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Abstract

We present an extension of Marquina’s flux formula, as introduced in [8], for the shallow water system.
We show that the use of two different Jacobians at cell interfaces prevents the scheme from satisfying the
exact C-property [2] while the approximate C-property is satisfied for higher order versions of the scheme.
The use of a single Jacobian in Marquina’s flux splitting formula leads to a numerical scheme satisfying the
exact C-property, hence we propose a combined technique that uses Marquina’s two sided decomposition
when the two adjacent states are not close and a single decomposition otherwise. Finally, we propose a
special treatment at wet/dry fronts and situations of dry bed generation.

Key Words: shallow water equations, high resolution shock capturing schemes, conservation property, well
balanced schemes, flooding, drying.
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1 Introduction

Many practical problems involving shallow water flow in oceanography and atmospheric sciences are con-
veniently modeled by considering the one-dimensional or two dimensional Saint-Venant, or shallow water,
system. This is a hyperbolic system of conservation laws that approximately describes various geophysical
flows, such as rivers, coastal areas and even oceans when completed with a Coriolis term. For practical
applications, the inclusion of a non-flat bottom topography is required, which leads to the occurrence of
source terms of geometrical nature. The system can be written as follows

Ut + div(F (U)) = S(x, U). (1)

Very often, numerical simulations for systems of this form are accomplished by using a fractional splitting
technique, in which one alternates between solving the homogeneous system of conservation laws

Ut + div(F (U)) = 0
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and the system of ordinary differential equations,

Ut = S(x, U).

This approach, however, performs very poorly in those situations where Ut is small relative to the other
two terms, in particular when steady or quasi-steady solutions are being sought. For such solutions, highly
accurate numerical simulations can only be obtained from numerical methods that ’respect’ the balance that
occurs between the flux gradient and the source term when Ut is small, and it is known [19] that this balance
is not likely to be respected when using a fractional step approach.

The shallow water system is used to model real-life applications in which the flow regime is steady or quasi
steady, and much effort has been devoted to design numerical techniques that are capable to preserve steady
states at the discrete level as well as to accurately compute the evolution of small dynamical perturbations
of these. The inclusion of the source term in a direct discretization of system (1) becomes then a non-trivial
issue. Roe showed very early [21] that pointwise evaluation of the source term is not a suitable strategy, and
the necessity of an upwind discretization of the source term is now widely recognized [21, 2, 19, 25].

For shallow water flow, the idea of ’source-term upwinding’ lead Bermúdez and Vázquez-Cendón [2] to
formulate the so-called C-property (for Conservation property), which prevents the propagation of parasitic
waves in steady and quasi-steady flows. Independently, Greenberg and LeRoux [13] coined the term “well-
balanced” for schemes that preserve steady states at the discrete level. These ideas have been explored and
developed for shallow water flows in the recent literature [11, 1, 25] and a well established strategy is to com-
bine a conservative scheme for homogeneous conservation laws with an ’appropriate’ upwind discretization
of the source term. The properties of the homogeneous ’solver’ are important in the overall performance
of the scheme and many of the main homogeneous solvers have been extended to the shallow water sys-
tem. To name but a few, Bermúdez and Vázquez-Cendón [2] used Roe’s scheme as the homogeneous solver.
Vukovic and Sopta extended their approach [25] using the ENO and WENO schemes described in [15, 14, 16].
Relaxation schemes have also been considered [1, 6], etc.

In [7] Donat and Marquina develop a new numerical scheme that avoids the use of averaged quantities
in computing the numerical flux function at cell interfaces. Marquina’s numerical flux formula is based on
the use of two jacobian matrices at each interface, from which unmixed, sided, characteristic information is
extracted. It is seen in [7, 8] that this numerical flux can be used to design robust High Resolution Shock
Capturing (HRSC) schemes with good properties with respect to certain numerical pathologies. In this
paper we seek to obtain an extension of Marquina’s flux formula for non-homogeneous conservation laws by
incorporating the idea of flux gradient and source term balancing.

Since the source-term/flux-gradient balancing in [2, 25] is linked to the use of one Jacobian matrix at
the interface, we follow a different strategy, described by Gascón and Corberán in [10]. There, the authors
propose to write the source term in divergence form so that it can be incorporated into the flux vector of
the homogeneous system to be later discretized in an upwind manner. To design the numerical technique
to be applied to system (1) we proceed as in [22, 7]: we first examine the scalar case and then construct
the numerical flux function for the system case by implementing the scalar numerical flux in each (local)
characteristic field.

In studying the C-property for our extension of Marquina’s scheme, we realize that the exact C-property is
linked to the use of a unique Jacobian at each cell interface. It is interesting to notice that these 1-Jacobian
schemes (1J in the rest of the paper) can also be considered as a flux-gradient/source-term balanced version
of the Shu-Osher ENO schemes in [22], when applied to the shallow water system with topography. The
extension turns out to be different from that in [25], since our 1J schemes satisfy the exact C property
independently of the average interface state, while in [25], the exact C property is only obtained when the
average interface state is the arithmetic mean of the left and right interface states.
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The use of two Jacobian matrices prevents the scheme from satisfying the exact C-property, but the
approximate C-property is satisfied as long as the order of accuracy is at least two. Since the use of two
Jacobians at cell interfaces is still advantageous in situations where the left and right states are very different,
we propose a combined 1J-2J scheme which seems to behave well in all cases. In addition, the 2J philosophy
serves to design a simple correction that is able to handle dry states (existing or being formed) in a rather
straightforward way.

The paper is organized as follows, section 2 contains the governing equations of the shallow water model.
The numerical scheme is explained in section 3. It also contains the proof of the C-property as well as the
special treatment of wet/dry fronts and dry bed generation. We give some examples of experiments in 1D
in section 4. Finally, conclusions can be found in section 5.

2 The shallow water system

The two-dimensional shallow water equations represent mass and momentum conservation in two dimen-
sional domains. They are derived by depth averaging the Navier-Stokes equations, neglecting diffusion of
momentum by viscous and turbulent effects and not including wind effects or Coriolis force terms. Ignoring
also friction losses, the source term is only due to the geometry of the bottom topography and the resulting
system of equations becomes (see [24] and references therein)

Ut + F (U)x + E(U)y = S (2)

 h
q1

q2


t

+

 q1
q2
1
h + 1

2gh2

q1q2
h


x

+

 q2
q1q2

h
q2
2
h + 1

2gh2


y

=

 0
−ghzx

−ghzy


where h is the water depth, q1 and q2 are the two components of the discharge, and z is the bottom
topography. This is a two-dimensional hyperbolic system of conservation laws with source terms, whose
eigenstructure is well known (see e.g. [24]).

The one-dimensional shallow water system

ht + qx = 0
qt +

(
q2

h + 1
2gh2

)
x

= −ghzx
(3)

has also practical interest in itself. A flat bottom topography leads to an homogeneous system of conservation
laws with two genuinely nonlinear fields. The mathematical theory for this homogeneous system is well
known and can be found e.g. in [18, 24]. One important feature, which will be particularly relevant to our
discussion is the fact that for a Riemann problem with left and right states (hL, qL), (hR, qR) the depth
positivity condition

uR − uL ≤ 2
√

ghL + 2
√

ghR (4)

ensures a solution with h > 0. If this condition is not satisfied, the solution of the Riemann problem
involves a forward rarefaction and a backward rarefaction with a dry-bed (equivalent to a vacuum state in
gas-dynamics) in between [24].

3



3 The numerical scheme

As described in [8, 7], Marquina’s scheme can be interpreted as a characteristic based scheme that avoids
the use of any artificially constructed averaged quantities at cell interfaces.

Characteristic-based schemes exploit the eigenstructure of the Jacobian matrix of the flux vector J(u) =
F ′(u) to transform a homogeneous nonlinear system into a system of (hopefully) nearly independent scalar
equations. These can be independently discretized in an upwind manner and then the system is transformed
back into the original variables using the same eigen-decomposition. This approach becomes one of the
simplest ways to extend to systems numerical schemes designed for scalar equations.

As observed in [8], the Jacobian matrix of the convective flux vector is quite important to any characteristic
based scheme, as it defines the local linearization of the nonlinear problem. It determines the transformation
to the local characteristic fields, and thus the local upwind directions, as well as what quantities are to be
upwind differenced.

