
Noname manuscript No.
(will be inserted by the editor)

Gesture Control Interface for immersive panoramic displays

M. Alcoverro · X. Suau · J.R. Morros · A. Gil · J. Ruiz-Hidalgo · J.R.

Casas

Received: date / Accepted: date

Abstract Insert your abstract here. Include keywords,

PACS and mathematical subject classification numbers

as needed.

Keywords First keyword · Second keyword · More

1 Introduction - JR

The need of gesture control interfaces emerges due to

an increasing complexity of the functionalities of infor-

mation systems and the current demand of more natu-

ral user interfaces. Commercially available display sets,

for instance, offer larger degrees of freedom to manip-

ulate the appearance of the displayed content. Users

tend to feel constrained by traditional interfaces, such

as remote controls, as the rendering capabilities of the

terminal evolve. This compromises the principle of a

natural user interface []

A gesture is a non-verbal, natural communication

made with a part of the body

2 Related work

User interaction with the TV is typically performed

using conventional remote controls with physical but-

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement n248138. This work
has been partially supported by the Spanish Ministerio de
Ciencia e Innovación, under project TEC2010-18094

Universitat Politècnica de Catalunya
Department of Signal Theory and Communications
Barcelona, Spain
E-mail: marcel.alcoverro,xavier.suau,albert.gil,ramon.morros,
j.ruiz,josep.ramon.casas@upc.edu

tons or muti-touch devices. However, the need for en-

abling interaction with new types of data, such as high-

quality panorama or 3D video, and the increasing diver-

sity of content the user should be able to choose, has

fostered the study of new input modalities to control

TV systems. Remote controls have two major draw-

backs: they can be misplaced or out of reach of the

user, and they require a lot of attention by the user as

its control functionalities increase. Current research is

focusing on natural user interfaces based on gesture and

speech recognition to overcome such drawbacks, follow-

ing studies from the generic field of Multimodal Human

Computer Interaction (MMHCI). MMHCI is a widely

studied field and some surveys have been previously

published [11][25]. Moreover, MMHCI is at the cross-

road of several related areas extensively studied such as

face detection and identification [33], facial expression

analysis [19], eye tracking [12], gesture recognition [29],

human motion analysis [20] or audio-visual automatic

speech recognition [21].

The recent commercialization of new game console

controllers as Kinect or Wiimote, has been rapidly fol-

lowed by the release of proprietary or third part drivers

and SDKs suitable for implementing new forms of 3D

user interfaces based on gestures [7]. On the one side,

several authors propose gesture control interfaces based

on accelerometers as the Wii controller [24][14]. On the

other side, the Kinect depth sensor allows for device-

less interfaces. Some solutions as ZigFu [34] or Ges-

turePak [10] use the skeleton tracking SDKs [13][18] as

input for gesture recognition based on skeletal poses.

Thus, such approaches require a human pose estimation

step, which is a complex task with high computational

cost, often prone to errors in presence of clutter. Al-

ternatively, several approaches make use of raw Kinect

depth data as input for hand pose and gesture recogni-

2 M. Alcoverro et al.

tion methods [23][30][22]. In contrast to 2D color video,

the use of depth data makes such methods robust to il-

lumination changes and suitable for dark environments.

Moreover, depth data provides 3D information valuable

to account for scale invariance of human body parts. In

general, these features make depth based methods per-

form better than its color-based counter part.

As introduced by Wachs et. al. [32], gesture-based

interfaces for entertainment applications, such as TV

control, must address to major issues: intuitiveness and

gesture spotting.

By intuitiveness, one means that the types of ges-

ture selected should have a clear cognitive association

with the functions they perform. However, a gesture

natural to one user may be unnatural to others, due to

the strong associations with cultural background and

experience. Stern et. al. [27] proposed a method to de-

sign and evaluate gesture vocabularies taking into ac-

count psycho-physiological measures (e.g. intuitiveness,

comfort) together with machine factors (recognition ac-

curacy). Alternatively, Nielsen et. al. [16] propose a pro-

cedure to design the gesture vocabulary based on the

Wizard-of-Oz paradigm. In a Wizard-of-Oz experiment,

user interact with the system, but the response of the

system is simulated by having a person respond to the

user commands. In this way, the users are the ones who

decide which gesture best represent its intentions.

Gesture spotting [32] consists of distinguishing use-

ful gestures from unintentional movement. This prob-

lem may be afforded by the recognition technique, by

performing a temporal segmentation to determine where

the gesture start and ends. However, this is a diffi-

cult problem and often the recognition methods assume

temporally segmented actions [5]. Also the recognition

may require spatial segmentation of the body parts (e.g

hands) which may be also a task prone to errors. To

overcome this problem, López-Méndez et. al [15] fo-

cus on the problem of localization of static gestures on

depth data. Their method learns the local appearance

of gestures, and neither temporal nor spatial segmenta-

tion are required.

3 System Design

The proposed system works in a device-less and marker-

less manner allowing users to control the content on

their TV sets only using their hands (Figure 1). It is

responsible of locating the people that want to interact

with the system and of understanding and recognizing

their gestures.

The current implementation is focused on control-

ling the content on a high definition TV screen situ-

ated in a home scenario. The content is composed of a

Fig. 1 Several users interacting with the proposed gestural
interface.

Fig. 2 Detail of the displayed content and the user feedback.
The icon on the bottom centre (above the bar) is used to give
feedback about static gesture commands (the icon shows that
the user is lowering the volume). The bar on the bottom shows
the 5 available static gestures.

panorama image (a high resolution view of the scene)

together with several audio tracks and Regions of In-

terest (ROIs) associated with the panorama.

The current setup of the system allows the user to

be standing or seating in a chair or coach. Although a

single user is able to interact with the system at any

given time, the interface is multi-user in the sense that

several users can ask for control of the system and in-

teract with it while the others might still be present in

the scene (Figure 1).

In order to allow the user to interact with the TV

content, the system supports the following functionali-

ties:

Menu selection A menu is overlaid on the current

screen and the user can select any button of the

menus by pointing at it (Figure 2).

