Veronica Vilaplana

Position![]() |
|
---|---|
Associate Professor | veronica.vilaplana@upc.edu |
Office | Phone |
---|---|
CN: D5-118 / ESEIAAT: TR2-102 | +34 934 017 052 +34 937 398 979 |
Biography
Veronica Vilaplana holds a MSc degree in Mathematics and a MSc degree in Computer Sciences from the Universidad de Buenos Aires (Argentina), and a PhD in Signal Theory and Communications from the Universitat Politècnica de Catalunya (UPC). Since 2002 she is associate professor at the Department of Signal Theory and Communications (UPC). Her current research interests focus on deep learning and other machine learning models for biomedical and remote sensing applications.
Scientific IDs:
Google Scholar, ORCID: 0000-0001-6924-9961
Scopus Author ID: 23394280500, Researcher ID: O-1726-2014, UPC Futur
Journal Articles top
“SurvLIMEpy: A Python package implementing SurvLIME”, Expert Systems With Applications, In Press. | ,
“Biological Brain Age Prediction Using Machine Learning on Structural Neuroimaging Data: Multi-Cohort Validation Against Biomarkers of Alzheimer’s Disease and Neurodegeneration stratified by sex”, eLife, vol. 12, 2023. | ,
“Looking behind occlusions: A study on amodal segmentation for robust on-tree apple fruit size estimation”, Computers and Electronics in Agriculture, vol. 209, 2023.![]() |
,
“Simultaneous Fruit Detection and Size Estimation Using Multitask Deep Neural Networks ”, Biosystems Engineering, vol. 233, pp. 63-75, 2023.![]() |
,
“QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation--Analysis of Ranking Metrics and Benchmarking Results”, Journal of Machine Learning for Biomedical Imaging, 2022. | ,
Book Chapters and Bookstop
“MRI brain tumor segmentation and uncertainty estimation using 3D-UNet architectures”, in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020, vol. 12658, Springer International Publishing, 2021, pp. 376-390. | ,
“Monte-Carlo Sampling Applied to Multiple Instance Learning for Histological Image Classification”, in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Springer International Publishing, 2018, pp. 274-281. | ,
“Leishmaniasis Parasite Segmentation and Classification Using Deep Learning”, in Articulated Motion and Deformable Objects, vol. 10945, Springer International Publishing, 2018, pp. 53-62. | ,
“Shared Latent Structures Between Imaging Features and Biomarkers in Early Stages of Alzheimer’s Disease”, in PRedictive Intelligence in MEdicine, vol. 11121, Springer International Publishing, 2018, pp. 60-67. | ,
“Cascaded V-Net Using ROI Masks for Brain Tumor Segmentation”, in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017, Crimi A., Bakas S., Kuijf H., Menze B., Reyes M. (eds)., vol. 10670, Cham: Springer, 2018, pp. 381-391. | ,
Conference Papers top
“Layer-wise self-supervised learning on graphs”, in KDD 2023 Workshop on Deep Learning on Graphs: Methods and Applications (DLG-KDD 2023), Long Beach, USA, Submitted. | ,
“Brain-age prediction and its associations with glial and synaptic CSF markers”, in Alzheimer's Association International Conference, Amsterdam, Netherlands, 2023. | ,
“Brain-age mediates the association between modifiable risk factors and cognitive decline early in the AD continuum”, in Alzheimer’s Association International Conference (AAIC), Amsterdam, Netherlands, 2023. | ,
“Interpreting Machine Learning models for Survival Analysis: A study of Cutaneous Melanoma using the SEER Database”, in XAI-Healthcare 2023 Workshop at 21st International Conference of Artificial Intelligence in Medicine (AIME 2023), Portoroz, Slovenia, 2023. | ,
“Sentinel lymph node status prediction with self-attention neural networks using histologies of primary melanoma tumours”, in European Association of Dermato Oncology (EADO 2022), 2022. | ,
Theses top
“Super-resolution and semantic segmentation of remote sensing images using deep learning techniques”, 2022. | ,
“Study of early stages of Alzheimer’s disease using magnetic resonance imaging”, Universitat Politècnica de Catalunya, Barcelona, 2019. | ,
“Visual Object Analysis using Regions and Local Features”, 2016.![]() |
,
“Region-based face detection, segmentation and tracking. framework definition and application to other objects”, Universitat Politècnica de Catalunya (UPC), 2010. | ,
Other top
“Deep learning for semantic segmentation of airplane hyperspectral imaging”. 2019. | ,Ms Thesis |
“Clasificación de lesiones de piel con un ensemble de redes neuronales residuales”. 2019. | ,Ms Thesis |
“Clasificación de imágenes dermatoscópicas utilizando Redes Neuronales Convolucionales e información de metadatos”. 2019. | ,Ms Thesis |
“Synthesis of acne images for data augmentation with generative adversarial networks”. 2019. | ,Ms Thesis |
“Interpretability of Deep Learning Models”. 2019. | ,Ms Thesis |
Projects top
![]() |
AIMING: Unbiased and explainable artificial intelligence for medical imaging | National | Sep 2021 | Aug 2024 |
![]() |
DigiPatICS: Projecte d'optimització del diagnòstic anatomopatòleg en xarxa als hospitals de l'Institut Català de la Salut a través de la digitalització i eines d'intel·ligència Artificial | Other | Oct 2020 | Sep 2023 |
![]() |
Implementation of personalized medicine in malignant melanoma patients aided by artificial intelligence. | Other | Aug 2020 | Jul 2023 |
![]() |
A European AI On Demand Platform and Ecosystem | European | Jan 2019 | Dec 2021 |
![]() |
SGR17 - Image and Video Processing Group | National | Jan 2017 | Sep 2021 |
Research Areas top
![]() |
Biomedical Applications | Internal | Jan 2012 | Dec 2024 |
![]() |
Region-based image and video processing | Internal | Jan 1992 | Dec 2020 |
![]() |
Deep learning | Internal | Jun 2014 | Dec 2020 |
![]() |
Saliency prediction | Internal | Feb 2015 | Dec 2019 |
![]() |
Multimedia Retrieval | Internal | Sep 2001 | Dec 2018 |
Demos and Resources top
![]() |
Additional results for "Action Tube Extraction based 3D-CNN for RGB-D Action Recognition" | Results | May 2018 |
![]() |
VNeAT (Voxel-wise Neuroimaging Analysis Toolbox) | Software | Jun 2017 |
![]() |
Saliency Maps on Image Hierarchies | Results | May 2015 |
![]() |
Automatic Keyframe Selection over TVC database | Results | Jun 2013 |
Teaching top
Acronym | Title | Level | College |
---|---|---|---|
VC | Computer Vision | Degree in Engineering of Audiovisual Systems | ESEIAAT |
DLAI | Deep Learning for Artificial Intelligence | Master MET | ETSETB TelecomBCN |
PDI | Digtal Image Processing | Degree in Engineering of Audiovisual Systems | Escola d'Enginyeria de Terrassa, EET |
IPSAV | Introduction to Audiovisual Signal Processing | Degree in Engineering of Audiovisual Systems | TelecomBCN, ETSETB |
ICV | Introduction to Computer Vision | Master in Telecommunications Engineering (MET) | ETSETB - Telecom BCN |
IDL | Introduction to Deep Learning | BSc | ETSETB TelecomBCN |
IHCV | M1. Introduction to Humand and Computer Vision | Master in Computer Vision (MCV) | UAB, UOC, UPC & UPF |
CLP | Pattern recognition and machine learning | Degree in Telecommunications Technologies and Services Engineering | Telecom BCN - ETSETB |