In a typical characteristic-based scheme, only the values of the solution at cell centers are known, while the
numerical flux functions are computed at cell boundaries. Some form of reconstruction (usually polynomial)
is then required to compute the interface values required by the flux computation. While it makes little
difference what sort of (consistent) approximation is used in smooth regions, the situation can change
drastically between nodes in an unresolved steep gradient, or when the left and right states have significantly
different properties. The results in [8, 7] demonstrate that the use of averaged Jacobians, interpolated from
left and right nodal states, can lead to numerically pathological behavior in the approximate solution.
Instead, Marquina’s flux formula uses the unambiguous values for the left and right states to compute two
characteristic decompositions at each cell interface. The upwind information is extracted from considering
non-averaged information, which seems to help in avoiding (or diminishing) the aforementioned pathologies.
For full details on the scheme for homogeneous systems (with applications), we refer the reader to [8, 7, 20].

The key step in the extension to (2) is the discretization of the source term, which can be split as follows,

S = S1 + S2 =

 0
−ghzx

0

+

 0
0

−ghzy


We follow [10], and define the functions B(x, y, t) and C(x, y, t) as

B(x, y, t) = −
∫ x

x̄
S1(s, y, t)ds =

 0
β(x, y, t)

0

 , C(x, y, t) = −
∫ y

ȳ
S2(x, s, t)ds =

 0
κ(x, y, t)

0


with β(x, y, t) =

∫ x

x̄
gh(s, y, t)zx(s, y)ds and κ(x, y, t) =

∫ y

ȳ
gh(x, s, t)zy(x, s)ds. Then, we write system (2)

as follows,

Ut + (F + B)x + (E + C)y = 0 (5)

The numerical technique we propose follows the general design principles in [22]. Hence, we consider a
method of lines approach in which the time integration is performed via a TVD-Runge-Kutta method (see
[22]). The spatial terms are treated in a dimension by dimension fashion, thus, it is sufficient to give a
detailed description of the technique for the one-dimensional system (3). As in [8], we consider first the case
of a scalar equation in one dimension.
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3.1 Scalar equation

Let us consider the scalar, one dimensional version of system (3),

wt + f(w)x = s(x, w). (6)

Following [10], we define b(x, t) =
∫ x

x̄
−s(y, w(y, t))dy, and rewrite (6) as

wt + gx = 0 (7)

with the combined flux function g := f + b.
We follow a method of lines approach and discretize the space variable in (7) in a ’conservative’ fashion,

wt +
Gi+1/2 −Gi−1/2

∆x
= 0 (8)

where Gi+1/2 is the numerical combined-flux function.
Dropping the time variable for the sake of simplicity, we note as in [22], that if φ(ξ) satisfies

g(w(x), x) =
1

∆x

∫ x+∆x/2

x−∆x/2

φ(ξ)dξ

then
g(w(x), x)x =

1
∆x

(φ(x + ∆x/2)− φ(x−∆x/2))

Thus, we seek to construct the numerical flux function Gi+1/2 as an approximation to φ(xi+1/2) of the
appropriate order of accuracy. Following the construction via primitive function [22] we can accomplish this
task simply by knowing gi = g(wi, xi) = fi + bi.

It is well known that ’upwinding’ is an essential part of any numerical scheme for hyperbolic conservation
laws. In our construction of Gi+1/2, the upwind direction is determined by the sign of f ′(w) in [xi, xi+1].
This choice is simpler from that in [10], where the quantities that determine the upwind directions are
numerically computed from g, but it is consistent with other implementations [21, 2, 19, 25] and justified by
the examination of the particular case f(w) = aw, s(x, w) = k(x)w [21]

w(x, t)t + aw(x, t)x = k(x)w(x, t) (9)

whose the solution is

w(x, t) = w(x− at, 0) +
∫ t

x̄

k(x− a(t− s))w(x− a(t− s), s)ds (10)

and where each term on the RHS exhibits an upwind domain of dependence, which is determined by the
wind direction f ′(w) = a.

With these observations, we propose to use the ENO-RF construction (see [8, 22] or Algorithm ENO-3
below for specific details) directly on the combined flux data gi = fi + bi, that is

Gi+1/2 =

{
ĝRoe

i+1/2 if f ′ does not change sign in [wi, wi+1]
ĝLLF

i+1/2 else (11)
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Here ĝRoe refers to the ENO-Roe numerical flux construction and ĝLLF the ’Local Lax-Friedrichs’ construc-
tion in [22]. For the sake of completeness and ease of reference, we give the explicit formulas for the third
order ENO reconstruction (see also [8]). For the ENO-Roe numerical flux we have

ĝRoe
i+1/2 = gk + c(2(i− k) + 1)∆x + c∗(3(i− k∗)2 − 1)∆x2 (12)

where the indexes k and k∗, and the quantities c and c∗ are computed by the ENO-3 Algorithm.

Algorithm ENO-3

Step 1. If f ′ > 0 then k = i
else k = i + 1

Step 2. If |g[k, k + 1]| ≤ |g[k − 1, k]| then k∗ = k, c = 1
2g[k, k + 1]

else k∗ = k − 1, c = 1
2g[k − 1, k]

Step 3. If |g[k∗, k∗ + 1, k∗ + 2]| ≤ |g[k∗ − 1, k∗, k∗ + 1]| then c∗ = 1
3g[k∗, k∗ + 1, k∗ + 2]

else c∗ = 1
3g[k∗ − 1, k∗, k∗ + 1]

For the LLF -flux we need to define

g+
l = .5(gl + αi+1/2wl), l = i− 2, . . . , i + 2 (13)

g−l = .5(gl − αi+1/2wl), l = i− 1, . . . , i + 3 (14)

where
αi+1/2 = max{|f ′(w)|, w ∈ [wi, wi+1]}

then
ĝLLF

i+1/2 = ĝ+
i+1/2 + ĝ−i+1/2 (15)

where

ĝ+
i+1/2 = g+

i + c+∆x + c+
∗ (3(i− k+

∗ )2 − 1)∆x2 (16)

ĝ−i+1/2 = g−i+1 − c−∆x + c−∗ (3(i− k−∗ )2 − 1)∆x2 (17)

the quantities c+, k+
∗ and c+

∗ are computed by setting k = i in Step 1 of Algorithm ENO-3 and proceeding
with g+ instead of g as specified in Steps 2 and 3. For ĝ−i+1/2 we set k = i + 1 in Step 1 and proceed
analogously with g−.

Taking into account formulas (12) to (17) we see that the numerical flux function Gi+1/2 in (11) can be
written as follows:

Gi+1/2 = Gi+1/2 + ∆xCi+1/2 + ∆x2Di+1/2 = Gi+1/2 + HOTi+1/2, (18)

where the term Gi+1/2 collects the first order contribution while the terms containing Ci+1/2 and Di+1/2 are
second-order and third-order correction terms. Using equations (12) to (17) we can write

Gi+1/2 =


fi + bi if f ′ > 0 in [wi, wi+1]
fi+1 + bi+1 if f ′ < 0 in [wi, wi+1]
1
2 (fi + fi+1) + 1

2 (bi + bi+1) + 1
2αi+1/2(wi − wi+1) else

(19)
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Notice that given an index l,

g[l, l + 1] =
gl+1 − gl

∆x
= f [l, l + 1] +

1
∆x

∫ xl+1

xl

−s(w(x), x)dx

so that all the terms in HOTi+1/2 involve only quantities of the form

bl,l+1 =
∫ xl+1

xl

−s(w(x), x)dx (20)

From a numerical point of view, these quantities admit a better numerical treatment than the integral
expressions of the form bl =

∫ xl

x−1/2
−s(w(x), x)dx appearing in (19). In order to design a computationally

convenient method, we shall deduce an equivalent expression for the flux difference Gi+1/2−Gi−1/2 in terms
of the quantities bl,l+1. Observe that

Gi+1/2 −
bi

2
− bi+1

2
=

 fi − 1
2bi,i+1 if f ′ > 0 in [wi, wi+1]

fi+1 + 1
2bi,i+1 if f ′ < 0 in [wi, wi+1]

1
2 (fi + αi+1/2wi) + 1

2 (fi+1 − αi+1/2wi+1) else
(21)

where the RHS of expression (21) involves only integrals between two consecutive cells, i.e. bl,l+1 terms.
Taking into account (21) and that bi,j = bj − bi, we can re-write the first order flux difference as follows,

