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Abstract—In this paper,we propose the use of binary partition
trees (BPT) to introduce a novel region-based and multi-scale po-
larimetric SAR (PolSAR) data representation. The BPT structure
represents homogeneous regions in the data at different detail
levels. The construction process of the BPT is based, firstly, on
a region model able to represent the homogeneous areas, and,
secondly, on a dissimilarity measure in order to identify similar
areas and define the merging sequence. Depending on the final
application, a BPT pruning strategy needs to be introduced. In this
paper, we focus on the application of BPT PolSAR data representa-
tion for speckle noise filtering and data segmentation on the basis
of the Gaussian hypothesis, where the average covariance or co-
herency matrices are considered as a region model. We introduce
and quantitatively analyze different dissimilarity measures. In this
case, and with the objective to be sensitive to the complete polari-
metric information under the Gaussian hypothesis, dissimilarity
measures considering the complete covariance or coherency ma-
trices are employed. When confronted to PolSAR speckle filtering,
two pruning strategies are detailed and evaluated. As presented,
the BPT PolSAR speckle filter defined filters data according to the
complete polarimetric information. As shown, this novel filtering
approach is able to achieve very strong filtering while preserving
the spatial resolution and the polarimetric information. Finally,
the BPT representation structure is employed for high spatial
resolution image segmentation applied to coastline detection. The
analyses detailed in this work are based on simulated, as well as on
real PolSAR data acquired by the ESAR system of DLR and the
RADARSAT-2 system.

Index Terms—Binary partition tree (BPT), polarimetry, seg-
mentation, speckle filtering, synthetic aperture radar.

I. INTRODUCTION

SAR polarimetry (PolSAR) has demonstrated, particularly
during the last decade, its significance for the analysis and

the characterization of the earth surface, as well as for the quan-
titative retrieval of biophysical and geophysical parameters. The
capability to explore the complete space of polarization states
represents one of the most important properties of PolSAR data,
as optimization procedures may be foreseen [1]. The second
important property of PolSAR data is its inherent multidimen-
sional nature that allows a more precise characterization of the
scattering process at the resolution cell than single polarization
data and, eventually, a better characterization of the scatter or
scatters within that resolution cell.
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As a consequence of the coherent recording and processing
of the scattered radar echoes, SAR systems are able to generate
complex, high spatial resolution images of the observed area,
independent of the day–night cycle and with little influence of
atmospheric effects. The complex nature of SAR data, together
with the fact that the scattering process in the resolution cell
may be due to a certain number of elementary echoes, is on
the origin of the speckle term. Despite speckle is determined
by the scattering process itself, its complexity makes necessary
to consider it from a stochastic point of view and then, to
assume speckle as a noise term. The characterization of speckle
noise must be carefully addressed, particularly for PolSAR
data, taking into account the nature of the scatters within the
resolution cell. In the case of point scatters, as the scattered
signal is only due to this single scatter, recorded data are speckle
free, and the value of the signal itself may be employed to
characterize the scattering process and the scatter itself. For
distributed scatters, speckle is said to be fully developed in
the sense that it is produced from the coherent addition of a
large number of individual echoes produced by the individual
scatters in the resolution cell. Consequently, in the later case,
the information to retrieve refers to the necessary knowledge to
specify completely the probability density distribution (pdf) of
the acquired PolSAR data. This information must be estimated
from the recorded SAR data. In other words, speckle should
be filtered from data to grant access to the information of
interest.

SAR and PolSAR data are nonstationary as they reflect the
complexity of the environment. Assuming that all the stochastic
processes involved in the filtering process are ergodic, PolSAR
filters must adapt to this nonstationarity. Most of the PolSAR
speckle filters presented in the literature deal with nonstationar-
ity by considering locally stationary data. Based on this hypoth-
esis, two major questions arise. On the one hand, the statistical
model or pdf under which stationarity shall be defined and, on
the other hand, the range of this stationarity. With respect to
the statistical model, most of the filtering techniques, but also
most of the techniques focused on the extraction of quantitative
physical parameters, consider the multidimensional complex
Gaussian speckle noise model. Under this hypothesis, the co-
variance, as well as the equivalent coherency or Muëller matri-
ces, represent the most important radar observables, in which
maximum likelihood estimation (MLE) is the well-known
boxcar or multilook filter. This filter privileges estimation ac-
curacy at the cost of spatial resolution. However, the previous
assumption of locally stationary data may be violated resulting
in a loss of spatial resolution or a mixture of nonhomogeneous
areas. With the aim to avoid the breaking of the assumption
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of locally stationary data, a linear minimum mean square error
(LMMSE) approach has been proposed in [3] where local
statistics are estimated on the basis of edge aligned windows.
This idea has been pursued in [4], where an adaptive neighbor-
hood is constructed for every single pixel of the image, taking
into account the statistical properties of the pixel itself.

Despite the techniques presented in [3] and [4] have been
proved to result into a proper filtering, several questions must be
answered in order to finally determine the filtering capabilities.
One of the major concerns of the previous approaches is the
way they determine local stationarity. On the basis of the
Gaussian hypothesis, local stationarity is analyzed only in terms
of the diagonal elements of the covariance matrix. Hence, they
do not take into account the correlation information determined
by the off-diagonal elements of the covariance matrix, despite
it has been shown that if considered, optimized filtering ca-
pabilities result [5]. In addition, the way local neighbors are
obtained in [4] does not guarantee that adjacent and stationary
pixels result into the same local area of influence. A final aspect
that must be also considered with respect to the estimation of
physical information is that a minimum amount of independent
samples is mandatory to secure a correct estimation of the
information of interest [6].