Navigation The user is able to navigate through the

panorama scene by panning, tilting and zooming in

the content.

Gesture Control Interface for immersive panoramic displays 3

ROI Selection The system informs the user of the

available ROIs in the current view and the user is

able to change between them.

Pause / Resume The user is able to pause / play the

content at any time.

Audio volume The user is able to increase or decrease

the volume and to mute it completely.

Take control The control of the system can be passed

between users.

3.1 User Experience and GUI design

The system design is a compromise between the best

user experience we want to create and the best or sim-

plest scenarios from a technical perspective. For in-

stance, users might be willing to perform gestures lay-

ing down in the couch, or too similar gestures, but that

could produce recognition errors or too much comput-

ing time. To ensure that the system is always provid-

ing a responsive, convenient and intuitive experience

for the user, several requirements and design strategies

have been adopted:

– The interface must provide constant feedback to the

user. The identified user, the detected gestures, or

where the detected hands are located and pointing.

Like the common mouse or notification icons in a

computer.

– Menus on the screen should contain up to 4 options

to make them easy to point and select, and to avoid

to overlap too much of the watched scene

– Gesture shortcuts should be easy to learn and use

and should provide a fast way to do simple tasks

like controlling the volume. They are one of the key

functionalities of our proposed system.

– To allow the social aspects of interaction with TV

sets, the system should provide an easy mechanism

to release, take/switch the control between multiple

users; and the user in control should be free to move

around, but in the sensor range.

– Panoramic navigation and gestures recognition modes

are separated to improve user experience and at the

same time reduce false/wrong detections.

3.2 Architecture

To fulfill all the functionalities, the current system im-

plements the architecture depicted in Figure 3. It is

divided in three main layers. In the first layer, the Cap-

ture component is responsible of communicating with

a single Kinect camera and feeding the images into the

system. The Kinect sensors provide color and depth

video with VGA resolution that are feed into all other

components of the system.

The second layer is the core of the interface. Here the

processing, detection and recognition algorithms take

place. It is composed of the following components:

The Head tracking (Section 4.1), where the depth

image obtained in the capture module is analyzed to

detect heads (oval areas of the same depth) [28]. The

position of the heads are used in all subsequent com-

ponents to locate possible users of the system. Other

persons in the field of view of the Kinect sensor are

not tracked and their gestures do not interfere with the

system.

The Face identification component (Section 4.4)

recognizes users. Faces are detected using a modified

Viola-Jones detector [31] on the color images and recog-

nized using a temporal fusion of single image identifica-

tions. The recognized users will determine the number

of people able to control the system.

Once users are detected, hands are tracked by the

Hand Tracking component (Section 4.2) using a 3D

virtual box in front of the head of the user with control

of the system. 3D blobs in the virtual box are segmented

and treated as hands [28].

The Gesture classification component (Section 4.3)

is responsible of detecting and classifying static gestures

(gestures performed with still hands). In this case, the

classification of the gesture is purely done using the

shape and position of the hand, extracted using only

the depth data provided by the Capture component.

The classification is based on random forests [4], aim-

ing at accurately localizing gesture and object classes

in highly unbalanced problems.

Finally the third layer of the architecture contains

the Application Control component. This module is

responsible of acquiring all the detections and tracking

information obtained by the components in the middle

block (head, hands, user recognized and classified ges-

tures) and mapping them into the functionality listed in

the previous section. It communicates with the TV to

perform all the needed interactions (select ROIs, change

volume, pan-tilt-zoom the panorama, etc.). It controls

the user interface and provides all the needed feedback

through the GUI overlaid in the TV (Figure 2).

3.3 State Diagram

This section describes the state diagram of the current

system and further explains the relation between the

different components in the system architecture. Each

state in the diagram allows users to perform specific ges-

tures to control the system. The Application Control

4 M. Alcoverro et al.

HEAD	 TRACKING	

Head	 Size	
Es+ma+on	

Head	
Localiza+on	

Search	
Adapta+on	

HAND	 TRACKING	

Hands	 	
Detec+on	

Open/Close	
Detec+on	

Dynamic	
Gestures	

Classifica+on	

GESTURE	 LOCALIZATION	

APPLICATION	
CONTROL	

FACE	 IDENTIFICATION	

Face	
Detec+on	

Single	
Image	

Recogni+on	

Temporal	
Fusion	

Face	
Models	

CAPTURE	

Random	
Forest	 Clipping	

Boosted	
Learning	

Gesture	
Localiza+on	

Fig. 3 Architecture of the gesture control interface.

IDLE
MODE

NAVIGATION

ROI

“OK”	

“OK”	 /	 'meout	

Select	 item	

“OK”	 /	 'meout	

“OK”	 /	 'meout	

COMMAND
MODE

NEW
USER

Select	 item	

“OK”	 /	 'meout	 /	
face	 added	

Select	 item	

Fig. 4 State diagram for the gestural interface.

module is responsible of controlling the general status

of the system and performing the transition between

states. The end user does not need to be aware of the

general state diagram or the current state as the Ap-

plication Control component informs the user about

the available commands at each stage through feedback

in the GUI overlay. Figure 4 shows the different states

possible. The arrows and yellow boxes indicate the ges-

ture or timeout that will transition the interface from

one state to the other one.

– The system always starts in idle mode. In this state

no menu is shown in the screen and the only ges-

ture available is the OK or take control gesture

(Figure 9). In this state, the Gesture Classification

component only recognizes the OK gesture and all

other components are suspended. If the OK gesture

is detected by the Gesture Classification component,

the user doing the gesture takes control and the in-

terface transitions to the next state. In all follow-

ing states only the user in control is recognized and

other users might be present in the scene without

affecting the system.

– The command mode is the the principal state where

users interact with the system. In this state all the

components (Head and Hand Tracking, Gesture Clas-

sification and Face Identification) are started and

report to the Application Control. The Head Track-

ing ensures that the user is followed and that all

sub-sequent components only focus on the user con-

trolling the system. The Hand Tracking tracks the

position of a single hand which is used to access the

menus of the GUI overlay. The selection is done by

by pointing a single hand to the menu item, wait

for a few seconds until an arrow is shown, and then

moving the hand in the direction of the arrow (like

grabbing the menu item to the centre of the screen).