Gi+1/2 − Gi−1/2 =
(
Gi+1/2 − 1

2bi − 1
2bi+1

)
−
(
Gi−1/2 − 1

2bi − 1
2bi−1

)
+ 1

2bi+1 − 1
2bi−1

=
(
Gi+1/2 − 1

2bi − 1
2bi+1 + 1

2bi,i+1

)
−
(
Gi−1/2 − 1

2bi − 1
2bi−1 − 1

2bi−1,i

)
= G+

i+1/2 − G−i−1/2

Notice that the modified fluxes G± only involve integral expressions of the form bl,l+1. Indeed, carrying
out the algebra we easily arrive at

G+
i+1/2 =

 fi if f ′ > 0 in [wi, wi+1]
fi+1 + bi,i+1 if f ′ < 0 in [wi, wi+1]
1
2 (fi + αi+1/2wi) + 1

2 (fi+1 − αi+1/2wi+1) + 1
2bi,i+1 else

(22)

G−i+1/2 =

 fi − bi,i+1 if f ′ > 0 in [wi, wi+1]
fi+1 if f ′ < 0 in [wl, wr]
1
2 (fi + αi+1/2wi) + 1

2 (fi+1 − αi+1/2wi+1)− 1
2bi,i+1 else

(23)

From these expressions, we see that G+
i+1/2 collects a contribution from the source term only if there is

wind coming from the right at the interface. On the other hand, G−i+1/2 collects a source term contribution
only if there is wind coming from the left at the interface. Notice that

G+
i+1/2 − G−i+1/2 = bi,i+1

hence the signed numerical fluxes, G±i+1/2, provide an effective upwind splitting of the source term contribution
at the i + 1/2 interface

It is illustrative to write down the flux difference for the particular case (9). For a > 0 (analogously for
a < 0) we have

Gi+1/2 − Gi−1/2 = G+
i+1/2 − G−i−1/2 = fi − fi−1 +

∫ xi

xi−1

s(z, w(z))dz
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this expression clearly displays the upwind contribution of the source term.
When the flux f(w) is nonlinear, the expressions above provide easily computable numerical flux functions

that incorporate an upwind source-term contribution. We refer to Figure 1 for a better understanding of
which cell contains source term contributions, according to the sign of f ′.

i−1 i i+1

bi,i+1
bi−1,i

bi,i+1bi−1,i

bi−1,i

2

bi,i+1
2

bi−1,i

2

bi,i+1
2

f ′ > 0 in [xi−1, xi] f ′ > 0 in [xi, xi+1]

f ′ changes sign

f ′ < 0 in [xi, xi+1]f ′ < 0 in [xi−1, xi]

f ′ changes sign
in [xi−1, xi] in [xi, xi+1]

Figure 1: Contribution of source terms (at first order) involving the cell i and its both contiguous cells
according to the sign of the characteristic velocities at the vicinity of each cell wall.

To obtain a high resolution scheme, let us define

G+
i+1/2 = G+

i+1/2 + HOTi+1/2, G−
i+1/2 = G−i+1/2 + HOTi+1/2

where HOTi+1/2 = Gi+1/2 − Gi+1/2 are the higher order terms obtained from the polynomial expressions
(12),(16) and (17). Thus

Gi+1/2 −Gi−1/2 = G+
i+1/2 −G−

i−1/2 (24)

Using (24), the semi-discrete formulation (8) can be equivalently written as

wt +
G+

i+1/2 −G−
i−1/2

∆x
= 0 (25)

where the computation of the combined fluxes G±
i+1/2 only involve integrals of the source term between

consecutive cell centers. Equation (24) will be the starting point for our extension to the system case.
A fully discrete expression is obtained by numerically approximating the integral terms bi,i+1. it should

be noted that the numerical integration technique employed here has an influence on the global order of
accuracy. In the next section we shall describe our choice for the shallow water case.

3.2 Extension to nonlinear systems

To carry out the extension to the 1D system (3), we write it in the form Ut + Gx = 0, with G(U, x) =
F (U) + B(U, x) and B(U, x) = (0,

∫ x

x̄
ghzxds)T . We propose to use a semi-discrete formulation of the type

Ut +
G+

i+1/2 −G−
i−1/2

∆x
= 0, (26)
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where the computation of G±
i+1/2 only involves integral terms over consecutive cell centers and follows the

basic design strategy in Marquina’s flux formula: two states are computed at each side of a cell-interface,
UL and UR, and the numerical flux functions are obtained by applying the scalar algorithm to “sided” local
characteristic fluxes.

The states UL and UR at each side of a given interface are obtained by ENO interpolation of the physical
variables as specified in [8]. Unless specifically stated, the order of the interpolation used to compute these
states is the same as the order of the scheme.

Given UL = UL
i+1/2 and UR = UR

i+1/2, the left and right states at the i + 1/2 cell-interface, the flux
functions G±

i+1/2 shall be defined as

G±
i+1/2 =

2∑
p=1

(G̃±
i+1/2)

p,LRp(UL) + (G̃±
i+1/2)

p,RRp(UR) (27)

where Lp(UL), Rp(UL) (Lp(UR), Rp(UR)), p = 1, 2, are the left and right eigenvectors of the Jacobian matrix
J(U) = F ′(U), associated to the eigenvalues λp(UL) (λp(UR)), and the local modified characteristic fluxes
(G̃p,±)L,R are computed as in the scalar case. We give next a precise description of the computation of these
numerical fluxes. In what follows Bj,j+1 = Bj+1−Bj = (0,

∫ xj+1

xj
ghzxds)T . In the fully discrete scheme, the

integral in the second component is substituted by the discrete expression derived in the next section. We
recall that for a scheme of order r (r = 1, 2 or 3 in this paper), the index j below runs from j = i−r, . . . , i+r.

2J-Numerical flux function: For p = 1, 2

• If λp(UL) > 0 and λp(UR) > 0 then wind from the left: use ENO-Roe construction

– Compute the first order contributions , G±i+1/2, from (22) and (23), setting
f ′ > 0 ; fj = Lp(UL) · Fj , bj,j+1 = Lp(UL) ·Bj,j+1.

– Compute the HOTL
i+1/2 terms using Algorithm ENO-3 with

k = i, gj = Lp(UL) · (Fj + Bj).

Then define
(G̃p,±

i+1/2)
L = G±i+1/2 + HOTL

i+1/2, (G̃p,±
i+1/2)

R = 0.

• If λp(UL) < 0 and λp(UR) < 0 then wind from the right: Use ENO-Roe construction.

– Compute the first order contributions, G±i+1/2, from (22) and (23), setting
f ′ < 0; fj = Lp(UR) · Fj , bj,j+1 = Lp(UR) ·Bj,j+1.

– Compute the HOTR
i+1/2 terms using Algorithm ENO-3 with

k = i + 1, gj = Lp(UR) · (Fj + Bj)

Then define
(G̃p,±

i+1/2)
L = 0, (G̃p,±

i+1/2)
R = G±i+1/2 + HOTR

i+1/2;

• If λp(UL)λp(UR) ≤ 0 then mixed wind: Use the LLF construction.

– Define αi+1/2 = max(|λp(UL)|, |λp(UR)|)
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– Define
(G̃p,+

i+1/2)
L = Lp(UL) · 1

2

(
Fi + αi+1/2Ui

)
+ HOTL

i+1/2

(G̃p,−
i+1/2)

L = Lp(UL) · 1
2

(
Fi + αi+1/2Ui −Bi,i+1

)
+ HOTL

i+1/2

Compute the HOTL
i+1/2 terms as in (16) with g+

j = 1
2Lp(UL)(Fj + Bj + αi+1/2Uj).

(G̃p,+
i+1/2)

R = Lp(UR) · 1
2

(
Fi+1 − αi+1/2Ui+1 + Bi,i+1

)
+ HOTR

i+1/2

(G̃p,−
i+1/2)

R = Lp(UR) · 1
2

(
Fi+1 − αi+1/2Ui+1

)
+ HOTR

i+1/2

Compute the HOTL
i+1/2 terms as in (17) with g−j = 1

2Lp(UR)(Fj + Bj − αi+1/2Uj).