In order to tackle these issues, we propose the use of binary
partition trees (BPT) [7], [22]. The BPT is an image repre-
sentation that is region based and multi-scale. The leaf nodes
of the tree represent the pixels in the original image, whereas
the remaining nodes represent regions that are obtained by the
merging of the two neighboring regions represented by two
child nodes. The root node corresponds to the entire image. The
BPT can represent nonstationary signals because it is region
based, that is, each region can represent a locally stationary
part of the signal. Moreover, it is a multi-scale representation
allowing, at the same time, the description of very local in-
formation, thanks to the nodes close the tree leaves, and the
description of global behavior, thanks to the nodes close to the
tree root, as these nodes represent very large regions. In order to
construct and to analyze the BPT in the context of applications,
the tree nodes have to be described. An interesting feature of
the BPT approach is its flexibility in the sense that it is not
restricted to any particular model. In the case of PolSAR data,
virtually any model representing the polarimetric information
can be used. As it can be seen, the BPT can be considered as
a first abstraction step with respect to the original image. The
processing strategy involves, therefore, first, a tree construction
and, then, a tree pruning to extract either a simplified image
for filtering applications or a partition for classification or
segmentation applications.

The organization of this paper is as follows: Section II re-
views the main characteristics of the PolSAR data and discusses
its representation and processing with BPT. Section III analyzes
in detail the tree construction process and focuses in particular
on the definition of the similarity between regions used to define
the merging order. Once the BPT has been computed, it can be
used for many applications. In this paper, we discuss filtering
application in Section IV as well as a specific segmentation
application in Section V. Finally, Section VI presents the
conclusions.

II. PROCESSING PolSAR DATA WITH BPT

A. SAR Polarimetry

A PolSAR system measures, for every resolution cell, the
scattering matrix S. By means of the lexicographic orthogonal
basis for 2 × 2 complex matrices [2], and considering the
backscattering direction under the backscattering alignment
convention, S leads to the target vector k

k = [Shh,
√
2Shv, Svv]

T (1)

where h and v denote the horizontal and vertical wave polar-
ization states, respectively and T indicates vector transposition.
In those cases in which the resolution cell contains only one
scatter, or its scattering is largely dominated by a principal one,
(1) characterizes completely the scattering process in the res-
olution, that is, (1) may be employed to characterize the target
under study. When the resolution cell contains a certain number
of single scatters, (1) corresponds to a coherent combination
of the different contributions of this set of single scatters. This
combination process receives the name of speckle. As indicated
previously, speckle must be considered as a noise term. Under
this hypothesis, the information of interest acquires sense only
from a stochastic point of view, that is, this information refers
to the set of parameters necessary to determine completely the
pdf of (1).

The statistical characterization of (1) in case of distributed
scatters involves the introduction of a particular pdf to describe
its stochastic nature. This process is normally performed under
certain simplifying approximations. Under the assumption that
the return from a particular resolution cell is due to the coherent
addition of the returns from a large number of individual
scatters, none of which is dominant, the Central Limit Theorem
applies [8], and k is distributed according to a multidimen-
sional, zero-mean, complex Gaussian pdf

pk(k) =
1

π3|C| exp(−kHC−1k) (2)

where H is the complex conjugate transpose of a vector and C
represents the covariance matrix

C =E{kkH}
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(3)

where E{x} indicates the statistical expectation of the stochas-
tic process x. It is clear that the approximations that led to
(2) will limit its range of applications. Hence, (2) is usually
considered as a multidimensional SAR signal model for homo-
geneous areas. Equation (2) is not able to describe, for instance,
textured scenarios. In these cases, it is necessary to increase the
complexity of the statistical model in order to accommodate the
texture information.

The MLE of C, i.e., the multilook, under the assump-
tion of statistical ergodicity and homogeneity, is obtained by
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substituting the statistical expectation by a spatial averaging

Z = 〈kkH〉n =
1

n

n∑
i=1

kik
H
i (4)

where n indicates the number of independent looks or samples
employed to estimate C and ki corresponds to the target vector
of the ith sample. The estimated covariance matrix Z receives
the name of the sample covariance matrix, which is statistically
determined by the Wishart distribution [9]–[11]

pZ(Z) =
n3n|Z|n−3

|C|nΓ̃3(n)
etr(−nC−1Z) (5)

where etr(X) is the exponential of the matrix trace and

Γ̃3(n) = π3
3∏

i=1

Γ(n− i+ 1). (6)

As given in (4), C is estimated from a finite number of
samples n. Note that (5) is only valid if Z is a full rank matrix,
which implies n ≥ 3, otherwise, the Wishart distribution cannot
be defined. Since the estimated covariance matrix Z is itself
a multivariate random variable, it will present an error with
respect to the value to recover, i.e., C. This error might be
considered as being produced by a noise component. The ad-
vantage of such a characterization is that an optimized filtering
might be envisaged.

B. BPT Computation and Processing Strategy

We propose to tackle a large number of applications related
to PolSAR data by performing initially a first step of abstraction
from the original pixel-based representation of the image. This
abstraction step is done through the computation of a BPT and
should be as generic or application independent as possible.
Once the BPT has been computed, its nodes are characterized
and analyzed depending on the application of interest and the
final result can generally be obtained through an application-
dependent tree pruning.

In order to be able to construct the BPT structure in an
efficient manner, it would be interesting to decompose the
process into simple steps, making possible to tackle the process
with an iterative algorithm. In this sense, the BPT construction
process may be viewed as the introduction of all the hierarchical
division–fusion relationships between the image pixels. Hence,
this process can be decomposed in the inclusion of each hier-
archical relationship, so the tree structure can be constructed
iteratively computing one new division–fusion relationship be-
tween nodes per step.

In order to construct the BPT structure, there are two main
approaches:

1) One focused on division or top-down approach: In each
construction process step, a new division relationship is
added to the structure, so a selected region of the image
is separated into two connected and mutually disjoint
regions that will become the two child nodes of the one
containing the selected region.

2) One focused on fusion or bottom-up approach: Another
conceptualization of the construction process is to add a
fusion relationship between two neighboring regions of
the image at each step. The merging of these two zones
will produce a new bigger connected region represented
by their parent node.

For computational reasons, it is more feasible to address
a bottom-up tree construction algorithm, since the number of
possible new fusion relationships is more reasonable than the
number of possible new divisions for a given construction
step.

The BPT should be created in such a way that the most
interesting or useful regions are represented. However, a pos-
sible solution, suitable for a large number of cases, is to create
the tree by keeping track of the merging steps performed by
a segmentation algorithm based on region merging, see [12],
[13] for example. In the following, this information is referred
to as the merging sequence. Starting from the initial partition,
where each pixel is considered as an individual region, the
algorithm merges neighboring regions following a similarity
criterion until a single region is obtained.