The Face Identification recognize users and allows

them to access specific options or interactions with

the system.

Finally, the Gesture Classification component rec-

ognizes 5 static gestures (Figure 9) and the Appli-

cation Controls maps them to the following func-

tionalities:

◦ The OK gesture (the same one the user used to

take control of the system) is used to go back to

idle mode.

Gesture Control Interface for immersive panoramic displays 5

◦ The volume can be increased by locating the fin-

ger on top of the mouth and lowered by putting

the hand on the ear.

◦ The volume can be completely muted by doing

a cross sign in front of the mouth.

◦ The video can be paused or resumed by closing

the hands together (similar to clapping).

By selecting any of the menus shown in the GUI

overlay, the interface can transition to the states

of navigation, ROI selection or new user. From all

these states the user can go back to command mode

by doing the OK gesture or by waiting several sec-

onds without doing anything to trigger a timeout.

– The navigation mode allows the user to navigate

freely through the panorama. In this mode no menus

are shown in the screen and only the hands of the

user are overlaid in the screen. The user can then

pan and tilt the panorama by using one hand and

grabbing the scene and zoom in or out by using

both hands (such as done in maps applications on

tablets). The Hand Tracking component is responsi-

ble of tracking this movements and, in this state, no

Gesture Classification is performed as experimental

results showed and increase of false/positive detec-

tions.

– The ROI mode allows the user to navigate through

the available ROIs by moving your hand left to right

or right to left. Also, the Hand Tracking algorithms

is responsible to track the hands of the user to de-

tect grabbings and movements in this state with no

possibility of doing static gestures.

– Finally, the new user mode is used to add new users

to the system. This mode creates new user models

to be used in the Face Identification component.

4 System Components

This section further describe each of the components

(Head and Hand tracking, Gesture Localization and

Face Identification) presented in the architecture of the

system.

4.1 Head Tracking

The head tracking algorithm is composed of three steps:

head size estimation, head localization and a search

area resizing.

Head size estimation For every foreground pixel, an

elliptical template (E) of the size of a regular adult head

(about 17×23 cm) is placed at the pixel’s depth level d

and projected onto the camera image plane, obtaining

an ellipse of the apparent head size (Hx, Hy) in pixel

dimensions (see Figure 6). This ellipse is called template

or E is then used to find a head location estimate.

We assume that people interacting with the TV will

either stand-up or be seated, keeping their head more

or less vertical.

Head localization Aiming at finding the image region

which better matches (E), a matching score between

(E) and the global foreground mask (F) is calculated

at every pixel position (m,n) of the image. Matching

is calculated within a rectangular search area of size

Rx × Ry, by sliding E across the image. The matching

score is calculated according to conditions Ck presented

in (1), where b = background and w = foreground.

Conditions are checked at every pixel position (u, v) ∈
E of the template, which is itself centered at (m,n).

When a condition Ck is satisfied, Ck = 1, otherwise

Ck = 0. The final matching score for the pixel (m,n) is

calculated as the sum of all the scores obtained on the

template pixels, as shown in Equation (1).

C1
u,v : (Eu,v = b) ∧ (Fu,v = b)

C2
u,v : (Eu,v = w) ∧ (Fu,v = w) ∧ (|du,v − dHi

| < dmax)

C3
u,v : (Eu,v = b) ∧ (Fu,v = w) ∧ (|du,v − dHi

| > dmax)

Mm,n =
∑

∀(u,v)∈E

(C1
u,v + C2

u,v + C3
u,v) (1)

The pixel (m,n) with a higher score MH is se-

lected as the best head position estimation p̂H in a

given search area. Conditions C2 and C3 provide ro-

bustness against clutter and partial occlusions, incor-

porating depth information to the matching score.

Search adaptation The position and size of the search

area (Rx, Ry) is adapted to the head position variance

(σx, σy), and also to the confidence on the estimation

M̄ = MH

Mmax ∈ [0, 1], as described in Equation (2).

Rx = σx + (1 + µ) ·Hx

Ry = σy + (1 + µ) ·Hy
with µ = e

−M̄
1−M̄ (2)

Such resizing is effective against fast head move-

ments. For example, horizontal movements will enlarge

the search area along the horizontal axis. Furthermore,

including the matching score in Equation (2) makes the

system robust against noisy estimations.

6 M. Alcoverro et al.

Fig. 5 Head matching score values using a Kinect sensor.
Different situations are presented (from left to right): back
view, side view (with slight head tilt), far person and long-
haired person. In all these cases, the matching score presents
a maximum in the head zone.

Fig. 6 Head tracking snapshots. Head templates (el-
lipses), search areas (rectangles) and obtained head locations
(crosses).

Fig. 7 Caption of the proposed approach, where both hands
are detected inside the (green) HandBox.

4.2 Hand Tracking

Hand detection The hand tracking system relies on

the robust head estimation presented in Section 4.1.

Hands are supposed to be active in a space placed in

front of the body. We define a HandBox Ω as a virtual

3D box, which is attached to the head position p̂H so

that it follows the user’s head at every time instant, as

shown in Figure 7.

Dense clusters are searched in Ω by means of a kd-

tree structure, which allows fast neighbor queries in 3D

point clouds [8]. A list of candidate clusters is obtained

and filtered according to the following criteria:

Merging Two clusters are merged as a single cluster

if the Hausdorff distance between them < δmin
Size filtering The resulting merged clusters are fil-

tered by size, keeping the largest ones (size > smin)

as hand candidates.

Depth filtering Clusters that fulfill the previous cri-

teria are sorted by depth, keeping those closer to

the camera (up to two).

Thresholds δmin and smin should be tuned depend-

ing on the type of camera and scene. For example, two

hands are being detected in Figure 7.

Open/closed hand detection The Interactivity of

the viewer with the rendering node may be increased

by determining whether the user opens or closes hands.

We propose to compute the area of the detected

hands (Section 4.2) and threshold it to quickly decide

if it is closed or not. Such strategy assumes that the ob-

served area is reasonably perpendicular to the camera.