The extension just described complies with the basic design principles of Marquina’s flux formula: the
superscript L refers to characteristic information carried by a left-wind, while R refers to right-wind driven
information. On the other hand, the superscripts ± in the local characteristic fluxes refer to the main (first-
order) source term contribution in each characteristic field. As in the scalar case, the +-fluxes in the pth
field collect source term contributions only if there is wind coming from the right at the interface. 1

We also remark that when UL = UR (for example when UL = UR = UA an average interface state), then
the 2J-numerical flux function just described becomes a 1J numerical flux and (27) reduces to

G±
i+1/2 =

∑
p

(G̃p,±
i+1/2)

ARp(UA
i+1/2) (28)

This 1J-numerical flux becomes an extension of the ENO numerical fluxes in [22] to the shallow water system.
As we shall see shortly, this extension turns out to be different from that in [25].

3.2.1 Numerical approximation of the source term contributions

For the shallow water system, the source term contribution involves the numerical approximation of integrals
such as

∫ xi+1

xi
ghzxdx. Assuming that the integrand is smooth and applying the trapezoidal rule

βi,i+1 =
∫ xi+1

xi

ghzxdx = g[(hzx)i + (hzx)i+1]
∆x

2
− (hzx)xx(ξ)

∆x3

12
(29)

If the topography and the flow are smooth, we can write

(hzx)i = hi(zx)i = hi

(
zi+1 − zi

∆x
− ∆x

2
(zxx)i + O(∆x2)

)
(hzx)i+1 = hi+1(zx)i+1 = hi+1

(
zi+1 − zi

∆x
+

∆x

2
(zxx)i+1 + O(∆x2)

)
Replacing these terms in (29) we obtain

βi,i+1 =
g

2
(zi+1 − zi)(hi+1 + hi) +

∆x2

4
g(−hi(zxx)i + hi+1(zxx)i+1) + O(∆x3)

=
g

2
(zi+1 − zi)(hi+1 + hi) + O(∆x3) = β̄i,i+1 + O(∆x3)

1We have also tested (G̃p,±
i+1/2

)L = Lp(UL) · 1
2

(
Fi + αi+1/2Ui ± 1

2
Bi,i+1

)
+ HOT L

i+1/2
and (G̃p,±

i+1/2
)R = Lp(UR) ·

1
2

(
Fi+1 − αi+1/2Ui+1 ± 1

2
Bi,i+1

)
+ HOT R

i+1/2
without finding differences in the experimental results.
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Thus, β̄i,i+1 = g
2 (zi+1−zi)(hi+1 +hi) provides a third order approximation to the integral of the source term

between two consecutive cells, for smooth flows and smooth topography. This is compatible with the third
order accurate flux computations carried out by the ENO-3 algorithm described above and is the choice used
in our numerical schemes.

3.2.2 Study of the C-property

Numerical schemes specifically designed for the simulation of shallow water flows must be able to compute
accurately steady states and small dynamical perturbations of these. Schemes that have this property are
named well balanced by Le Roux and collaborators [13]. In [2], Bermúdez and Vázquez Cendón identify a
key property that the scheme must satisfy in order to prevent the formation of numerically driven parasitic
waves. This is the so called C property.

A scheme is said to satisfy the exact C-property if it is exact when applied to the stationary case q ≡ 0
and h+z ≡ constant and if it is not exact but accurate to order O(∆x2) it is said to satisfy the approximate
C-property.

To determine the behaviour of our 2J scheme with respect to the C-property, we study the flux difference
G+

i+1/2−G−
i−1/2 for the quiescent stationary solution q = 0, h+z = C. Notice that in this case ∇(z +h) = 0,

thus

F (U) =
(

0
1
2gh2

)
B(U, x) =

(
0∫ x

x̄
ghzxds

)
=
(

0
−
∫ x

x̄
ghhxds

)
hence

Bj =
(

0
− g

2h2
j + constant

)
Gj = Fj + Bj =

(
0

constant

)
and

Bi,i+1 = Bi+1 −Bi =
(

0
− g

2 (h2
i − h2

i+1)

)
=
(

0
− g

2 (zi+1 − zi)(hi+1 + hi))

)
,

since hi + zi = hi+1 + zi+1. This implies that that βi,i+1 = β̄i,i+1, i.e. the numerical approximation to the
integral values are exact.

For quiescent steady state flows, the eigenvalues of the one dimensional system are: λ1(U) = −c and
λ2(U) = c =

√
gh, and the right and left eigenvectors Rm(U) = (1, λm(U))T , Lm(U) = 1

2 (1, λ−1
m (U)).

When h > 0, λ1 < 0 and λ2 > 0 always, and the 2J-algorithm easily leads to:

G+
i+1/2 −G−

i−1/2 = (G̃1,+
i+1/2)

RR1,R
i+1/2 + (G̃2,+

i+1/2)
LR2,L

i+1/2 − (G̃1,−
i−1/2)

RR1,R
i−1/2 − (G̃2,−

i−1/2)
LR2,L

i−1/2

Since Gj is constant ∀j, all divided differences of the characteristic fluxes: gp,L
j = Lp,LGj and gp,R

j =
Lp,RGj for p = 1, 2 are zero, hence all HOT terms are zero. In addition, the eigenvalues do not change sign,
i.e. the flux functions are always computed with the ENO-Roe Algorithm and one can easily check that

(G̃1,+
i+1/2)

R = L1,R
i+1/2(Fi+1 + Bi,i+1) = −1

4
g

h2
i

cR
i+1/2

(G̃2,+
i+1/2)

L = L2,L
i+1/2Fi =

1
4
g

h2
i

cL
i+1/2

(G̃2,−
i−1/2)

L = L2,L
i−1/2(Fi−1 −Bi−1,i) =

1
4
g

h2
i

cL
i−1/2

(G̃1,−
i−1/2)

R = L1,R
i−1/2Fi = −1

4
g

h2
i

cR
i−1/2
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Then, carrying out the algebra we get(
G+

i+1/2 −G−
i−1/2

∆x

)
=

gh2
i

4∆x

(
− 1

cR
i+1/2

+ 1
cL

i+1/2
+ 1

cR
i−1/2

− 1
cL

i−1/2

0

)
(30)

We can observe that all terms in the second component cancel out. For the first component, assuming that
h is a smooth function, the ENO interpolation procedure of order r would lead to the following estimate

hL,R
i+1/2 = h(xi+1/2) + O(∆xr) (31)

Hence, for h > 0 and sufficiently smooth, we can conclude that

(hL,R
i+1/2)

−1/2 = (h(xi+1/2))−1/2 + O(∆xr) ⇒ (cL,R
i+1/2)

−1 = (c(xi+1/2))−1 + O(∆xr)

so that the approximate C-property is satisfied provided that r ≥ 3.
Notice that for the first order scheme we have(

G+
i+1/2 −G−

i−1/2

∆x

)
=

gh2
i

4∆x

(
− 1

ci+1
+ 1

ci
+ 1

ci
− 1

ci−1

0

)
=

gh2
i

4∆x

(
−
(

1
c

)
xx

∆x2

0

)
=
(

O(∆x)
0

)
Thus, it seems reasonable to expect that second order accuracy would also ensure the approximate C-
property, and this seems to be so computationally (see section 4), but we cannot ensure it analytically.

Notice that if UL = UR, i.e. we use only one Jacobian at each cell interface, the first term in (30)
also cancels out, and that this cancellation occurs independently of the interface state and of the order of
the scheme. Therefore, our 1J (one-Jacobian) scheme verifies the exact C-property. As mentioned in the
introduction, the 1J scheme can be considered as a flux gradient-source term balanced extension of the ENO
schemes in [22], different from that in [25].

Remark 1 Our analysis shows that the cancellations necessary to obtain the C property must be accom-
plished at each cell boundary. The two essential ingredients at the i+1/2 interface are: a) only one Jacobian
is computed at the interface and b) β̄i,i+1 = βi,i+1.

3.2.3 Combined 1J-2J scheme

In light of the remarks above, It would seem that the use of two Jacobian evaluations at cell walls is not to
be recommended for numerical simulations of steady or quasi-steady shallow water flows, unless the scheme
is at least third order accurate. However, we have found that using two jacobians can still be advantageous
in certain situations that are of interest in shallow water flow and that involve two very different states at
both sides of a numerical interface (see experiments: Transcritical flow with shock in section 4.1.2 and the
ones in sections 4.3.3 and 4.3.4)

We then propose a scheme that combines the use of one or two Jacobians, when either choice is most
appropriate: When the interpolated states at each cell-wall, UL

i+1/2 and UR
i+1/2 , are ’close’, then, a single

Jacobian decomposition is used at the i + 1/2 interface. If there is a significant difference between the left
and right states at the interface we construct the combined flux function using two Jacobian decompositions.
However, if there is a sonic point nearby, in practice when λp(Ui)λp(Ui+1) ≤ 0 , then even if the states
are close, we still use the two sided decomposition. In this way, we expect to get both the benefits of
essentially satisfying the exact C-property, by using mostly the 1J-numerical flux, and of the 2J scheme, at a
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few particular locations where it is known that Marquina’s flux splitting technique has a better performance.