To completely define the merging algorithm, one has to spec-
ify the region model and the merging order. The region model
defines precisely how the set of pixels included in the regions
are represented. As mentioned in the introduction, almost any
model can be employed to represent polarimetric data. In this
paper, we will use the average covariance matrix of the pixels
included within the region as the region model, then assuming
data to be distributed according to 2. The merging order defines
the order in which pairs of neighboring regions are merged.
In essence, this criterion should assess the similarity between
regions. Section III will propose, discuss, and evaluate various
families of criteria suitable for PolSAR data.

Once the tree has been computed, it can be processed or
simplified by a pruning algorithm. This step is application
dependent. Assume, for example, that we would like to filter
the image to reduce the presence of noise. Then, the pruning
should remove portions of the tree branches that are close to the
original tree leaves in order to preserve as much as possible the
image details. By contrast, if the application is based on seg-
menting or classifying the image, the pruning strategy should
analyze each node of the tree looking for relevant segmentation
or classification features, and the resulting pruning may be
much more severe. These cases will be analyzed, respectively
in Sections IV and V, respectively.

An illustration of the construction process is given in Fig. 1.
The original 2 × 2 image involves four pixels: A, B, C, and
D. They are considered as initial regions and are represented
as tree leaves. The algorithm merges the four regions in three
steps. In the first step, the pair of most similar regions, A and
B for example, are merged and create region E. Of course,
once E is created, its similarity with respect to its neighboring
regions should be evaluated. Assume that after this evaluation,
the pair of most similar regions are D and E. They are merged
creating region F . Finally, region C is merged with region F ,
and this creates a region corresponding to the region of support
of the whole image. In this example, the merging sequence
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Fig. 1. Illustration of the BPT construction.

is: ({A,B,C,D}, (A,B)|(D,E)|(C,F )). This merging se-
quence defines the BPT as shown in Fig. 1.

III. MERGING CRITERIA FOR BPT CONSTRUCTION

FOR PolSAR DATA

A. Merging Criteria and Dissimilarity Measures

As stated in Section II, the merging sequence determines the
BPT construction. Since this process is performed iteratively, a
merging criterion must be included in the construction process
step in order to select the best fusion to perform among all the
possible ones. The proposed criterion in Section II is to merge
the pair of most similar regions.

In order to evaluate the similarity between regions, a measure
has to be defined in the region model space. Actually, any
distance in the region model space may be employed. However,
other measures than distances can be used, and the more general
concept of dissimilarity measure will be employed in the fol-
lowing. Mathematically, a dissimilarity measure d is similar to a
distance in concept, but it has less restrictive properties [17]:

1) d(A,B) ≥ d0 (generalized non-negativity)
2) d(A,B) = d0 ⇔ A = B (identity)
3) d(A,B) = d(B,A) (symmetry)

where A and B are two region models and d0 represents
the absolute minimum value of the dissimilarity function d.
Traditionally, as explained in Section II, in PolSAR, the es-
timated covariance C or coherency T matrices are employed
to characterize the scattering process over an homogeneous
region, as defined in (4), then they may be employed as a region
model in the BPT nodes.

In this context, the measure d establishes the similarity
between each pair of adjacent regions. At each construction
step, the two adjacent nodes with the lowest dissimilarity value
are merged. Then, two dissimilarity measures d1 and d2 are
equivalent if they define the same merging sequence. As a con-
sequence, any monotonic function of the dissimilarity measure
will lead to the same merging sequence, and then it will produce
the same BPT representation.

B. Dissimilarity Measures

In this paper, five dissimilarity measures are proposed and
analyzed for the BPT construction process. These measures
are based on two region features: the polarimetric information,
contained in the Z matrix, as defined in (4), and the region size.
Nevertheless, more complex region models and the correspond-
ing dissimilarity measures between them can be defined.

The proposed dissimilarity measures have been classified
into two different groups: those using only the information
contained in the diagonal elements of Z, and those using the
full estimated covariance matrix.

1) Dissimilarity Measures Using Full Z Information: These
measures consider all the information contained in the esti-
mated covariance matrix Z and thus require a complete charac-
terization of the matrix. Note that this fact will induce the need
for an initial filtering in order to get full rank matrices, as seen
in (5). The dissimilarities are defined between two regions, X
and Y , with average covariance matrices ZX and ZY and sizes
of nx and ny pixels, respectively.

• Symmetric revised Wishart dissimilarity (RW). The revised
Wishart dissimilarity measure was defined in [15], and it
is based on a statistical test assuming that the two regions
follow a Wishart pdf and that one pdf is known. Thus,
it is not symmetric as it depends on which region pdf is
assumed to be known. In order to generate a dissimilarity
measure, a modified symmetric version is proposed using
ds(X,Y ) = d(X,Y ) + d(Y,X) and multiplying by the
region size term

dRW (X,Y )=
(
tr
(
Z−1

X ZY

)
+ tr

(
Z−1

Y ZX

))
· (nx + ny) (7)

where tr(A) denotes the trace of the A matrix and A−1

its inverse.
• Ward relative dissimilarity (WR). In Ward hierarchical

clustering [16], a measure based on the error sum-of-
squares was introduced in order to quantify the informa-
tion loss when two clusters are joined. The same measure
can be employed as the information loss of merging two
neighboring regions. However, due to the multiplicative
nature of the speckle noise, a modified relative version
is proposed including a normalization matrix. The Ward
relative dissimilarity dWR (8) is then defined as

dWR(X,Y ) = nx ·
∥∥NH

XY (ZX − ZXY )NXY

∥∥2
F

+ ny ·
∥∥NH

XY (ZY − ZXY )NXY

∥∥2
F

(8)

where ZXY denotes the average matrix of the region
X ∪ Y , AH denotes matrix A Hermitian transpose, NA

denotes the normalization matrix of ZA, defined as

NA =


√

ZA11
0 0

0
√

ZA22
0

0 0
√

ZA33

 (9)

and ‖A‖F denotes the Frobenius matrix norm.
2) Dissimilarity Measures Using Diagonal Z Elements:

These measures only employ the diagonal elements of the
estimated covariance matrix Z, corresponding to the power
received at each polarization component. Consequently, they
do not require any initial filtering, but they are not sensitive
to the off-diagonal components of the covariance or coherency
matrices.

