategy is formally similar to the one de-

scribed in Section III-C in the sense that the first step

consists in measuring a certain feature for each tree node

and then in deciding where to prune the tree.
In the classical pixel-wise supervised classification [16],

representative training samples are used to specify the

spectral attributes of the different classes composing the

scene. Then, a classification algorithm compares the image

pixels with the class spectral attributes to decide on the

most likely class membership. The drawback of this ap-

proach is its lack of robustness because the process is pixel-

based and spatial correlation is not taken into account. For
this kind of application, the potential advantage of BPT is

that the spatial correlation of pixels has already been

exploited during the construction. This results in a set of

regions, hierarchically structured, which can be classified

based on their mean spectrum.

As an example, the support vector machine (SVM) [14]

classifier is used. It is trained with a set of pixels for which

the ground truth is known as in the classical approach. The
features on which the classification pruning is defined are

based on the class probability distribution of each BPT

node. That is, each node Ri of the BPT is represented by its

mean spectrum and the SVM classifier is used to estimate

the probabilities that this spectrum corresponds to all pos-

sible classes Cj. The resulting class distribution is denoted

by PRi
ðCjÞ and it is estimated by [56]. Once the class pro-

bability distribution has been computed for each node, the
misclassification rate ðMRÞ is computed. For leaf nodes, it

corresponds to the error committed when the most proba-

ble class is assigned to the node. It is defined by

MRðRiÞ ¼ 1�Max
j
PRi
ðCjÞ

� �� 

: (26)

For nonleaf nodes, this expression is not appropriate

because of the potential region size differences. For exam-

ple, if a region results from the merging of a large region

with a small region, the small region has little influence in

the mean spectrum even if its class is different from the

class of the large region. In this case, the misclassification
rate of a region can be estimated by measuring the differ-

ence between the two class distributions of its child re-

gions. The classical Bhattacharyya coefficient can be used

to measure the distribution difference

BC PL
Ri
;PR

Ri

	 

¼
X

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL

Ri
ðCjÞPR

Ri
ðCiÞ

q
(27)

where PL
Ri

and PR
Ri

, respectively, represent the left and
right child regions of Ri. Based on this measure, the mis-

classification rate for nonleaf regions is defined by

MRðRiÞ ¼ 1� BC PL
Ri
;PR

Ri

	 
	 

: (28)

Once the misclassification rate has been evaluated for

all nodes, a decision has to be taken on where to prune the

tree. To this end, we study the evolution of the misclas-

sification rate between node Ri and its leaves Rleaves
i (that

is, the leaves that belong to the subtree rooted at Ri). More

precisely, the pruning decision is defined by

�RðRiÞ ¼ MRðRiÞ �MR Rleaves
ið Þ (29)

where MRðRleaves
i Þ represents the average misclassifica-

tion rates of the leaves of Ri. Note that this rule is not

increasing. We use here the max rule, that is, a bottom–up

strategy that consists in pruning all nodes for which

MRðRiÞ is below a given threshold �C and such that this

statement is also true for all their descendants. Experi-
mental evaluations have shown that �C values around 0.3

are appropriate. Finally, once the tree has been pruned, a

classification map is constructed by assigning the most

probable class (as defined by the SVM classifier) to the leaf

regions of the pruned tree.

In order to illustrate the utility of the approach, the

classical Indian Pines AVIRIS hyperspectral data are used.

It involves 200 spectral bands. An RGB composition of this
data set is shown in Fig. 15 as well as the ground truth

composed of 16 different classes. Two BPTs have been

created for this image, one with the diffusion distance SDiff

and one with the multidimensional scaling approach SMDS.

In both cases, 150 bins have been used to represent the

region model histograms.

The two resulting classification maps are shown in

Fig. 16 and compared to the classical pixel-wise classifi-
cation (also performed with the same SVM classifier). As

can be seen, the BPT approach gives much better results

than the pixel-based approach. Regions of the classification

map are less noisy and the quality of contours between

regions is very good. Table 1 illustrates the class-specific as

well as the global classification accuracies. The benefit of

the BPT approach is quite clear. Moreover, it can be con-

cluded that the multidimensional scaling similarity SMDS

leads to the best results. Those results have been con-

firmed on other data sets [54].

2) Segmentation: The goal of this section is to discuss an

unsupervised pruning technique for segmentation.