The combined 1J-2J numerical flux function we propose can be explicitly described as follows,

Algorithm 1J-2J : At the i + 1/2 interface,

• Compute UL = UL
i+1/2 and UR = UR

i+1/2 with left and right-biased ENO interpolation, as in [8]

• Compute the eigenvalues λp(UL), λp(UR) for p = 1, 2.

• If ||UL − UR|| < ∆xs 2 and λp(UL)λp(UR) > 0 for p = 1 and 2 then (contiguous states are very close
and no sonic point nearby: 1J-numerical flux)

Define the average state at the interface, e.g. UA
i+1/2 = 1

2 (UL + UR) 3

G±
i+1/2 =

∑
p

(G̃p,±
i+1/2)

ARp(UA
i+1/2)

• Else, (contiguous states not close, or sonic nearby: 2J-numerical flux)

G±
i+1/2 =

∑
p

(G̃p,±
i+1/2)

LRp(UL) + (G̃p,±
i+1/2)

RRp(UR)

3.3 Treatment of dry zones

One of the major problems that arises when simulating the movement of a fluid is the presence/occurrence
of dry zones. Dry areas in shallow-water flow simulations can be handled in various ways, but Toro [24]
warns that converting dry areas into slightly wet areas is both inappropriate and numerically ’dangerous’
(see [24] for details).

Front tracking seems to be an adequate procedure but, since it is difficult to implement in several di-
mensions, other alternatives have also been explored in the literature (see [5, 4],[23, 26], [9] and references
therein).

In this paper we follow the approach in [3]. To deal with existing dry areas, we give a threshold of
minimum water depth below which h and q are set to zero and the cell is considered a dry cell. Wetting
fronts are then included in the ordinary cell procedure in a through calculation that assumes zero water
depth for the dry cells. The key point in this approach is the the use of a numerical flux function that can
cope with zero-depth cells while maintaining, at the same time, the C-property.

Since the advancement of the wet/dry front should be determined by the wet state at the front, we adopt
the following special treatment at cell-walls separating wet and dry states.

• If hi 6= 0 and hi+1 = 0: (wet/dry front) then

– Compute UL
i+1/2 with ENO interpolation. Set UR

i+1/2 = UL
i+1/2.

• If hi = 0 and hi+1 6= 0: (dry/wet front) then

– Compute UR
i+1/2 with ENO interpolation. Set UL

i+1/2 = UR
i+1/2.

The interface flux always uses one Jacobian, evaluated at the wet state at the interface, hence the first
condition to fulfill the exact C property is respected (see Remark 1).

2s is a power less than the order of the scheme r. In practice, we use s = 1/2 for r = 1 and s = 1 for r = 2, 3.
3in our numerical simulations we have found no difference between the arithmetic mean or the Roe mean.
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3.3.1 Source term at wet/dry fronts

Notice that the discrete expression β̄i,i+1 in section 3.2.1 is not the exact value of the integral source term
contribution βi,i+1 at the boundary between a wet and a dry cell. In order to fulfill the second condition in
Remark 1 we re-derive the discrete value of the integral contribution taking into account the existence of a
dry cell.

We consider first a wet/dry interface (i.e. hi 6= 0, hi+1 = 0). Let xc be the the point where h becomes
null. Then,

βi,i+1 =
∫ xi+1

xi

ghzxdx =
∫ xc

xi

ghzxdx =
g

2
(hc + hi)(zc − zi) + O(∆x3) (32)

where hc = h(xc) = 0 and zc = z(xc). Let us assume that z and h are sufficiently smooth in [xi, xc], then:

hc = hi + hx(i)(xc − xi) + O(∆x2) (33)
zc = zi + zx(i)(xc − xi) + O(∆x2) (34)

Assuming that hx(i) = O(1) we can write

zc = zi − zx(i)
hi

hx(i)
+ O(∆x2) (35)

Replacing zc from (35) in (32), we obtain

βi,i+1 = −g

2
zx(i)
hx(i)

h2
i + O(∆x2) (36)

To obtain a discrete approximation, we substitute zx(i) and hx(i) by discrete estimations from ’wet’ variables
at cell centers, i.e.

β̄i,i+1 = −g

2
zi − zi−1

hi − hi−1
h2

i (37)

This approximation provides a discrete value for the source term contribution that satisfies the second
condition in remark 1: If hi + zi = hi−1 + zi−1 at the wet side, then β̄i,i+1 = βi,i+1 = −gh2

i /2. Hence the
numerical flux function complies with the necessary conditions to obtain the cancellations necessary for the
C-property.

For a dry/wet boundary, an analogous computation leads easily to

βi,i+1 =
g

2
zx(i + 1)
hx(i + 1)

h2
i+1 + O(∆x2) (38)

As before, approximating the derivatives from wet values leads to the following discrete source term contri-
bution (that satisfies also the second condition in remark 1)

β̄i,i+1 =
g

2
zi+2 − zi+1

hi+2 − hi+1
h2

i+1 (39)

Note that in the redefinition of the integral (32) xc is a point between xi and xi+1 so the possible values
of hx in (33) are restricted to

hx(i) ≤ − hi

∆x
in the wet/dry front (40)

hx(i + 1) ≥ hi+1

∆x
in the dry/wet front (41)
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If inequality (40) (or (41)) does not hold, we assume that xc = xi (xc = xi+1) and we use β̄i,i+1 =
g
2 (hi+1+hi)(zi+1−zi) as usually. Note also that inequalities (40) and (41) avoid automatically the particular
cases hx(i) = 0 and hx(i + 1) = 0.

3.3.2 Occurrence of Dry states from Wet flow

In section 2 we recall that dry areas appear in the solution of Riemann problems for shallow water flows
with flat topography when the depth positivity condition uR−uL ≤ 2cL +2cR is not satisfied. As noticed by
Toro [24] the occurrence of dry areas is particularly hard to simulate with conventional wet Riemann solvers.

Throughout our numerical experimentation we have found that the type of viscosity (αi+1/2) considered
in the LLF portion of Marquina’s flux splitting formula is most important when dealing with the numerical
formation of dry areas. Moreover, the way in which the interface states are computed seems to be also
very important: UL and UR should be computed avoiding any mixed information. In numerical simulations
involving dry states formed from wet states by rarefaction separation we have found a numerical treatment
which seems to give consistent and reliable numerical results in all cases. The numerical treatment is as
follows,

If ui − ui+1 > 2ci + 2ci+1 holds,

• Compute UL by an ENO interpolation considering that the states at the right of the i + 1/2 interface
are dry cells.

• Compute UR by an ENO interpolation considering that the states to the left of the interface are dry
cells.

• For every p-th field the LLF construction is used substituting the numerical viscosity αi+1/2 =
max(|λp(UL)|, |λp(UR)|) by the following definition

αi+1/2 :=
λ̂p

i+1/2(λ
p(UR) + λp(UL))− 2λp(UR)λp(UL)

λp(UR)− λp(UL)
(42)

where λ̂p
i+1/2 is the p-th eigenvalue of the Jacobian matrix evaluated at the Roe’s average of contiguous

states, i.e.

ĥi+1/2 =
√

hihi+1, ĉi+1/2 =

√
g
hi + hi+1

2
and ûi+1/2 =

√
hiui +

√
hi+1ui+1√

hi +
√

hi+1

The choice for αi+1/2 is inspired in the entropy fix for Roe’s scheme proposed by Harten and Hyman. For
the scalar conservation law, the entropy-fixed flux can be written as ([17])

F̃ (wL, wR) = fL + λL λR − λ̂

λR − λL
(wR − wL)

= fR − λR λ̂− λL

λR − λL
(wR − wL)

(43)

where λ̂ is a characteristic speed at the interface. Adding the two expressions for the RHS we get

F̃ (wL, wR) =
1
2
(fL + αwL) +

1
2
(fR − αwR) ; α =

λ̂(λR + λL)− 2λRλL

λR − λL

For systems, λ̂p is the pth eigenvalue of the Roe-matrix constructed from wL and wR. In figure 11(a) we
show an example of the type of instabilities that occur when these corrections are not implemented.
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4 Numerical Experiments

The following series of numerical experiments illustrate various features of the scheme. The test cases are
standard in the literature. In all numerical simulations we use a CFL coefficient of 0.8 and a threshold of
water depth equal to 10−4.