• Diagonal relative normalized dissimilarity (DN) is based
on the euclidean norm of the normalized difference of the
diagonal vector. The difference of the diagonal vectors is
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normalized by their sum, which results in a value bounded
in the interval [−1, 1] for each diagonal element. The
dissimilarity measure is obtained computing the euclidean
norm of the resulting vector and multiplying the resulting
value by the sum of region sizes, as denoted in

dDN (X,Y )=

(
3∑

i=1

(
ZXii

− ZYii

ZXii
+ ZYii

)2
)1/2

· (nx + ny) (10)

where Aij is the index notation for the (i, j)th element of
matrix A.

• Diagonal relative dissimilarity (DR) is computed as the
euclidean norm of the sum of relative errors between the
diagonal elements multiplied by the size of the X

⋃
Y

region. Note that this dissimilarity measure dDR (11) is
not bounded, as opposite of dDN (10) because the value
interval of the resulting vector is open [0,∞)

dDR(X,Y )=

(
3∑

i=1

(
ZXii

−ZYii

ZYii

+
ZYii

−ZXii

ZXii

)2)1/2
· (nx+ ny)

=

(
3∑

i=1

(
(ZXii

−ZYii
)2

ZXii
ZYii

)2)1/2
· (nx + ny). (11)

• Diagonal revised Wishart dissimilarity (DW) is based on
the symmetric revised Wishart dissimilarity as it is defined
in (7), but only considering the diagonal elements and
setting all off-diagonal elements to 0, which simplifies
the matrix inversion as being the inverse of the diagonal
elements. After some mathematic simplifications, it can be
expressed as

dDW (X,Y ) =

(
3∑

i=1

(
Z2
Xii

+ Z2
Yii

ZXii
ZYii

))
· (nx + ny). (12)

The objective of the previous division among distances will
be to focus specifically on the analysis of the effects of consid-
ering the off-diagonal elements of the covariance and coherency
matrices when processing PolSAR data under the Gaussian
assumption. Additionally, it would be possible to determine
and to establish those conditions that a distance should fulfill
to perform a correct processing of PolSAR data, for speckle
filtering or for any other different application. First of all,
the distances should be invariant under similarity transforma-
tions of the special unitary group of matrices. For example,
the approach followed by [3] would be congruent with this
condition, since Span is invariant under these transformations.
The distance function employed in [4] and the dissimilarity
measures that consider only diagonal elements would not fulfill
such a condition since only diagonal elements are considered.
In this sense, only the distance dRW would be invariant. Nev-
ertheless, the invariance property is not sufficient to perform
a correct processing of PolSAR data. A clear example is the
approach in [3]. Despite this technique is invariant under simi-
larity transformations, it is not sensitive to the off-diagonal
information. Consequently, suitable distances, apart from being
invariant under similarity transformations, should consider all

Fig. 2. Simulated PolSAR images with four equal size zones. C11, C22,
and C33 are assigned to blue, red, and green channels. a) Zones shape and
numeration, b) and c) one realization of the image with intensity variations and
image ground truth, respectively.

the information provided by the covariance and coherency
matrices, as for instance the dRW distance.

IV. BPT PRUNING FOR PolSAR DATA FILTERING

As described in [7], the BPT is a very attractive representa-
tion since it proposes a reduced number of regions which are
assumed to be the most homogeneous at different scales. This
idea can be exploited to develop PolSAR advanced speckle
noise filtering. The main purpose is to obtain a subset Θ of
meaningful nodes, from the tree representing homogeneous
regions, which can be used to have a better estimation of the
region covariance matrix (4) maintaining the image spatial
resolution. This process consisting of a selection of a subset
Θ of nodes from the BPT is called BPT pruning.

In this section, two main strategies for tree pruning fo-
cused on PolSAR speckle filtering are discussed: pruning based
on the number of regions and pruning based on the region
homogeneity.

A. Pruning Based on the Number of Regions

One of the simplest possible tree pruning strategies is to
select the set Θ as a fixed number nr of regions, corresponding
to the most different regions of the tree. If the difference be-
tween regions is evaluated using the same dissimilarity measure
used for the BPT construction process, then it is equivalent to
stop the construction process when nr regions are achieved. At
that point, an image segmentation with the nr most different
regions, in terms of the employed dissimilarity measure, is
obtained. Finally, the filtered image is obtained by representing
all pixels within each region with the mean covariance matrix,
which corresponds to the region model. In the following, this
process will be called BPT pruning based on the number of
regions.

For a quantitative evaluation of this filtering process, a
simulated 128 × 128 pixels PolSAR image is proposed in
Fig. 2 with four square regions of equal size. Simulated data
have been generated using the complex Gaussian polarimetric
model presented in [14], assuming a reflection symmetric target
since most of natural targets follow this model, with covariance
matrix C of the form

C = σHH

 1 0 ρ
√
γ

0 ε 0
ρ∗
√
γ 0 γ

 (13)

where ∗ denotes complex conjugate.
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Three sets of images have been simulated according to (13)
with γi = 1 and εi = 0.1 and variations for σHHi and ρi in
different regions i = 1, . . . , 4 as denoted in Fig. 2(a).

1) Variations in intensity: ρi = 0.5; σHH = {1, 9, 25, 49}.
2) Variations in correlation: ρ = {0, 0.25ejπ,−0.5,

0.75e−jπ}; σHHi = 1.
3) Variations both in correlation and in intensity: ρ =

{0, 0.25ejπ,−0.5, 0.75e−jπ}; σHH = {1, 9, 25, 49}.
A matrix relative error measure is also proposed in order to

asses quantitatively the goodness of the processed image X in
comparison with the ground truth Y

ER(X,Y ) =
1

nh · nw

nh∑
i=1

nw∑
j=1

‖Xij −Yij‖F
‖Yij‖F

(14)

where nh and nw are the image height and width in pixels,
respectively, Xij represents the (i, j)th pixel value of image X ,
and ‖ · ‖F denotes Frobenius matrix norm. Note that the relative
error measure defined in (14) is based on the inverse signal-to-
noise ratio (SNR−1) averaged for all the pixels in the image.

