Search Publication

Export 230 results:
Author [ Title(Desc)] Type Year
Filters: First Letter Of Last Name is R  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Lo Anguera J, Ruiz-Hidalgo J, Solé A, Casas J, Lázaro JAntonio, Sarmiento S, et al.. Leveraging Quantum Machine Learning for Intrusion Detection in Software-Defined Networks. In IEEE International Conference on Machine Learning for Communication and Networking. Barcelona: IEEE; 2025.  (1.41 MB)
Ruiz-Hidalgo J, Salembier P. Long term selection of reference frame sub-blocks using MPEG-7 indexing metadata. In International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007. Honolulu, Hawaii; 2007. pp. 669–672.  (111.99 KB)
Gené-Mola J, Ferrer-Ferrer M, Gregorio E, Blok PM, Hemming J, Morros JR, et al.. Looking behind occlusions: A study on amodal segmentation for robust on-tree apple fruit size estimation. Computers and Electronics in Agriculture. 2023;209.  (9.02 MB)
Gené-Mola J, Ferrer-Ferrer M, Gregorio E, Blok PM, Hemming J, Morros JR, et al.. Looking behind occlusions: A study on amodal segmentation for robust on-tree apple fruit size estimation. Computers and Electronics in Agriculture. 2023;209.  (9.02 MB)
Gurrin C, Giró-i-Nieto X, Radeva P, Dimiccoli M, Johansen H, Joho H, et al.. LTA 2016 - The First Workshop on Lifelogging Tools and Applications. In ACM Multimedia. Amsterdam, The Netherlands: ACM; 2016.  (385.75 KB)
Gurrin C, Giró-i-Nieto X, Radeva P, Dimiccoli M, Dang-Nguyen D-T, Joho H. LTA 2017: The Second Workshop on Lifelogging Tools and Applications. In ACM Multimedia. Mountain View, California USA: ACM; 2017.  (309.94 KB)
M
Perez-Pellitero E. Manifold Learning for Super Resolution. Rosenhahn B, Ruiz-Hidalgo J. [Hannover]: Leibniz Universität Hannover; 2017.  (18.6 MB)
Perez-Pellitero E. Manifold Learning for Super Resolution. Rosenhahn B, Ruiz-Hidalgo J. [Hannover]: Leibniz Universität Hannover; 2017.  (18.6 MB)
Morros JR, Vilaplana V, Ruiz-Hidalgo J, Casas J, Gasull A, Marqués F, et al.. Materials transversals per a l'aprenentatge actiu de les matèries de processat d'imatge i vídeo. In Congrés Internacional de Docència Universitària i Innovació (CIDUI). Tarragona, Spain; 2014.  (853.76 KB)
Schreer O, Macq J, Niamut O, Ruiz-Hidalgo J, Shirley B, Thallinger G, et al.. Media Production, Delivery and Interaction for Platform Independent Systems. Wiley, ISBN 978-1-118-60533-2; 2014.
Ruiz-Hidalgo J, Salembier P. Metadata-based coding tools for hybrid video codecs. In Picture Coding Symposium, PCS 2003. Saint-Malo, France; 2003. pp. 473–477.  (50.67 KB)
Perez-Pellitero E, Salvador J, Ruiz-Hidalgo J, Rosenhahn B. Method for upscaling an image and apparatus for upscaling an image. US 20170132759 A1; 2018.
Perez-Pellitero E, Salvador J, Ruiz-Hidalgo J, Rosenhahn B. Method for upscaling an image and apparatus for upscaling an image. US 20170132759 A1; 2018.
Terradas R, Domingo P, Grau M, Alarcón E, Ruiz-Hidalgo J. A method, system and computer programs to automatically transform an image. European Patent Office. 2022.
Rolón J, Ortega A, Salembier P. Modeling of contours in wavelet domain for generalized lifting image compression. In IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2009. Taipei, Taiwan; 2009.  (226.33 KB)
Ruiz-Hidalgo J, Salembier P. Morphological tools for robust key-region extraction and video shot modeling. Lecture notes in computer science. 2001;:407–416.  (1.08 MB)
Sayrol E, Gasull A, R. Fonollosa J. Motion estimation using higher-order statistics. IEEE transactions on image processing. 1996;5:1077–1084.
Gené-Mola J, Vilaplana V, Rosell-Polo JR, Morros JR, Ruiz-Hidalgo J, Gregorio E. Multi-modal Deep Learning for Fuji Apple Detection Using RGB-D Cameras and their Radiometric Capabilities. Computers and Electronics in Agriculture. 2019;162.
Gené-Mola J, Vilaplana V, Rosell-Polo JR, Morros JR, Ruiz-Hidalgo J, Gregorio E. Multi-modal Deep Learning for Fuji Apple Detection Using RGB-D Cameras and their Radiometric Capabilities. Computers and Electronics in Agriculture. 2019;162.
García-Gómez P, Royo S, Rodrigo N, Casas J, Riu J. Multimodal imaging System based on sòlid-State LiDAR for Advanced perception applications. In 10th International Symposium on Optronics in defence & security. Versailles, France: 3AF OPTRO2022; 2022.
García-Gómez P, Royo S, Rodrigo N, Casas J, Riu J. Multimodal imaging System based on sòlid-State LiDAR for Advanced perception applications. In 10th International Symposium on Optronics in defence & security. Versailles, France: 3AF OPTRO2022; 2022.
García-Gómez P, Royo S, Rodrigo N, Casas J, Riu J. Multimodal imaging System based on sòlid-State LiDAR for Advanced perception applications. In 10th International Symposium on Optronics in defence & security. Versailles, France: 3AF OPTRO2022; 2022.
Neumann J, Casas J, Macho D, Ruiz-Hidalgo J. Multimodal Integration of Sensor Network. In Artificial Intelligence Applications and Innovations. Boston: Springer; 2006. pp. 312–323.
Neumann J, Casas J, Macho D, Ruiz-Hidalgo J. Multimodal Integration of Sensor Network. In Proceedings of 3rd IFIP Conference on Artificial Intelligence Applications & Innovations. Athens, Greece: Springer; 2006.  (401.58 KB)
García-Gómez P, Rodrigo N, Riu J, Casas J, Royo S. Multimodal solid-state LiDAR for advanced perception applications. In OPTOEL. 2021.

Pages