4.1 Steady flow: Relevance of the C-property

4.1.1 Maintaining Steady flow

To give a numerical validation of our study on the C-property, we follow [25] and consider a smooth topog-
raphy in a 20m channel given by

z(x) = 0.2e−( 2
5 (x−10)2)

and the two initial states shown in Figure 2. The left plot corresponds to a quiescent state (u = 0) and the
right plot to a non-quiescent state with constant discharge 4.42 m2/s. In table 1, we show measurements of
the L1-error and the numerical order at T = 50s when using the 2J-scheme. We can see that the order of
accuracy obtained in the quiescent simulation agrees with the theoretical analysis in section 3.2.2: the global
error behaves like O(∆x) for r = 1, and it seems to be of order larger than 2 for the third order scheme. It
also shows that the second order method satisfies the approximate C-property although we could not ensure
it theoretically. We obtain similar results for the non-quiescent case, as shown in table 1, even though no
analytical study was presented for this case.

If we repeat the calculations using the 1J-2J scheme, then the error is within machine precision, i.e. the
scheme satisfies the exact C-property, in the quiescent case. The table for the non-quiescent case deserves
some explanation: We can observe that all the errors in this case are the same for any r. This O(∆x2)
error actually comes from the trapezoidal rule used to approximate the integral source term contribution.
We have verified experimentally that if we increase the order of the numerical integration, using for example
Simpson’s rule, the approximation order of the non-quiescent state is improved. We thus conjecture that
the 1J-scheme preserves all steady states up to the order of the numerical integration procedure.

Usually, the bottom topography is not smooth. With the objective of evaluating the discretization of the
source term in the presence of complex and possibly non-smooth geometry, the following experiment was
proposed in a workshop on dam-break wave simulation [12]. The topography is tabulated in [12] and shown
in figure 3. The initial condition is the water at rest at a level of 12m. The boundary conditions are a water
level of 12m and no discharge. Numerical results obtained after a simulation of 200s are displayed in Figure
3. We can observe that the second order numerical scheme has not produced any visually detectable artificial
movement of water. In table 3 we present the L∞ errors in water depth and velocity after T = 10.8s (600
nodes) with three different variants of the scheme.

4.1.2 Steady flow over a hump

This series of tests were proposed in the workshop [12] with the aim to evaluate the ability of numerical
schemes to arrive and maintain the steady state over a non-flat topography. In these simulations a bottom
topography of 25m length is defined as:

z(x) =

{
0.2− 0.005(x− 10)2 if 8 m < x < 12 m

0 otherwise
(44)
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Figure 2: Exact water surface and topography at steady state (left: quiescent state, right: non-quiescent
state).

QUIESCENT STATE
cells n=1 n=2 n=3

L1order L1error L1order L1error L1order L1error

20 1.9 · 10−3 5.47 · 10−4 2.62 · 10−4

40 1.57 6.48 · 10−4 2.47 9.84 · 10−5 1.85 7.24 · 10−5

80 1.35 2.53 · 10−4 2.33 1.95 · 10−5 1.52 2.52 · 10−5

160 1.10 1.17 · 10−4 1.89 5.26 · 10−6 3.14 2.84 · 10−6

320 0.99 5.95 · 10−5 1.37 2.02 · 10−6 3.96 1.81 · 10−7

NON-QUIESCENT STATE
cells n=1 n=2 n=3

L1order L1error L1order L1error L1order L1error

20 1.7 · 10−3 7.26 · 10−4 2.92 · 10−4

40 0.97 8.46 · 10−4 2.04 1.76 · 10−4 1.24 1.23 · 10−4

80 1.00 4.22 · 10−4 2.13 4.00 · 10−5 1.30 5.01 · 10−5

160 0.99 2.11 · 10−4 2.07 9.5 · 10−6 1.88 1.36 · 10−5

320 0.99 1.06 · 10−4 2.04 2.30 · 10−6 2.42 2.53 · 10−6

Table 1: Steady state with smooth topography. Error order measured at T=50s (2J-scheme).
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QUIESCENT STATE
cells n=1 n=2 n=3

L1error L∞error L1error L∞error L1error L∞error

20 2.22 · 10−16 6.66 · 10−16 3.44 · 10−16 4.44 · 10−16 6.10 · 10−16 8.88 · 10−16

40 1.28 · 10−16 4.44 · 10−16 7.22 · 10−17 2.22 · 10−16 3.77 · 10−16 8.88 · 10−16

80 1.23 · 10−15 1.78 · 10−15 1.64 · 10−16 4.44 · 10−16 1.03 · 10−15 1.55 · 10−15

160 1.57 · 10−16 6.66 · 10−16 6.41 · 10−16 1.33 · 10−15 1.44 · 10−15 2.00 · 10−15

320 5.76 · 10−16 1.11 · 10−15 2.89 · 10−16 8.88 · 10−16 1.66 · 10−15 2.22 · 10−15

NON-QUIESCENT STATE
cells n=1 n=2 n=3

L1order L1error L1order L1error L1order L1error

20 1.15 · 10−5 1.15 · 10−5 1.15 · 10−5

40 1.93 3.00 · 10−6 1.93 3.00 · 10−6 1.93 3.00 · 10−6

80 1.98 7.59 · 10−7 1.98 7.59 · 10−7 1.98 7.59 · 10−7

160 2.00 1.90 · 10−7 2.00 1.90 · 10−7 2.00 1.90 · 10−7

320 2.00 4.76 · 10−8 2.00 4.76 · 10−8 2.00 4.76 · 10−8

Table 2: Steady state with smooth topography. Error order measured at T=50s (1J-2J scheme).
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Figure 3: Water at rest over a complex geometry (T=200s, 300 nodes, 2nd order 2J-scheme)
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Num. scheme order L∞ error in h L∞ error in u

2J-scheme r=1 2.875 · 10−1 2.0542

r=2 1.922 · 10−1 3.103 · 10−1

r=3 4.870 · 10−2 4.030 · 10−2

1J-scheme (Roe’s average) r=1 3.553 · 10−15 3.780 · 10−15

r=2 1.777 · 10−15 2.114 · 10−15

r=3 3.553 · 10−15 2.534 · 10−15

1J-2J scheme r=1 3.553 · 10−15 3.780 · 10−15

r=2 1.777 · 10−15 2.556 · 10−15

r=3 3.553 · 10−15 3.315 · 10−15

Table 3: Quiescent state proposed in a workshop on dam-break wave simulation [12]. L∞ error measured at
T=10.8s.

In all cases, the initial conditions are h+ z = constant and q = 0. Depending on the initial and boundary
conditions, the resulting flow could be at rest, subcritical or transcritical with or without shock. For these
experiments we use a grid with 100 points.

Subcritical flow The initial conditions are h + z = 2m, q = 0. For the boundary conditions:

downstream: h = 2 m

upstream: q = 4.42 m2/s

In figure 4 we display the results obtained with the second order 2J scheme. No significant differences can
be seen when using r = 1 or r = 3 or when using the 1J-2J scheme. We note that the oscillations observed
in the discharge are of the order of O(∆xr).
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Figure 4: Subcritical flow over a hump (T=200s, 100 nodes, 2J-scheme r = 2). Water depth (left) and
discharge (right)
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Transcritical flow without shock Initial conditions: h + z = .66m, q = 0. Boundary conditions:

downstream: h = 0.66 m only when Fr < 1
upstream: q = 1.53 m2/s

where Fr = u/
√

gh is the Froude number.
The results obtained after 200s of are shown in Figure 5. In the second order simulation shown in Figure

5 we appreciate a slight ’dog-leg’-like effect at the maximum of the topography, which is no longer visible in
the 1J-2J simulation. The glitch is improved when using the 2J third order scheme which fits correctly the
analytical solution (as the 1J-2J scheme).
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Figure 5: Transcritical flow without shock over a hump (T=200s, 100 nodes, 2nd order). Water depth:
2J-scheme (left) and 1J-2J scheme (right)

Transcritical flow with shock Initial conditions: h + z = .33m, q = 0. Boundary conditions:

downstream: h = 0.33 m

upstream: q = 0.18 m2/s

This test is particularly well suited to display the behavior of the schemes we propose. In Figure 6 we
compare the results of the 1J-2J scheme with the 2J scheme for r = 1, 2, 3. We readily note that the 2J
scheme gives a sharper resolution at the shock, however the glitches observed in the previous transcritical
simulation distort in a noticeable manner the profile of the water surface in the first order simulation. The
glitches improve with the order of accuracy, and the 1J-2J scheme produces the best resolution for each r.