Fig. 3 presents a filtering quality comparison, in terms of
(14), of the proposed BPT pruning based on the number of
regions with the dissimilarity measures defined in Section III.
The number of regions nr is shown in the upper horizontal axis
with logarithmic scale. In the lower horizontal axis, the mean
region area in pixels is stated, calculated as (nh · nw)/nr. The
plot also compares the BPT pruning based on the number of
regions with the multilook filter (4), for different window sizes.
In this case, the mean region size corresponds to the nominal
window size, i.e., n in (4). For the BPT-based filtering, an initial
3 × 3 multilook has been applied in order to get full rank
matrices needed for dRW (7) and dWR (8) dissimilarities. The
results have been obtained averaging 25 different realizations
of the simulated image. For the multilook and the dRW cases,
the standard deviation values resulting from the 25 realizations
are also included. The rest of the curves present similar values
to the dRW case.

When there are variations in intensity, Fig. 3(a) and (c), for
small values of region size, the results of the BPT pruning based
on the region number are very close to the Boxcar filter, as
the region mixture is negligible. For region sizes in the order
of 50–100 pixels (equivalent to 9 × 9 Boxcar filter), the error
measure starts to increase rapidly for the Boxcar filter as the
region mixture near the contours becomes appreciable. On the
contrary, the BPT is able to adapt to the image morphology
minimizing this region mixture effect, and thus, the error mea-
sure keeps decreasing when the average region size increases,
achieving the best error bounds near the four regions which
should be the optimum as the simulated image has exactly four
different regions.

In Fig. 3(b), the error plots are completely different since
only the dissimilarity measures that use all the covariance ma-
trix information are sensitive to the region contours. Therefore,
the regions generated using dDN (10), dDR (11), and dDW

(12) rapidly start mixing nonhomogeneous regions and never
improve the multilook filter performance. On the other hand,
full matrix dissimilarities dRW (7) and dWR (8) can adapt to
the image morphology and overcome Boxcar error measures

Fig. 3. Relative matrix error for simulated images with four equal size zones
filtered with a BPT pruning based on the region number. Results have been
obtained averaging 25 realizations. (a) Variation in intensity. (b) Variation in
correlation. (c) Variations both in correlation and in intensity.

with higher region sizes. Note that, in Fig. 3(b), the intensity
is constant over the entire image. As a result, the mixing of
different regions has not a dramatic impact in the relative error
as in Fig. 3(a) and (c). This also explains why the minimum of
the Boxcar error occurs at region sizes about 400–500 pixels
(21 × 21 multilook filter).

Comparing the different proposed dissimilarity functions,
when there are variations in intensity dDN (10) and dDR (11)
can achieve better performance in terms of relative error, but
the minimum can be far away from the four regions case.
Wishart-based dissimilarities, either diagonal dDW (12) or full
matrix dRW (7), have very constant and stable behavior when
increasing the mean region size and achieve the best results
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Fig. 4. Boxcar and BPT filtering (pruning based on the region number) in
one of the simulated PolSAR images with variations in both correlation and
intensity employing different dissimilarity functions. C11, C22, and C33 are
assigned to blue, red, and green channels, respectively. (a) Boxcar 3 × 3.
(b) Boxcar 9 × 9. (c) Boxcar 15 × 15. (d) dDN , nr = 100. (e) dDW ,
nr = 100. (f) dWR, nr = 100. (g) dRW , nr = 1000. (h) dRW , nr = 100.
(i) dRW , nr = 4.

near the point corresponding to four regions. Ward-based dis-
similarity dWR (8) can have poor performance when compared
with other dissimilarities, but it is the only one that presents a
clear minimum always at exactly four regions. At this point,
its performance in terms of relative error is comparable to the
Wishart-based dissimilarities. When intensity is constant, only
full matrix Wishart and Ward dissimilarities can adapt to the
image morphology and outperform Boxcar performances. In
this case, Ward dissimilarity performance at four regions is near
3 dB better than the Wishart minimum at about ten regions.

Fig. 4 shows the results of applying the pruning based on
the number of regions in one realization of the simulated data
with variations both in correlation and in intensity compared
with Boxcar filtering. As it may be seen in Fig. 4(a)–(c), as
the Boxcar filter size increases, the amount of speckle noise
reduction and the quality of the estimation increase. However,
the spatial resolution is degraded considerably as the filter
size increases, blurring completely the region contours. In
Fig. 4(d)–(f), the number of regions nr is fixed to 100, and
different dissimilarity measures for BPT construction are com-
pared. All of them are able to detect the main contours of the
four zones with this number of regions. The contours detected
inside the main regions are completely random, and they are
due to the speckle noise present on the image. In Fig. 4(g)–(i),
the symmetric revised Wishart dissimilarity measure dRW (7)
has been employed and the results are shown for different
number of regions. For nr = 4, as it may be observed, there
is a good preservation of the spatial resolution, but also of
the polarimetric information under the Gaussian hypothesis. A

comparison between Figs. 2(c) and 4(i) exhibits that the filtered
image is quite close to the ideal one. This similarity is also
supported by the fact that the relative error function (14), which
is also sensitive to the polarimetric information, presents very
low values. As detailed previously, each region is represented
by the average covariance matrix which is the MLE under the
Gaussian hypothesis [21]. Furthermore, as nr decreases, the
number of contours in the filtered image decreases, reducing
the effect of the speckle noise, but new contours never appear.

B. Region Homogeneity-Based Pruning

The previous pruning strategy is very simple since no new
criterion nor evaluation is needed for pruning. The same dissim-
ilarity measure employed for the BPT construction is employed
for pruning, obtaining the nr most different regions from the
tree. However, it presents some drawbacks when applied to real
images:

1) The averaged covariance matrix Z as a region model is a
good representation of the region when it is homogeneous
in the Gaussian case, but in the upper nodes of the
tree, corresponding to larger regions of the image, this
assumption is not true. Therefore, a pruning criterion
based only on this model is not good for BPT pruning.