Therefore, the depth of each pixel may be replaced by

the mean depth of the observed region, simplifying the

physical area calculation.

The physical area of an open hand perpendicular to

the camera is about 70−90 cm2, whilst that of a closed

hand is about 20− 30 cm2. It seems reasonable to set a

threshold of 50 cm2 to determine the hand status.

Dynamic gestures The pan, tilt and zoom angles

of the panoramic viewport are controlled through ges-

turing. Navigation across the panoramic video is per-

formed by a series of gestures consisting of grabbing

(close hand), moving (while hand closed) and releasing,

as if the screen was a piece of tissue. The pan and tilt

angles are calculated depending on the current position

of the hand in the HandBox Ω.

For the zooming case, once grabbed (both hands

closed), the distance between hands is calculated. The

zoom angle is proportional to that distance.

In addition, a family of dynamic gestures based on

trajectory is included. In this setup, for example, hori-

zontal movements with a considerable speed (user-defined)

are utilized to shift between ROIs in the ROI mode.

Temporal segmentation of these gestures is performed

using the entry and exit points in the HandBox, and

also assuming a low initial speed if the hand was al-

ready in the HandBox.

4.3 Gesture Localization

The gesture localization builds upon the method pro-

posed by [15], which is based on class-specific (one-vs-

all) random forests using depth data. Random forest lo-

calization in depth data renders an efficient localization

algorithm that can operate in real-time under realistic

conditions. This implies detecting gestures with high

accuracy in the presence of clutter and unintentional

motion.

The localization problem is challenging due to two

main reasons. Firstly, there is a high unbalance between

gesture and non-gesture classes, since non-gesture classes

Gesture Control Interface for immersive panoramic displays 7

contains the set of other gestures, as well as clutter and

unintentional poses. Secondly, without accurate segmen-

tation, it is difficult to accurately model the appearance

of clutter using a limited number of training samples.

The gesture localization approach used in our system

addresses these issues with two main components:

– Clipping : In order to better capture the local ap-

pearance of static gestures, we automatically clip

the depth data in a local vicinity of the training

samples. In this manner, training is less prone to

over-fitting problems caused by learning the specific

backgrounds of training data.

– Boosted learning : We use a specific learning ap-

proach to deal with the high unbalance of training

data [15]. We take advantage of the learning strat-

egy on random forests to efficiently mine the most

meaningful samples of the negative class.

For the sake of completeness, in the following of this

section we summarize some details of the approach pro-

posed in [15] (extended version currently submitted to

IEEE Trans. MM).

Clipping binary tests Random forests [4] are an en-

semble of m randomized trees, which are binary trees.

Each tree is trained separately with a small subset of

the training data obtained by sampling with replace-

ment. Learning is based on the recursive splitting of

training data into 2 subsets, according some binary test

f and a threshold θ. The binary test is a function of the

feature vector v obtained from each training example.

At each node of the tree, a test f and a threshold θ

are randomly generated, and the one that maximizes

an information gain criteria is selected.

We define our binary tests based on [26], but we in-

troduce an auxiliary parameter that clips the depth of

the available training examples. In such manner, tests

are more robust to changes in background, while avoid-

ing a segmentation step. Specifically, the clipping pa-

rameter is a value that represents the maximum and

minimum relative depth with respect to the depth value

of the center pixel. Formally, let κ denote the clipping

parameter. Then, for a given pixel x the test f has the

following expression:

fθ(I,x) =

max
(

min
(
dI

(
x + u

dI(x)

)
, dI(x) + κ

)
, dI(x)− κ

)
−max

(
min

(
dI

(
x + v

dI(x)

)
, dI(x) + κ

)
, dI(x)− κ

)
(3)

where dI is the depth map associated to image I

and u and v are two randomly generated pixel dis-

(a) (b)

Fig. 8 Gesture Localization with Random Forests (best
viewed in color). (a) A number of votes (green dots) are casted
for the target gesture (b) votes are aggregated to estimate a
probability density (overlaid in red on the input depth map)
and a localization is estimated (green square).

placements that fall within a patch size. Pixel displace-

ments are normalized with the depth evaluated at pixel

x in order to make the test features invariant to depth

changes.

Boosted learning of random forests In the local-

ization problem posed in this paper, gesture and non-

gesture classes are naturally unbalanced. On the one

hand, in real applications users are not constantly per-

forming gestures. On the other hand, the actual appear-

ance of a gesture may be represented by a relatively

low number of pixels. Summing up, the distribution of

gesture classes (positive) with respect to non-gesture

(negative) is biased towards the latter. This unbalance

makes that low false positive rates constitute actually

a large number of false positive votes. Taking into ac-

count this phenomenon is important during the training

phase of a random forest since, under such unbalance,

it will be difficult to optimize the information gain.

In order to overcome this problem, we adopt a boosted

learning scheme, designed in a tree-wise manner as fol-

lows:

We train the first tree with a balanced set of samples

from each class. Once the tree is trained, we evaluate

it against the out-of-bag set [4]. The wrongly classified

samples are added to the training set of the second tree

(up to a maximum number of training samples). This

new training set is completed by sampling with replace-

ment from the full training set until balance is achieved.

We train the second tree with this training subset and

we repeat the process until the forest is fully trained.

Gesture localization For gesture detection and local-

ization, a set of patches are provided to the detection

forest, which casts a vote whenever a positive class has

more probability than the negative class and other pos-

itive classes. Figure 8 illustrates the casted votes for a

positive class in a class-specific learning example. To

detect a gesture, we first estimate a probability density

8 M. Alcoverro et al.

Fig. 9 Examples of successful localization results using our approach (κ = 15 cm) Volume Down, Volume Up , Take Control,
Mute and Pause.

using the votes within a frame and we take into ac-

count temporal consistency by recursively updating this

distribution with votes aggregated from past time in-

stants. In order to construct the probability density, we

use a Parzen estimator with Gaussian kernel. In order

to account for the time component of the approximated

density, we sequentially update such density p(c|It) as

follows:

p′(c|It) = αp(c|It) + (1− α)p′(c|It−1) (4)

This is a simple yet effective method to keep tempo-

ral consistency of the casted votes, as it requires storing

a single probability map. An adaptation rate α = 0.8

works well in practice, as it prevents several false posi-

tives while avoiding a delayed response.