4.2 Quasi stationary flow

In [19], Le Veque proposes a test involving a quasi-stationary flow in order to evaluate the capability of
the scheme to accurately compute small perturbations of the water surface over a variable topography.
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(c) 1J-2J
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Figure 6: Transcritical flow with shock over a hump (T=200s, 100 nodes). Comparison of 1J and 2J scheme
with the combined 1J-2J scheme. Top: 1st order. Middle: 2nd order. Bottom: 3rd order.
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Le Veque uses this test to show the disadvantages of schemes that do not preserve steady states. The
bottom topography is given as

z(x) =

{
0.25(cos(π(x− 0.5)/0.1) + 1) if |x− 0.5| < 0.1
0 otherwise

on 0 < x < 1 with g = 1. The initial conditions are q = 0 and

h(x) := 1− z(x) + ε for 0.1 < x < 0.2,

which represents a small hump perturbation of the quiescent steady state (h, u) = (1 − z, 0). The initial
disturbance splits into two waves propagating with left and right characteristics speeds ±c. A magnified
view of the water surface after 0.7s with ε = 10−3, with 300 nodes is shown in Figure 7. The negative effect
of not satisfying the exact or approximate C- property in the first order 2J scheme is revealed in spurious
oscillations (of the order of the perturbation itself) over the topography (Fig. 7(a)). Mesh refinement (not
shown) improves the results and the numerical solution converges to the true solution. The numerical results
for the second and third order 2J scheme, which satisfy the approximate C-property, display a much smaller
level of numerically generated noise. On the other hand, the results of the 1J-2J scheme are accurate and
without spurious oscillations (Figures 7(b)).
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Figure 7: Quasi stationary case, water surface (T=0.7s with ε = 10−3)

4.3 Wet/dry fronts and dry bed generation

4.3.1 Drain on a non-flat bottom

This simulation was proposed in [9]. The bottom topography is the same as in (44) and the initial condition
is h + z = 0.5, q = 0. At the right boundary, an outlet condition on a dry bed is simulated. The left
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boundary is a mirror state. The flow reaches a steady state with h + z = .2 and q = 0 to the left of the
bump and h = 0 to its right.

In Figure 8 we show the evolution of the water surface as in [9]. Here we used the second order version
of the 1J-2J scheme with 300 nodes. As noticed in [9], the non-preservation of discrete steady states leads
to the wrong water height in this experiment. In our case, it is important to use the modification of the
source term contribution specified in section 3.3.1. If β̄i,i+1 = g/2(zi+1 − zi)(hi+1 + hi) is used at wet/dry
fronts, then the C property does not hold. In this case, the water level at the steady state in the numerical
simulation (not shown) is below the exact value.
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Figure 8: Drain on a non-flat bottom: water surface evolution (300 nodes, 2nd order 1J-2J scheme)

4.3.2 Oscillating lake

This test was proposed in [1]. The aim here is to asses the behaviour of the scheme in situations of wet/dry
fronts over non-flat topographies. The topography simulates a lake bed with non-flat bottom and non-vertical
shores,

z(x) = 0.5(1− 0.5(cos(π(x− 0.5)/0.5) + 1))

The water surface of a lake at rest is perturbed initially with a small sinusoidal wave,

h(0, x) = max(0, 0.4− z(x) + 0.04(sin((x− 0.5)/0.25) + 0.04 max(0,−0.4 + z(x))))

The flow oscillates in such a way that an interface between a wet cell and a dry cell has to be computed
at each time step. The result after 19.87s with the 2nd order 1J-2J scheme can be seen in figure 9(a). The
authors in [1] already pointed out the importance of using high order extensions of the scheme. In our case,
the 1st order scheme does not damp the oscillations, instead we observe that the numerical solution leaves
the domain in the course of time (see figure 9(b)). The 2nd and 3rd order versions of the scheme do maintain
the periodic regime for all time.
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Figure 9: Oscillating lake (200 nodes, 2nd order 1J-2J scheme)

4.3.3 Dry bed generation by rarefaction separation

This is an experiment over flat topography (z = 0) proposed by Toro in [24]. The initial conditions

U(x, 0) =

{
UL = (hL, qL) = (0.1 m,−0.3 m2/s) if x ≤ 5 m

UR = (hR, qR) = (0.1 m, 0.3 m2/s) if x > 5 m

do not satisfy (4) at x = 0, hence a dry bed is formed instantaneously in the middle of a left going and right
going rarefaction waves.

The generation of a dry state in between makes this test numerically difficult. In our context, it provides
an example of a situation where the two-sided local characteristic decomposition does play a significant role.
Our numerical experimentation shows that the 1J scheme cannot create a dry zone in the middle of the two
rarefaction waves (with either of the two entropy fixes proposed, the regular LLF or H&H specified in (42))

As specified in section 3.3.2, two different modifications in the scheme are necessary in these situations:
a) UL and UR should be computed avoiding any mixed information (considering an artificial dry state at
the other side), b) compute the viscosity coefficient, αi+1/2, as in (42), i.e. using H&H entropy fix.

If we do not make any of these modifications in the 2J scheme (or the 1J-2J scheme), the dry zone is
created but it is much larger than the analytical solution (simulation not shown). If we comply only with
a) above and still use the viscosity coefficient in the regular LLF splitting (LLF-entropy fix), the dry bed is
not created (see figure 10(a)). We can see in figure 10(b) that both modifications result in the generation
of a dry zone (notice that it is still a little larger than the one in the analytical solution but not as large as
the one obtained without any of the modifications). We also notice that when using the H&H entropy-fix
(42) it is crucial to comply with a) above, otherwise instabilities such those in the next experiment (figure
11(a)) could be created.
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Figure 10: Two rarefaction waves with dry bed generation (200 nodes, 2nd order, magnified view at center).

4.3.4 Dry bed generation with bottom topography

In [9], the basic test by Toro is modified by including a non-trivial topography, which is defined as

z(x) =

{
1 m if 25/3 m < x < 12.5 m

0 otherwise

with a length of 25 m. The initial conditions are h + z = 10 m and the discharge is -350 m2/s if x < 50/3
m and 350 m2/s otherwise.

As in the previous test, the initial data do not satisfy condition (4) so a dry bed, separating two rarefaction
waves, is formed instantaneously over the flat portion to the right of the bump . The left-going wave interacts
with the non-flat topography and as a consequence some waves are formed at the water surface.

The numerical results in figure 11 can be directly compared with those in [9]. Both results in figure 11
are computed switching to H&H entropy-fix when condition (4) is not satisfied. In Figure 11(a) we do not
comply with condition a) i.e. allow mixing when computing UL and UR. In this case, instabilities are created
when the left-going wave interacts with the bump in the topography. On the other hand, when complying
with a), the result is more accurate (see figure 11(b)). In both simulations we have used the 1J-2J scheme
(in this test, no noticeable differences with the 2J scheme can be observed). The same type of instabilities
also occur when using the original scheme (without any of the modifications in section 3.3.2). If we only
avoid mixing information in computing UL and UR at cell walls not satisfying (4), but always use the LLF
entropy-fix the instabilities disappear but the dry bed still has not been created at t = 0.05s.
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Figure 11: Dry bed generation by a double rarefaction wave over a step (100 nodes, 2nd order 2J scheme)

5 Conclusions

We have proposed an extension of Marquina’s flux formula [7, 8] to the shallow water system with source
terms coming from a non flat topography. The source term is included in a direct discretization of the system
following a technique introduced in [10] by Gascón and Corberán.

We call our extension the 2J scheme, since it complies with the basic design principle in Marquina’s
flux formula: Two Jacobian evaluations are used at each interface in order to determine the characteristic
information and the way in which this information is used in the numerical scheme. Since our 2J combined
numerical flux does not verify the exact C-property, while a closely related 1J combined numerical flux does,
we propose to use a 1J-2J combined numerical flux which essentially satisfies the C-property.