2) The optimum region number is completely dependent on
the image structure and also on the employed dissimilar-
ity measure, as seen in Fig. 3. In practical situations, it is
almost impossible to fix a priori the optimum number of
regions for a given PolSAR image.

3) The proposed dissimilarity functions have a strong de-
pendence with the region sizes, which is needed for a
good multi-scale representation within the BPT. How-
ever, when employed as a pruning criterion, the obtained
segmentation has also this strong dependence. This fact
implies that, for example, it is very unlikely to obtain in
the same segmentation point scatters and large homoge-
neous regions.

To solve the mentioned problems, the pruning criterion
should not rely exclusively on the region model, and it should
be independent of the region size. A new BPT pruning strategy
is proposed according to this principle with its pruning criterion
focused on a region homogeneity measure φ.

The proposed criterion φR measures the average error pro-
duced at representing each region X by its model ZX :

φR(X)=
1

nx

nx∑
i=1

‖Xi − ZX‖2

‖ZX‖2 =
1

nx‖ZX‖2
nx∑
i=1

‖Xi − ZX‖2

(15)

where Xi represents the covariance matrix for the ith pixel
within region X , and nx is the number of pixels in X . It
can also be interpreted as the mean loss of information that
occurs when modeling the region by its estimated covariance
matrix (4).

Then, the region homogeneity-based pruning will select from
the tree a set of regions Θ corresponding to the largest regions
having a homogeneity value below a pruning threshold δp.
This pruning process can be implemented using a top-down
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Fig. 5. Relative matrix error for simulated images with four equal size zones
filtered with a region homogeneity-based pruning. Results have been obtained
averaging 25 realizations. (a) Variation in intensity. (b) Variation in correlation.
(c) Variations both in correlation and in intensity.

approach, selecting the first nodes Xi that fulfill the homogene-
ity criterion φR(Xi) < δp. Starting from the root node Xr, it
will be checked for homogeneity. If it is not homogeneous,
having φR(Xr) ≥ δp, it will be split into its two child nodes,
otherwise it will be added to Θ. Iteratively, each region will
be checked for homogeneity and will be split or added to
Θ depending on the result. Subsequently, the set of regions
Θ will conform a segmentation of the image having a mean
information loss below the threshold δp for all regions.

This region homogeneity-based pruning has been also evalu-
ated as a PolSAR speckle filtering process with the same sim-
ulated images as the pruning based on the number of regions.
The results in terms of relative error (14) for different pruning
threshold values and dissimilarity measures are shown in Fig. 5.
As for the BPT pruning based on the region number, the results
have been obtained after averaging 25 different realizations of

Fig. 6. BPT homogeneity pruning filtering in one of the simulated PolSAR
images with variations in both correlation and intensity employing different
dissimilarity measures and prune thresholds. C11, C22, and C33 are assigned
to blue, red, and green channels, respectively. (a) dDN , δp = −6 dB. (b) dDW ,
δp = −6 dB. (c) dWR, δp = −6 dB. (d) dRW , δp = −8 dB. (e) dRW , δp =
−7 dB. (f) dRW , δp = −6 dB.

the simulated image, where the standard deviation values for
the dRW distance are included.

As it can be seen in Fig. 5, independent from the image
structure, the homogeneity-based pruning behavior versus the
prune threshold is very similar for all the dissimilarity measures
employed for BPT construction. There is always a minimum in
terms of relative error located at the same position. There is also
a value for the pruning threshold that is almost optimum for all
the images at about −6 dB for δp.

When there are variations in intensity, in Fig. 5(a) and (c),
a wide set of values for δp, ranging from −6 dB to −4 dB
or −3 dB, are near optimum. When there are only variations
in correlation, as seen in Fig. 5(b), there is not such a wide
optimum set of values, but a clear minimum is also located at
−6 dB for δp.

Comparing Figs. 3 and 5, the minimum values in terms of
relative error obtained in BPT pruning based on the number of
regions are approximately preserved in the region homogeneity
pruning. However, since the homogeneity measure in which
pruning is based on is sensitive to all the covariance matrix
elements, a small improvement can be observed when the
dissimilarity measure is not sensitive to region changes, as seen
in Fig. 5(b) for diagonal dissimilarities dDN (10), dDR (11) and
dDW (12), which contributes making the homogeneity-based
pruning more robust.

Fig. 6 shows the results of applying the BPT homogeneity-
based pruning in one realization of the simulated data with
variations both in correlation and in intensity. In Fig. 6(a)–(c),
the pruning threshold δp has been fixed to −6 dB, which is the
optimum value for all the simulated images, as seen in Fig. 5.
With this pruning threshold, the BPT homogeneity pruning
employing all the dissimilarity measures obtain a filtered image
very close to the ideal one shown in Fig. 2(c), obtaining a good
preservation of the polarimetric information under the Gaussian
hypothesis. There are only small differences in the detected
contours, which are more accurate for dWR (8) and dRW (7),
since they are sensitive to all the covariance matrix information.
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Fig. 7. Pauli original image of Oberpfaffenhofen (a) and processed image (b)
employing homogeneity-based pruning. RGB channels are assigned to |hh−
vv|, |hv + vh| and |hh+ vv|, respectively. Selected homogeneous regions are
marked over the original image. (a) Original. (b) dRW , δp = −2 dB.

In Fig. 6(d)–(f), the symmetric revised Wishart dissimilarity
measure dRW has been employed, and different pruning thresh-
olds are shown. Comparing it with the pruning based on the re-
gion number results for the same image, in Fig. 4, they achieve
similar results, particularly for high pruning threshold values.
Note that the region contours are exactly the same, since the
two BPT pruning processes are performed over the same tree.

Nevertheless, the most important properties of this new
pruning strategy is to overcome the stated drawbacks of the
BPT pruning based on the region number enumerated at the
beginning of this section. This advantage can be seen more
clearly with real data.

C. Real PolSAR Data Filtering

The BPT-based PolSAR filtering approach has been consid-
ered also with real PolSAR data acquired in a measurement
campaign conducted by the DLR in 1999 with its experimental
E-SAR system, over the Oberpfaffenhofen test-site, southern
Germany. Data were collected at L-band, with a spatial resolu-
tion of 1.5 m × 1.5 m in fully polarimetric mode. Fig. 7(a) pre-
sents the original Pauli RGB image of the mentioned data set.