Finally, we compute the pixel location gc of a ges-

ture class c > 0 as the pixel location with maximum

probability. We ensure that such a maximum represents

a target gesture by thresholding the probability vol-

ume V computed by locally integrating the estimated

pseudo-probability measure :

V =
∑
x∈S

p′(c|It(x)) (5)

where S is a circular surface element of radius in-

versely proportional to the depth, and centered at the

global maximum. In this way, the localization is depth-

invariant.

For efficiency reasons, we approximately segment

the scene into relevant and non-relevant pixels by thresh-

olding the depth using two values znear = 0.8m and

zfar = 3.5m. Once a user get the control by performing

gesture OK, we employ the head tracking algorithm re-

sult (Section 4.1) to compute a region of interest, where

the other 4 gesture class-specific forests are evaluated.

In this way, we can run detection forests in real-time.

Besides, the region of interest helps in discarding ges-

tures of interest that other users may perform, thus

increasing the detection accuracy.

4.4 Face Identification

The purpose of face identification is to allow users to

select preferences based on the identity and to enable

the system to establish a hierarchy of users that can be

used in applications such as parental control.

The continuous monitoring environment offer the

possibility of video-based face recognition. This permits

improving the performance of face recognition from sin-

gle image captures.

The workflow of face ID system is the following:

faces are detected in first place and forwarded to the

face recognition module. The face ID compares each

test image with a set of models consisting of images of

each person, created off-line with images from previous

recordings. For each test face, a set of scores defining

the probability it represents the persons in each model

is produced. Finally, the fusion module combine the in-

dividual results for a temporal group of images of the

same person into a final decision.

In the following, we will analyze each module (de-

tection, still image identification and temporal fusion).

Face detection The face detection module is cascaded

with the head tracking module, described in Section 4.1.

Face detection is only performed inside a reduced re-

gion defined by the head tracker. This allows reduced

computational complexity and a very low probability of

false positives.

We use the OpenCV [3] face detection module that

relies on the adaboosted cascade of Haar features, i.e.

the Viola-Jones algorithm [31]. In our application, the

users generally interact with the system facing the cam-

era. The system is thus restricted to detect frontal faces,

allowing for some pose variations.

Single image face recognition For face recognition,

a set of meaningful face characteristics are first ex-

tracted to form a feature vector. This vector should

convey all the relevant information in a face. A feature

extraction technique based on Local Binary Pattern

(LBP) [17] is used. LBP operator is a non-parametric

kernel which represents the local spatial structure of an

Gesture Control Interface for immersive panoramic displays 9

image. It provides high discriminative power for tex-

ture classification and a good amount of illumination

invariance, because it is unaffected by any monotonic

gray-scale transformation which preserves the pixel in-

tensity order in a local neighborhood.

At each pixel position, LBPP,R is defined as an or-

dered set of binary comparisons between the intensity of

the center pixel and the intensities between the center

pixel and its P surrounding pixels, taken over a circum-

ference of radius R. The decimal form of the resulting

LBP code can be expressed as follows:

LBP (xc, yc) =

P∑
n=1

s(in − ic)2n (6)

Where ic corresponds to the grey value of the center

pixel (xc, yc), and in to the grey values at the P sur-

rounding locations. Function s(x) is defined as:

s(x) =

{
0 x < 0

1 x ≥ 0
(7)

Our method is based in [1] For each pixel of the lumi-

nance component of the face, its LBP8,2 representation

is computed, that is, using 8 samples taken over a cir-

cumference of radius 2 from the pixel. The resulting

transformed image is partitioned into non-overlapping

square blocks of 7x7 pixels. The feature vector is formed

by concatenation of the histograms of the LBP values of

each block. This results in 49 local 64 bins histograms

(face image was resized to 49x49). The final feature vec-

tor dimensionality is thus 3136.

A k nearest neighbor (kNN) classifier [6] is used to

obtain the final decision. In our system kNN is modified

so that a vote is penalized by the inverse of the distance

between the test vector t and the selected neighbor, in

such a way that the bigger the distance, the more penal-

ization. The ki inverse distances are normalized by the

overall sum of the k nearest neighbor inverse distances

of all classes, leading to the a posteriori probability for

each class [6].

These probabilities for each class allow the classifier

to give an estimation or score on how confident the

classification of the test vector is.

The Chi-Square distance (8) is used to compare fea-

ture vectors because it is shown that it performs better

than the Euclidean one when using histogram based

features.

χ2(v1,v2) =
∑
i

(v1,i − v2,i)2

v1,i + v2,i
(8)

where v1 and v2 are feature vectors.

Models for all individuals in the database should be

created off-line, by using sequences of images collected

in a different session than the testing recordings. 150

training images per subject are used, extracted auto-

matically from small ad-hoc recordings.

Temporal fusion As face detection is cascaded with

head detection and this module performs a temporal

tracking of the detected heads, we can ensure that the

identity of the person is maintained along the track,

so that video based recognition can be used. Temporal

fusion combines the information of several images to

perform the recognition.

After face detection, each track is composed of T

consecutive face images of the same individual. The face

identification algorithm is used to compute a vector of

scores si for each single frame. A simple score fusion

scheme is used, based on averaging the scores along

the track. The instantaneous final decision is computed

by taking an average of the last Ns score vectors and

selecting the class with highest score.

5 Experimental Results and User Evaluation

The evaluation of the proposed system is divided into

two different parts. In the first one, an objective evalua-

tion of the different technical components is performed.

In this case, all head and hand tracking, gesture local-

ization and face identification are evaluated using ob-

jective metrics against other similar methods from the

state of the art. In the second part, the entire system

is evaluated subjectively by end users with low or no

prior knowledge of the system.

For the experimental results, the proposed system

has been implemented and a complete gesture control

interface for panoramic TV content has been created as

a standalone demonstrator. As described, the demon-

strator is composed of multiple algorithms that must

be connected in different ways; some can run indepen-

dently in parallel, others need some signaling and syn-

chronization and others must run serially after another

one. Therefore, careful signaling must be shared be-

tween them. The demonstrator is implemented in the

following hardware

– A Microsoft Kinect sensor to capture depth and

color video.