Section III-C2 has suggested a supervised segmentation

approach in which the number of regions is a priori known

Alonso-González et al.: Processing Multidimensional SAR and Hyperspectral Images

Vol. 101, No. 3, March 2013 | Proceedings of the IEEE 741



or fixed by the user. Here, an approach based on graph

partitioning that does not require any a priori information

about the segmentation result is described. Normalized
and min-cut algorithms are popular approaches to parti-

tion graph structures and they can potentially be used on a

BPT as it is a particular graph. Here, we focus on the

normalized cut algorithm [47]. Let us briefly recall this

approach on a generic graph G formed by NN nodes,

whose edges between nodes i and j are weighted by values

wi;j. The optimum partitioning generates two subsets of

graph nodes U and V, such that the following cost is
minimized:

NcutðU;VÞ ¼ cutðU;VÞ
assocðU;NN Þ

þ cutðU;VÞ
assocðV;NN Þ

(30)

where cutðU;VÞ ¼
P

i2U;j2V wij and assocðU;NN Þ ¼P
i2U;j2NN wij.

This minimization problem can be formulated as a

spectral graph theory problem [47], which can be solved by

finding the eigenvectors of ðD�WÞx ¼ �Dx, where
W ¼ ½wi;j� is the affinity matrix and D the diagonal matrix

whose diagonal elements are di ¼
P
8j wij. The sign of the

components of the eigenvector with the second smallest

eigenvalue creates a partition of the graph minimizing the

normalized cut given by (30).

We use the normalized cut approach to partition indi-
vidually each BPT branch. Here, a branch is a path that

connects the BPT root node RRoot to one of its leaf node
RLeaf . As the branch represents a very simple graph with a

linear structure and very few nonzero weights between

nodes, as an alternative to the spectral graph theory solu-

tion, an exhaustive search of the minimum normalized cut

can also be performed.

The part of the branch which has to be pruned should

involve nodes that are similar to the leaf node. By contrast,

the nodes that are going to be preserved should be quite
different from the leaf node. If PðRi ¼ RLeafÞ denotes the

Fig. 16. Classification maps. (a) Pixel-wise classification. (b) BPT, SDiff. (c) BPT, SMDS.

Fig. 15. Indian Pines AVIRIS data set. (a) RGB composition. (b) Ground truth.
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probability that Ri is similar to the leaf RLeaf , the weights

defined by

wij ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðRi¼RLeafÞPðRj¼RLeafÞ
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðRi 6¼RLeafÞPðRj 6¼RLeaf Þ
p

� 1 (31)

should state that nodes on both sides of the cut are similar
(because they are either very similar or very dissimilar to

the leaf). Several solutions can be used to estimate

PðRi ¼ RLÞ. The MDS criterion PðRi¼RLÞ ¼ SMDSðRi; RLÞ
defined for the BPT construction was used in the following.

In order to build the affinity matrix, the weights wi;j are not

computed between all nodes in the branch but only

between a node and its two children, its sibling, and its

direct ancestor. The weight is zero for its similarity with the
remaining branch nodes.

In practice, the first cut may not be the best one. For

instance, if the root node is very different from the rest of

the tree, the first cut will separate, for all branches, the

root from the rest of the branch. For this reason, instead of

a single cut, a recursive spectral graph partitioning algo-

rithm is performed as suggested in [47]. The idea is to

iterate the partitioning of the branch on the subset of
nodes that includes the leaf RL until the Ncut value is

smaller than a given threshold T Ncut (set to 0.3 for all

experiments).

Once each branch has been investigated with the nor-

malized cut algorithm, the pruning can be performed, but

of course, the information coming from all the individual

branch partitions should be merged. In fact, except leaves,

each BPT node belongs to several branches. In order to
decide whether a node has to be pruned, a majority vote

based on the results of all branches is performed: If a node

belongs to M different branches and more than M=2

branches have stated that the node has to be pruned, it will

be pruned. Finally, as in the case of the classification

pruning, the pruning decision may not be increasing, so a

node is pruned only if all its descendants have to also be

pruned (max rule).
Fig. 17 illustrates the results of the segmentation ap-

proach on four portions of classical Hyperspectral data

sets. Fig. 17(a) and (b) has been extracted from the Pavia

University data set, which was acquired over the city of

Pavia, Italy, by the Reflective Optics Systems Imaging

Spectrometer (ROSIS-03) hyperspectral sensor. The spa-

tial resolution is 1.3 m. The original data set is composed of

115 spectral bands, ranging from 0.43 to 0.86 	m with a
bandwidth of 4 nm. However, typical noisy bands corre-

sponding to the water absorption were previously dis-

carded leading to 103 bands. Fig. 17(c) has also been

acquired by the hyperspectral ROSIS-3 sensor and corre-

sponds to the Pavia city center. It contains 102 spectral

bands after removal of noisy bands. Finally, Fig. 17(d) was

extracted from the HYDICE data set showing an urban

area. Originally, it had 210 spectral bands from 0.4 to
2.5 	m. After removing water absorption and noisy bands,

the data contain 167 spectral bands with a spatial reso-

lution of approximately 3 m.