The previous data set has been processed with a 7 × 7
multilook as a reference, the IDAN1[4] filter, and the discussed
BPT pruning approaches: pruning based on the number of
regions and region homogeneity-based pruning. The IDAN
approach has been considered in this work as it is very similar to
the BPT-based approach, since it considers the selection of an

1The PolSARPro [18] IDAN implementation has been employed for this
work, with a maximum window size parameter of 100 pixels.

Fig. 8. Detail Pauli RGB images. (a) Original, (b) filtered with 7 × 7
multilook, and (c) filtered with IDAN.

adaptive neighborhood and filters it by assuming a multilook.
As indicated by the authors [4], this approach is focused on
data filtering, whereas they also introduce an approach based
on the linear minimum square error when the focus is on spatial
resolution preservation. Fig. 7(b) shows one processed image
after applying an homogeneity-based pruning with δp = −2 dB
over a BPT constructed employing the revised Wishart dRW

dissimilarity (7). Fig. 8 shows a detailed area of the image and
results after applying the multilook and IDAN filters, whereas
Fig. 9 shows the same area processed with different BPT
pruning strategies and parameters. The selected area contains
some large homogeneous agricultural fields at the top left part
of the image and an urban area with small details in the central
part. The multilook filter implies a spatial resolution loss. The
IDAN filter focuses specifically on data filtering by considering
an adaptive neighborhood for every pixel of the data, in opposi-
tion to the BPT approach that considers homogeneous regions.
As observed, neither the multilook nor the IDAN techniques
can achieve such strong filtering as the proposed BPT-based
filter. For the BPT construction process, the revised Wishart
dissimilarity dRW has been employed. Comparing both pruning
criteria, the region homogeneity-based pruning preserves more
small details and point targets than the pruning based on the
number of regions, as can be seen in urban zones, while, at
the same time, it produces larger areas for homogeneous fields.
This effect is caused by the strong dependence of the dissimi-
larity measures with the region sizes, as mentioned before.

One of the main features of the BPT is its multi-scale nature,
as it has been indicated. This aspect can be deduced from
Fig. 9(a)–(f). Note that all of these images have been generated
from the same tree, just changing the pruning strategy and pa-
rameters. Then, the BPT contains all the information presented
in the images at different detail levels. This property is exploited
to obtain within the same image strong filtering in case of
homogeneous areas whereas the spatial resolution and details
of the image are maintained. Decreasing the number of regions
nr or increasing the pruning factor δp modifies the strength of
the filter, but is worth to notice that new contours never appear,
since bigger regions are always generated by fusion of smaller
ones. To illustrate the ability of the region homogeneity-based
pruning to obtain within the same image regions with very
different sizes, Fig. 10 shows a small homogeneous area of
the original image with corner reflectors, close to the runway.
BPT-based filtering can achieve very strong filtering while pre-
serving the corner reflectors as small spatial details. Multilook
and IDAN do not achieve such a strong filtering, and multilook
implies a spatial resolution loss, resulting in larger spots.
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Fig. 9. Detail Pauli RGB images. (a), (c), (e) filtered with pruning based on
the number of regions and (b), (d), (f) filtered with region homogeneity-based
pruning. (a) dRW , nr = 50 000. (b) dRW , δp = −2 dB. (c) dRW , nr =
10 000. (d) dRW , δp = −1 dB. (d) dRW , nr = 2000. (f) dRW , δp = 0 dB.

Fig. 10. Detail Pauli RGB images of corner reflectors preservation. For
BPT homogeneity-based pruning, the revised Wishart dRW dissimilarity has
been employed. For IDAN filter, the maximum window size is 100 pixels.
(a) Original. (b) 7 × 7 ML. (c) δp = −2 dB. (d) δp = 0 dB. (e) IDAN.

Fig. 9 also shows that the polarimetric information is main-
tained in the Gaussian case, since the Pauli representations do
not vary between the original image Fig. 8(a), and the BPT
filtered images. As stated before, the region model employed
within the BPT nodes consists of the estimated covariance
matrix (4), which represents the MLE of the covariance matrix,
assuming a complex Gaussian distribution [21].

Fig. 11. Detail Pauli RGB images processed using region homogeneity-
based pruning with δp = −1 dB over different trees constructed employing
various dissimilarity functions. (a) dWR, δp = −1 dB. (b) dDN , δp = −1 dB.
(c) dDR, δp = −1 dB. (d) dDW , δp = −1 dB.

Fig. 11 presents the results for the same image obtained
after applying a region homogeneity-based pruning with δp =
−1 dB over different trees, changing the dissimilarity function
employed for the BPT construction process. As one may ob-
serve, all the proposed dissimilarity measures are sensitive to
the main contours of the image, obtaining large regions over ho-
mogeneous areas while preserving contours and small details.
However, there are some differences between them. The con-
tours detected employing dWR dissimilarity (8) are noisy [see
Fig. 11(a)], as it can be seen particularly in the fields, appearing
as a rough line. The BPT obtained with diagonal dissimilarities
dDN (10) and dDR (11), Fig. 11(b) and (c), present clear
region contours but some small spots can be seen inside ho-
mogeneous regions that correspond to the image speckle noise.
This effect is more obvious inside the upper fields for dDR

dissimilarity. The obtained results with dDW (12), in Fig. 11(d),
are very close to the revised Wishart dRW results, shown in
Fig. 9(d), since the two dissimilarities are based on the same
principles, but some large areas are better characterized with
dRW , as it is sensitive to all the covariance matrix elements.