– A laptop with 8 CPUs (at least 6 are needed) and

8GB of RAM

It uses the Debian operating system and the follow-

ing open-source libraries:

– OpenNI as capture drivers for the Kinect sensor

– SmartFlow as a transport and communication mid-

dleware

10 M. Alcoverro et al.

– OpenCV as a support for the face detection algo-

rithm

– PointCloudLibrary (PCL)

– Boost C++ Libraries

All algorithms described in Section 4 (Head and

hand tracking, gesture localization, face recognition and

application control) are implemented in C++ in an in-

ternal library.

5.1 Objective Evaluation of Technical Components

This section evaluates the performance of each individ-

ual component presented in the system.

Head Tracking Evaluation We analyze the conve-

nience of conditions C2 and C3 in Equation (1), and

how robustness is increased by including depth data

queues. We compare the proposed scheme with a lim-

ited version which only verifies condition C1. This way,

the contribution of C2 and C3 is shown. The head loca-

tion error between a ground-truth (manually marked)

head position gH and the estimated head location is

calculated as ε = |gH− p̂H |, and presented in Figure 10

for the two versions of the algorithm. Note that, even

if C1 plays the role of 2D method, depth data is used

for the initial head size estimation.

Figure 10 shows the frame by frame error of the C1+

C2 + C3 compared to C1. The C1 version loses target

twice, a reset of the algorithm being needed (frames 74

and 398). The labeled arrows in Figure 10 correspond to

adverse clutter and occlusion situations. Our proposed

algorithm presents an error that does not go above 10
pixels, which is about the head radius.

2
1

4
2

6
3

8
5

0
6

2
7

4
8

6
9

8
11

0
1

2
2

1
3

4
1

4
6

1
5

8
1

7
0

1
8

2
1

9
4

2
0

6
2

1
8

2
3

0
2

4
2

2
5

4
2

6
6

2
7

8
2

9
0

3
0

2
3

1
4

3
2

6
3

3
8

3
5

0
3

6
2

3
7

4
3

8
6

3
9

8
4

1
0

4
2

2

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

Error C1
Error C1+C2+C3

frame

E
st

im
a

tio
n

 e
rr

or
 in

 p
ix

e
ls

b

a

c

d

Fig. 10 Error between the obtained head location estimates
and the ground-truth.

Table 1 Hand detection 3D accuracy on different gestures

Gesture # frames error R hand error L hand
push 30 2.62 cm -
circle 30 6.61 cm -
replay 35 2.86 cm -

hand up-down 115 5.87 cm -
separate hands 75 2.36 cm 3.80 cm

160 180 200 220 240 260 280 300 320

X position [cm]

50

60

70

80

90

100

110

Y
 p

o
si

ti
o
n
 [

cm
]

R hand tracked
R hand groundtruth
L hand tracked
L hand groundtruth

Fig. 11 Ground-truth and estimated trajectories of the
(R)ight and (L)eft hands. The estimated hand positions are
nicely close to the reference ground-truth positions. Only the
XY projection of these 3D trajectories is shown.

Hand Tracking Evaluation Table 1 summarizes the

average error for different one-handed and two-handed

gestures gestures, computed as the average 3D error

(with respect to the ground-truth hand positions) along

the duration of the gestures. Ground-truth trajectories

have been extracted by hand, selecting a reasonable

hand center which may vary in some cm along frames.

Despite these adverse noisy conditions, the hand esti-

mation error rarely goes above 10 cm.

The average error is higher for fast movements, re-

sulting in about 6 cm of error. For the other gestures,

the error is of about 3 cm, which is fairly adequate given

the size of a human hand. For the sake of illustration, a

sample of the zooming gesture is included in Figure 11,

showing the detection error between the ground-truth

trajectory and the detected one.

Gesture Localization Evaluation We conduct ex-

periments of the gesture localization method to pro-

vide a quantitative performance of the approach and

determine optimal clipping parameters. We focus on

the gestures defined in Figure 9. We record 5 train-

ing sequences where 5 different actors perform a set

of gestures and actions, including the 5 target gesture

classes. Additionally, we record 6 test sequences with 4

additional actors that were not included in the training

set.

Gesture Control Interface for immersive panoramic displays 11

The employed detection forests have 15 trees with

maximum depth 20, and each tree is trained with ap-

proximately 20000 examples per class.

In all cases, we employ squared patches of size 85x85

pixels. We train class-specific forests with the boosted

learning method. Additionally, in order to compare the

learning method, we implement a boosted approach

based on [9].

To measure the accuracy of the proposed methods,

we consider a correct localization if the estimated ges-

ture and the actual gesture belong to the same class

and if the estimated location is within a radius of 10

pixels. We compute the curves representing 1-precision

vs recall to then compute the Area Under the Curve

(AUC). Average AUC’s per gesture class are shown in

Table 2.

The comparison of different training approaches with-

out clipping shows that the proposed boosted learn-

ing yields an overall better performance. The proposed

learning approach outperforms the boosting scheme pro-

posed in [9].

Face Identification Evaluation Evaluation of face

recognition has been done at two levels. In the first

place, the single-frame face ID algorithm has been tested.

This measures the ability to recognize persons given a

unique test frame. Then, we evaluate the performance

using the fusion algorithm, where the use of face track-

ing allows combining consecutive individual results into

a more robust decision.

The system is designed to work in small groups of

people that share the access to a TV set (for instance, a
family). Having this in mind, 12 individuals have been

recorded while using the demo in two sessions: the first

one is used to create the models while the second one

is used for testing. As some gestures involve putting

the hands between the face and the camera, there are a

good number of partial face occlusions. Pose is mostly

frontal but with variations as the users look at the dif-

ferent corners of the screen. There is also a medium de-

gree of expression variability since the users are asked

to behave normally while using the system.