The results in this paper show a variety of situations where the combined 1J-2J scheme performs well.
These situations involve, in addition to standard tests on shallow water flow over a hump in steady and
quasi-steady situations, the generation of dry beds and flows over adverse slopes. The results indicate that
the 1J-2J numerical flux provides a sufficiently simple numerical scheme that can be easily upgraded to
obtain second and third order accuracy together with high resolution.

The scheme can be extended to 2D simulations in a dimension by dimension fashion and the addition of
source terms coming from friction losses poses no special difficulties, since it is agreed that these terms do
not need any special upwinding procedure. More realistic simulations in 2D is the subject of ongoing work.
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6 Some remarks on the conservativity of the scheme

In section 3.1 we have seen that in the scalar case we have

Gi+1/2 −Gi−1/2 = G+
i+1/2 −G−

i−1/2 (45)

so the scheme continues being conservative if we use G±
i+1/2 instead of Gi+1/2. To make the extension to

nonlinear systems we simply apply, in each characteristic field, the same rules that we have found in the
scalar case in order to compute the fluxes G+

i+1/2 and G−
i+1/2 that collect the source term contribution

when the wind comes from the right and from the left respectively. We recall that in the system case the
fluxes G±

i+1/2 are computed from the contribution of the fluxes (G̃±)p,R and (G̃±)p,L in each characteristic
field (see (27)). Thus, the construction of the algorithm makes possible that in the same interface i + 1/2
the source term Bi,i+1 is projected using the left-biased eigenvectors in one characteristic field and using
the right-biased eigenvectors in other field. As a consequence, (45) is not always verified and the error
ε = (Gi+1/2 −Gi−1/2)− (G+

i+1/2 −G−
i−1/2) that we make is

ε =
∑

p

(
L

p,S(p,xi+1/2)

i+1/2 ⊗R
p,S(p,xi+1/2)

i+1/2 − L
p,S(p,xi−1/2)

i−1/2 ⊗R
p,S(p,xi−1/2)

i−1/2

)
Bi (46)

where ⊗ is the tensor product between vectors and S(p, xi+1/2) is a discrete function with two possible
values {L, R}. The function S(p, xi+1/2) indicates which sided decomposition we use at interface xi+1/2 and
at p-th characteristic field. Indeed, if the conserved variables are sufficiently smooth, after (46) the error
is O(∆xr) which is of the same order that the error order of the scheme. Thus, in smooth solutions, the
extension to systems is ’conservative’ (except for an error O(∆xr)). On the other hand, if we use only one
Jacobian, the error (46) is zero, so the scheme is always conservative. Moreover, the error (46) is only due
to the first order terms of the source term contribution.

Let us describe an extension of the first order terms to systems which is conservative. The technique that
we follow is basically the same, except that we write Bi =

∑i−1
j=0Bj,j+1 and we divide Bi,i+1 into two pieces

each one projected with its corresponding local-sided eigenvectors, ie,

(G̃p
i+1/2

)LRp(UL) =


Lp(UL)FiR

p(UL) + {i + 1
2
}p if λp(UL), λp(UR) > 0

0 if λp(UL), λp(UR) < 0
1
2
Lp(UL)(Fi + αi+1/2Ui)R

p(UL) + 1
2
{i + 1

2
}p else

(G̃p
i+1/2

)RRp(UR) =


0 if λp(UL), λp(UR) > 0
Lp(UR)Fi+1Rp(UR) + {i + 1

2
}p + {i + 1

2
, i + 1}p if λp(UL), λp(UR) < 0

1
2
Lp(UR)(Fi+1 − αi+1/2Ui+1)Rp(UR) + 1

2
{i + 1

2
}p + 1

2
{i + 1

2
, i + 1}p else

where {i + 1
2
}p :=

∑i
j=0

(
Lp(UR

j−1/2
)Bj−1/2,jRp(UR

j−1/2
) + Lp(UL

j+1/2
)Bj,j+1/2Rp(UL

j+1/2
)
)

{i + 1
2
, i + 1}p := Lp(UR)Bi+1/2,i+1Rp(UR)

In practice, we take Bi,i+1/2 = Bi+1/2,i+1 = 1
2Bi,i+1 in the experiments. We have then,

Gi+1/2 =
∑

p

(G̃p
i+1/2)

LRp(UL) + (G̃p
i+1/2)

RRp(UR) =
∑

p

Gp
i+1/2

We define the fluxes that collect the source term contribution in the p-th characteristic field following the
wind direction as,

Gp,+
i+1/2 = Gp

i+1/2 − {i}p
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Gp,−
i+1/2 = Gp

i+1/2 − {i + 1}p

where {i + 1}p := {i + 1
2}p + {i + 1

2 , i + 1}p. Thus, Gp,−
i−1/2 = Gp

i−1/2 − {i}p and we have the equality,

G+
i+1/2 −G−

i−1/2 = Gi+1/2 −Gi−1/2 where G±
i+1/2 =

∑
p

Gp,±
i+1/2

We can see that this extension to systems is conservative even if we use two Jacobians. The final expression
of fluxes Gp,+

i+1/2 and Gp,−
i+1/2 is

Gp,+
i+1/2

=


Lp(UL)FiR

p(UL) if λp(UL), λp(UR) > 0
Lp(UR)Fi+1Rp(UR) + Lp(UL)Bi,i+1/2Rp(UL) + Lp(UR)Bi+1/2,i+1Rp(UR) if λp(UL), λp(UR) < 0

1
2
Lp(UL)(Fi + αi+1/2Ui)R

p(UL) + 1
2
Lp(UR)(Fi+1 − αi+1/2Ui+1)Rp(UR)

+ 1
2
Lp(UL)Bi,i+1/2Rp(UL) + 1

2
Lp(UR)Bi+1/2,i+1Rp(UR)

else

Gp,−
i+1/2

=


Lp(UL)FiR

p(UL) − Lp(UL)Bi,i+1/2Rp(UL) − Lp(UR)Bi+1/2,i+1Rp(UR) if λp(UL), λp(UR) > 0

Lp(UR)Fi+1Rp(UR) if λp(UL), λp(UR) < 0
1
2
Lp(UL)(Fi + αi+1/2Ui)R

p(UL) + 1
2
Lp(UR)(Fi+1 − αi+1/2Ui+1)Rp(UR)

− 1
2
Lp(UL)Bi,i+1/2Rp(UL) − 1

2
Lp(UR)Bi+1/2,i+1Rp(UR)

else

We note that this new scheme has the same construction that the one in section 3.2 with the difference that
now we use Lp(UL)Bi,i+1/2R

p(UL) + Lp(UR)Bi+1/2,i+1R
p(UR instead of L

p,S(p,xi+1/2)

i+1/2 Bi,i+1R
p,S(p,xi+1/2)

i+1/2 .

As we have already said, these expressions (Gp,+
i+1/2 and Gp,−

i+1/2) correspond to the first order terms of the flux
Gi+1/2 (thus making an abuse of notation). The HOT can be obtained as before or in the case of the source
term, directly computing the high order extension of the new expression of the source term discretization.

Observe that interpreting UL = UR the above notation encompasses the case of one Jacobian at each
interface.

With this discretization of the source term and using (26) we have:

N∑
j=0

(Uj)t +
N∑

j=0

G+
j+1/2 −G−

j−1/2

∆x
= 0

Since
N∑

j=0

G+
j+1/2 −G−

j−1/2

∆x
=

N−1∑
j=0

G+
j+1/2 −G−

j+1/2

∆x

(where we assume that the boundary conditions are such that G−
−1/2 = G+

N+1/2 = 0) and

G+
j+1/2 −G−

j+1/2 = Bj,j+1

we obtain that

∆x

 N∑
j=0

Uj


t

+
N−1∑
j=0

Bj,j+1 = 0

(we would add G+
N+1/2 − G−

−1/2 in the right hand side of the above equation to include general boundary
conditions).

We show in figure 12 the results obtained with this new discretization of the source term in the steady
case corresponding to a transcritical flow with shock over a hump. We can compare the results with those
in figure 6 which correspond to the scheme explained in section 3.2. We can observe that these results are
quite similar (do not improve nor worsen them) to those of figure 6 so we choose the discretization based on
integrals over cells which is more easily computable.
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Figure 12: Transcritical flow with shock over a hump (T=200s, 100 nodes). New first order source term
contribution based on integrals over semi-cells.
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