The second and third rows of Fig. 17 compare the par-

titions obtained with the BPT pruning approach with these

obtained with a classical region merging algorithm for hy-

perspectral images: recursive hierarchical segmentation

(RHSEG) [34]. Note that the RHSEG algorithm is super-
vised in the sense that it is an iterative region merging

algorithm and the user has to decide when to stop the

merging process. Even though the BPT approach is unsu-

pervised, it obtains much better results. This statement can

be corroborated both subjectively on the partitions of

Fig. 17 as well as objectively. To this end, ground truth

partitions have been manually created. They are presented

in the fourth row of Fig. 17. In order to assess the quality of
the obtained partitions with respect to the ground truth, we

have used the asymmetric distance dasym proposed in [15].

dasymðP;PGT Þ measures the minimum number of pixels

whose labels should be changed so that a partition P
becomes finer than the ground truth partition PGT . A par-

tition P is said to be finer than a partitionQ, if each region

of P is included in a region of Q. This distance is normal-

ized by the total image pixel number minus one. As a result,
dasym is ranging between 0 and 1. As the distance is not

symmetrical, the final distance is given by ðdasymðP;
PGT Þ þ dasymðPGT ;PÞÞ=2. Table 2 reports the distance

values for the four images as well as the average value. Here

also the benefits of using the BPT approach are quite clear.

Before concluding, in order to assess the complexity of

the BPT construction, several tests have been performed.

Table 1 Class-Specific Accuracy
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The BPT construction algorithm has been tested using an

Intel Xeon processor running under Linux with a clock

speed of 2.40 GHz and 20 GB of random access memory

(RAM). The central processing unit (CPU) time and the
required memory for BPT construction for the images

Pavia Univ.1 and Pavia Univ.2 are shown in Table 3. In this

last table, the two different merging criteria SDiff and SMDS

are compared. In this case, the number of bins for the

nonparametrical statistical region model is set to 150 and

the intrinsic dimension of the image is equal to Ds ¼ 3.

Table 3 corroborates that the merging criterion OMDS is

clearly the most time consuming. This is completely
explained by the computation of the matrix distance used

to compute the principal coordinates. However, it must be

noticed that the BPT is viewed in this work as an image

representation that has to be constructed only once and that

opens the door to a wide range of applications. Therefore, the

computational load of the BPT construction is not a serious
drawback in terms of the applicability of the approach.

V. CONCLUSION

This paper has focused on the interest of BPTs as image

representation for remote sensing. This representation

possesses some interesting features to deal with high-

resolution images. In particular, similar pixels are grouped

into regions which form the entities on which the further

processing is based. Moreover, the representation is

Fig. 17. Segmentation results. First row: Original RGB compositions. Second row: Segmentation results obtained with BPT. Third row:

Segmentation results obtained with [34]. Fourth row: Ground Truth partitions. (a) Pavia Univ.1. (b) Pavia Univ.2. (c) Pavia center. (d) HYDICE.
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structured in a tree representing the inclusion relationship

between regions. This structure leads to an easy access to

the image content. Finally, the representation describes

the content at various scales of resolution.

Two BPT constructions have been presented in this

paper. They rely on iterative merging algorithms. The first

one was described in the context of multidimensional SAR
images. The region model was based on the estimated

mean covariance matrix of the pixels, and several region

similarity measures, such as the Wishart and the geodesic
similarities, have been defined. Then, the tree was used for

speckle noise reduction. The complete noise filtering

approach turned out to be a connected operator that has

the ability to remove noise while preserving the contour

information and spatial details. Its advantage over classical

filtering techniques has been highlighted. We have also

illustrated how the tree can be used for specific segmen-

tation tasks leading to very precisely defined regions.
The second context in which the BPT has been studied

deals with hyperspectral images. Here, the mean model

may not be accurate enough and the effectiveness of non-

parametric statistical model was discussed. A powerful

solution based on multidimensional scaling to capture the

correlation between spectral bands was proposed as the

similarity measure. In terms of applications, the tree was

used for supervised classification. The resulting hierarchi-
cal region-based classification has demonstrated its

superiority compared to pixel-based classification. Unsu-

pervised segmentation was also studied. The BPT was

pruned with the help of a graph cut algorithm (normal-

ized cut).

Although the use of BPT for remote sensing images is

still in an early stage and many aspects can be improved,

this kind of image representation already provides very
interesting results compared to the current state of

the art. h
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