Table 3 shows the results either for single frame and

for temporal fusion face ID. Due to occlusions and the

restrictive settings, there are good number of frames

where no faces are detected. This is not a problem in

this setup as a decision is only provided at regular in-

tervals (currently, each one or two seconds). It can be

seen that even using single frame, the identification re-

sults are very good, with only 37 errors in 6605 detected

faces. When using the temporal fusion, the identity of

the person in each segment is always given correctly.

Table 3 Face ID results

frames detected error
Single frame 8716 frames 6605 frames 0.56%

Temporal fusion - 266 segments 0.0%

5.2 Usability Evaluation

In order to validate the design of the interface we con-

ducted a usability study. We selected a set of partic-

ipants, who were asked to interact with the system

and then they answered a questionnaire. This usabil-

ity study is derived from similar studies that have been

recently conducted to evaluate a gesture controlled in-

terface for elderly in [2].

The procedure was the following:

1. First, users watched a short video about how to use

the interface 1.

2. Then, they interacted freely with the system to fa-

miliarize with its functionalities.

3. They were asked to perform 3 specific conceptual

tasks: To change the volume (up, down and mute);

To zoom into a defined part of the scene; To select

certain ROI.

4. Finally, they answered the questionnaire.

In total, the number of participants were 15. The

questions had 5 answer choices according to the degree

of agreement with the sentence (Strongly Disagree=0,. . .,

Strongly Agree=4). The sentences and the mean and

standard deviation results are shown in Table 4.

In general, users were satisfied with the system and

they could perform effectively the assigned tasks in a

short amount of time. The most successful aspects of

the user experience are related to the use of static ges-

tures to activate several control functions. As reported

by participants, the system is simple to use, easy to

learn and the GUI is clear. From their response and ac-

cording to our observation of the participants, we can

conclude that the selected gestures are intuitive and

easy to perform. Moreover, the use of static gestures

as shortcuts to perform actions reduce the amount of

information required in the GUI, improving its clarity.

Navigation through panoramic video was not so suc-

cessful. The reason seems to be due to the fact that the

interaction paradigm chosen for zooming and panning

(i.e hand gestures with hands open or closed to simulate

touching a virtual tablet in front of the user) results not

being comfortable and intuitive by participants. Fur-

ther research is required to improve the usability of the

system and such study offers insights into a better user

experience.

1 The video is available at http://vimeo.com/55432492

12 M. Alcoverro et al.

Table 2 Average Area Under the Curve (AUC) for different learning approaches.

Method Volume Down Volume Up OK Mute Pause Average

Boosted [9] 0.17 0.10 0.31 0.14 0.02 0.15

Ours 0.17 0.10 0.31 0.20 0.25 0.21
Ours + κ = 15cm 0.58 0.53 0.81 0.47 0.11 0.5
Ours + κ = 30cm 0.69 0.50 0.54 0.27 0.14 0.42
Ours + κ = 50cm 0.59 0.46 0.61 0.24 0.18 0.41

Table 4 Usability Questionnaire. Sentences and Mean and Standard deviation of the responses of 15 participants. (Strongly
Disagree=1,. . ., Strongly Agree=5).

Questions Mean Standard Deviation
1. I liked using the interface 4.13 0.96
2. The interface was pleasant to use 3.81 0.98
3. It was simple to use this system 4.00 0.73
4. It was easy to learn to use the system 4.31 0.79
5. The organization of information presented by the system was clear 4.25 0.68
6. The information provided by the system was easy to understand 4.50 0.52
7. Navigation in panoramic video was pleasant to use 3.47 0.99
8. Navigation through interface menu items was comfortable 3.94 1.00
9. The system responded effectively to my gestures 3.19 0.98
10. Task 1 (Zoom into a specific part of the scene) was easy to perform 3.88 1.31
11. Task 2 (Change audio volume) was easy to perform 4.13 1.36
12. Task 3 (Region of Interest Selection) was easy to perform 4.00 0.89
13. I felt comfortable using the system 3.63 0.89
14. Overall, I am satisfied with this system 3.69 0.87

6 Conclusion and Future Work

This paper have presented a gesture recognition sys-

tem to control a TV set. It works in a device-less and

marker-less manner allowing users to control the con-

tent on their TV sets only using their hands. It auto-

matically locates the people that want to interact with

the system and understands and recognizes their ges-

tures. The objective evaluation of the technologies inte-

grated in the system show comparable results to similar

techniques in the state of the art. The complete inte-

grated system has been evaluated subjectively by 15

users which where satisfied by the simplicity and intu-

itiveness of the interface.

Our future work include the extension of the gesture

localization part to successfully detect and recognize

fingers exploring ways to include finger gestures within

the pre-defined gesture database. Performing further

user evaluation studies, we plan to improve the usabil-

ity of the navigation through the panoramic video in

order to improve the responsiveness of the system and

to limit the fatigue caused to the users.

References

1. Ahonen, T., Hadid, A., Pietikainen, M.: Face descrip-
tion with local binary patterns: Application to face
recognition. Pattern Analysis and Machine Intelligence,

IEEE Transactions on 28(12), 2037 –2041 (2006). DOI
10.1109/TPAMI.2006.244

2. Bhuiyan, M., Picking, R.: A gesture controlled user in-
terface for inclusive design and evaluative study of its
usability. Journal of Software Engineering and Applica-
tions 4(9), 513–521 (2011)

3. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal
of Software Tools (2000)

4. Breiman, L.: Random forests. Machine Learning 45(1),
5–32 (2001)

5. Demirdjian, D., Varri, C.: Recognizing events with tem-
poral random forests. In: Proceedings of the 2009 interna-
tional conference on Multimodal interfaces, ICMI-MLMI
’09, pp. 293–296. ACM, New York, NY, USA (2009).
DOI 10.1145/1647314.1647377

6. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2.
edn. Wiley, New York (2001)

7. Francese, R., Passero, I., Tortora, G.: Wiimote and
kinect: gestural user interfaces add a natural third dimen-
sion to hci. In: Proceedings of the International Work-
ing Conference on Advanced Visual Interfaces, AVI ’12,
pp. 116–123. ACM, New York, NY, USA (2012). DOI
10.1145/2254556.2254580

8. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An Algorithm
for Finding Best Matches in Logarithmic Expected Time.
Trans. on Mathematic Software 3(3), 209–226 (1977).
DOI 10.1145/355744.355745

9. Gall, J., Yao, A., Razavi, N., Van Gool, L., Lempitsky, V.:
Hough forests for object detection, tracking, and action
recognition. TPAMI 33(11), 2188 –2202 (2011). DOI
10.1109/TPAMI.2011.70

10. Gesturepak: Gesture recording and recognition toolkit.
http://www.franklins.net/gesturepak.aspx. Accessed:
20/02/2013

Gesture Control Interface for immersive panoramic displays 13

11. Jaimes, A., Sebe, N.: Multimodal humancomputer in-
teraction: A survey. Computer Vision and Image
Understanding 108(1-2), 116 – 134 (2007). DOI
10.1016/j.cviu.2006.10.019. ¡ce:title¿Special Issue on Vi-
sion for Human-Computer Interaction¡/ce:title¿

12. Ji, Q., Wechsler, H., Duchowski, A., Flickner, M.: Edi-
torial: Special issue: eye detection and tracking. Com-
put. Vis. Image Underst. 98(1), 1–3 (2005). DOI
10.1016/j.cviu.2004.07.006

13. Kinect for windows sdk. http://www.microsoft.com/en-
us/kinectforwindows/develop/. Accessed: 20/02/2013

14. Liu, J., Zhong, L., Wickramasuriya, J., Vasude-
van, V.: uwave: Accelerometer-based personalized ges-
ture recognition and its applications. Pervasive
and Mobile Computing 5(6), 657 – 675 (2009).
DOI 10.1016/j.pmcj.2009.07.007. ¡ce:title¿PerCom
2009¡/ce:title¿

15. López-Méndez, A., Casas, J.R.: Can our tv robustly un-
derstand human gestures?: real-time gesture localization
in range data. In: Proceedings of the 9th European
Conference on Visual Media Production, CVMP ’12,
pp. 18–25. ACM, New York, NY, USA (2012). DOI
10.1145/2414688.2414691

16. Nielsen, M., Strring, M., Moeslund, T., Granum, E.: A
procedure for developing intuitive and ergonomic ges-
ture interfaces for hci. In: A. Camurri, G. Volpe (eds.)
Gesture-Based Communication in Human-Computer In-
teraction, Lecture Notes in Computer Science, vol. 2915,
pp. 409–420. Springer Berlin Heidelberg (2004)

17. Ojala, T., Pietikinen, M., Harwood, D.: A comparative
study of texture measures with classification based on
featured distributions. Pattern Recognition pp. 51–59
(1996)

18. Openni sdk. http://www.openni.org/openni-sdk/. Ac-
cessed: 20/02/2013

19. Pantic, M., Rothkrantz, L.J.M.: Automatic analysis of
facial expressions: The state of the art. IEEE Trans.
Pattern Anal. Mach. Intell. 22(12), 1424–1445 (2000).
DOI 10.1109/34.895976

20. Poppe, R.: Vision-based human motion analysis: An
overview. Computer Vision and Image Understanding
108(12), 4 – 18 (2007). DOI 10.1016/j.cviu.2006.10.016.
¡ce:title¿Special Issue on Vision for Human-Computer In-
teraction¡/ce:title¿

21. Potamianos, G., Neti, C., Luettin, J., Matthews, I.:
Audio-visual automatic speech recognition: An overview.
Issues in Visual and Audio-Visual Speech Processing pp.
356–396 (2004)

22. Pugeault, N., Bowden, R.: Spelling It Out: Real-Time
ASL Fingerspelling Recognition. In: ICCV-CDC4CV
(2011)

23. Ren, Z., Yuan, J., Zhang, Z.: Robust hand gesture recog-
nition based on finger-earth mover’s distance with a com-
modity depth camera. In: ACM MM, MM ’11, pp.
1093–1096. ACM, New York, NY, USA (2011). DOI
http://doi.acm.org/10.1145/2072298.2071946

24. Schlömer, T., Poppinga, B., Henze, N., Boll, S.: Gesture
recognition with a wii controller. In: Proceedings of the
2nd international conference on Tangible and embedded
interaction, TEI ’08, pp. 11–14. ACM, New York, NY,
USA (2008). DOI 10.1145/1347390.1347395

25. Sebe, N.: Multimodal interfaces: Challenges and perspec-
tives. J. Ambient Intell. Smart Environ. 1(1), 23–30
(2009)

26. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finoc-
chio, M., Moore, R., Kipman, A., Blake, A.: Real-
time human pose recognition in parts from single depth

images. In: CVPR, pp. 1297 –1304 (2011). DOI
10.1109/CVPR.2011.5995316

27. STERN, H.I., WACHS, J.P., EDAN, Y.: Designing hand
gesture vocabularies for natural interaction by combin-
ing psycho-physiological and recognition factors. Inter-
national Journal of Semantic Computing 02(01), 137–160
(2008). DOI 10.1142/S1793351X08000385

28. Suau, X., Ruiz-Hidalgo, J., Casas, J.R.: Real-Time Head
and Hand Tracking based on 2.5D data. Transactions on
Multimedia 1(99), 1 (2012)

29. Turk, M.: Gesture recognition. Handbook of Virtual En-
vironment Technology (2001)

30. Uebersax, D., Gall, J., Van den Bergh, M., Van Gool, L.:
Real-time Sign Language Letter and Word Recognition
from Depth Data. In: ICCV-HCI, pp. 1–8 (2011)

31. Viola, P., Jones, M.J.: Robust real-time face detection.
Int. J. Comput. Vision 57(2), 137–154 (2004)

32. Wachs, J.P., Kölsch, M., Stern, H., Edan, Y.: Vision-
based hand-gesture applications. Commun. ACM 54(2),
60–71 (2011)

33. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld,
A.: Face recognition: A literature survey. ACM
Comput. Surv. 35(4), 399–458 (2003). DOI
10.1145/954339.954342

34. Zigfu. motion controlled web. http://zigfu.com. Ac-
cessed: 20/02/2013