To illustrate the capability to retain the polarimetric informa-
tion of the proposed BPT filtering approach under the Gaussian
hypothesis, the eigendecomposition parameters of the covari-
ance matrix, Entropy (E), Anisotropy (A), and the averaged
alpha angle (ᾱ) are shown in Fig. 12 in comparison with the
7 × 7 multilook and IDAN filtering. An initial qualitative com-
parison of the images shows that they obtain the same values.
However, there are differences for large homogeneous areas
in the agricultural fields, where the BPT approach can obtain
these parameters with larger filtering than multilook, reducing
the estimation errors for distributed scatters. Moreover, in the
case of point targets and small details of the image, for example
inside the urban areas, it is able to maintain a higher spatial
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Fig. 12. H/A/ᾱ from processed images with multilook, IDAN, and using
region homogeneity-based pruning for different pruning threshold values and
dRW dissimilarity. (a) H, 7 × 7 multilook. (b) A, 7 × 7 multilook. (c) ᾱ,
7 × 7 multilook. (d) H, IDAN. (e) A, IDAN. (f) ᾱ, IDAN. (g) H, δp = −2 dB.
(h) A, δp = −2 dB. (i) ᾱ, δp = −2 dB. (j) H, δp = 0 dB. (k) A, δp = 0 dB.
(l) ᾱ, δp = 0 dB.

resolution, since smaller regions of the tree are obtained. As
a consequence, the proposed BPT filtering approach improves
the estimation of the polarimetric information, both, in point as
well as in distributed scatters.

To be able to make a quantitative evaluation of the polarimet-
ric information preservation, three homogeneous areas from the
image have been selected, and some mean estimated parame-
ters are calculated over them, regarding the covariance matrix
elements and the eigendecomposition parameters H/A/ᾱ. The
selected areas are shown in Fig. 7(a), and the mean estimated
values are presented in Table I. A comparison is made between
the original values, 7 × 7 multilook, IDAN filtering, and
BPT homogeneity-based pruning for different δp. As it can be
seen, in the case of multilook and BPT filtering, the estimated
covariance matrix elements are very similar to the original
values. However, IDAN filtering introduces appreciable bias
in the covariance matrix elements although the eigendecom-
position parameters H/A/ᾱ are close to the other filtering
values. The presence of this bias has been discussed in [19]
and compensates up to a certain point by the authors [20]. With
BPT-based filter and δp = 0 dB, the values start to diverge from
the original ones because of the inhomogeneous region mix-

ture effect due to excessive filtering. The H/A/ᾱ parameters
cannot be estimated over the original image since its estimated
covariance matrices are singular, and then a filtering process
is needed. Note that these estimated parameters are biased [6];
increasing the pruning factor means increasing the filtering and
the number of looks per region and then reducing the estimation
biases for all the eigendecomposition parameters. As expected,
as the number of looks increases, the bias is reduced and
the estimated entropy increases while anisotropy is reduced.

V. BPT PRUNING FOR COASTLINE DETECTION

In Section IV, the BPT representation of the image has been
employed for PolSAR filtering. However, the BPT structure
contains a lot of useful information about image structure that
may be employed for other applications. Fig. 13 is an example
where the BPT is employed to obtain an image segmentation
over the coastline. Fig. 13(a) shows a 1500 × 2500-pixel cut of
a C-band Pauli RADARSAT-2 image of Barcelona, Spain, that
was acquired in November 18th, 2008, in fine quad polarization
mode, with nominal resolution of 5.2 m × 7.6 m. The figure
also shows a detailed area corresponding to the Forum harbor
of Barcelona. Fig. 13(b) shows two regions of the BPT corre-
sponding to land and sea. In this case, the two most different
regions (that is the two child nodes of the root node) were
selected. Note that, for coastline detection, upper nodes of the
tree, closer to the root, are selected, in opposition to the filtering
application, where lower nodes of the tree, closer to the leaves,
are interesting. It is worth to notice that, due to the ability of the
BPT to preserve small details, the thin structures in the coastline
like breakwaters are preserved.

VI. CONCLUSION

A new PolSAR data processing approach, based on a BPT
image representation is presented. The BPT contains a large
number of regions that may be extracted from the data, that are
organized in a hierarchical structure, corresponding to different
scales or detail levels. Consequently, this data representation
contains a lot of useful information related to data structure.
Thus, the BPT is a powerful tool for developing nonlinear,
region-based, and multi-scale PolSAR applications.

The BPT construction process has been analyzed, employing
a bottom-up approach. In this case, a region model and a dis-
similarity measure need to be defined. The estimated covariance
matrix has been selected as a region model, assuming a complex
Gaussian model, and different dissimilarity measures have been
proposed and analyzed. It is worth to notice that this construc-
tion process employs all the elements of the covariance matrix
and then exploits all the polarimetric information. Nevertheless,
other region models accounting, for instance, for data texture or
characterizing high resolution data are possible. The BPT is a
general representation of the data, which construction process
should be application independent, conforming a common part
for all the BPT-based applications.

The processing of the BPT typically involves the identifica-
tion of the tree nodes that are useful for a particular applica-
tion. The main application considered in this work is PolSAR
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TABLE I
MEAN ESTIMATED VALUES OVER HOMOGENEOUS AREAS FOR DIFFERENT FILTERING STRATEGIES

Fig. 13. (a) Pauli RGB image of Barcelona, and (b) coastline segmentation
with BPT. The revised Wishart dRW dissimilarity has been employed for the
BPT construction.

speckle filtering. The target for speckle filtering application is
to detect the largest homogeneous regions within the image.
Two tree pruning strategies for the filtering application have
been proposed, the pruning based on the number of regions
and the homogeneity-based pruning. The proposed BPT-based
PolSAR speckle filtering process has shown to achieve very
high level of noise filtering while preserving small details and
spatial resolution. Furthermore, the proposed technique is able
to exploit all the polarimetric information under the Gaussian
assumption, unlike most state-of-the-art filtering techniques,
that are only based on radiometric information. The number of
regions nr or the pruning factor δp may be employed to adjust
the strength of the filtering. Additionally, it has been observed
that no bias or distortion is introduced in the polarimetric
information as the region model that has been employed, the
average covariance or coherency matrices, corresponds to the
MLE of these matrices.

Secondarily, another BPT-based application of PolSAR data
processing is presented: coastline detection. In this case, the
goal is to detect the two most different regions corresponding to
sea and land and then identify the coastline as their contour. Due
to the ability of the BPT to preserve small details and spatial
resolution, this coastline detection can detect thin structures in
the coastline like breakwaters.
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